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ABSTRACT
We revisit the problem of connection management for reliable trans-
port. At one extreme, a pure soft-state (SS) approach (as in Delta-t
[12]) safely removes the state of a connection at the sender and
receiver once the state timers expire without the need for explicit
removal messages. And new connections are established with-
out an explicit handshaking phase. On the other hand, a hybrid
hard-state/soft-state (HS+SS) approach (as in TCP) uses both ex-
plicit handshaking as well as more limited timer-based manage-
ment of the connection’s state. In this paper, we consider the worst-
case scenario of reliable single-message communication. Using a
commonanalytical model that can be instantiated to capture either
the SS approach or the HS+SS approach, we argue that although
HS+SS may seem more attractive due to its lower memory re-
quirement for keeping connection states, memory is not a concern
in today’s computers. Using a more detailed simulation model,
we evaluate various approaches in terms of correctness (with re-
spect to data loss and duplication) and robustness to bad network
conditions (high message loss rate and variable channel delays).
Our results show that the SS approach is more robust, and has
lower message overhead and higher goodput. Thus, SS presents
the best choice for reliable applications, especially those operat-
ing over bandwidth-constrained, error-prone networks. This result
also suggests that within a clean-slate transport architecture, ex-
plicit connection management is not needed, and a simple common
packet interface based on Delta-t—rather than TCP vs. T/TCP vs.
UDP,etc.— can be provided to support both transactional and bulk,
reliable and unreliable (unacknowledged) applications.
Categories, General Terms and Keywords:
C.2 COMPUTER-COMMUNICATION NETWORKS; C.2.2 Net-
work Protocols; Transport protocols, performance modeling and
analysis, simulation.

1. INTRODUCTION
Reliable end-to-end transport communication has been studied

since the 70’s and various mechanisms have made their way into
TCP [9], the reliable transport protocol widely used on the Internet
today. Many of these mechanisms provided incremental patches
to solve the fundamental problems of data loss and duplication.
Richard Watson in the 80’s [12] provided a fundamental theory of
reliable transport, whereby connection management requires only
timers bounded by a small factor of the Maximum Packet Lifetime
(MPL). Based on this theory, Watsonet al. developed the Delta-
t protocol [3], which we classify as a pure soft-state (SS) proto-
col – i.e., the state of a connection at the sender and receiver can
be safely removed once the connection-state timers expire without
the need for explicit removal messages. And new connections are
established without an explicit handshaking phase. On the other
hand, TCP uses both explicit handshaking as well as more limited
timer-based management of the connection’s state. Thus, TCP’s
approach, including variants such as HULA [7] and T/TCP [8], can
be viewed as a hybrid hard-state/soft-state (HS+SS) protocol.

Given the recent interest in clean-slate network architectures,
it is incumbent on us to question the design of every aspect of the
current Internet architecture. In this paper, we question a specific
design aspect of TCP, that of connection management:Despite

Watson’s theory, why does a popular transport protocol, like TCP,
manage its connections using both a state timer at the sender as
well as explicit connection-management messages for opening and
closing connections?

Note that connection management is concerned with maintain-
ing consistent view of connection-states at the sender and receiver
to distinguish new from old connections. Though connection man-
agement may leverage data and acknowledgements to piggyback
signaling information, and so data may be falsely acknowledged
(data loss) or duplicated, it is aseparatefunction from data-transfer
functions such as congestion control, error control, flow control,
etc. In this paper, we focus only on connection management, as-
suming single-message communication.

Though over a decade ago, we have seen many pioneering
work in the area of reliable transport—see [11, 2, 3, 12, 10] for
examples—this body of work has focused on the correctness as-
pects of reliable delivery but not performance. From the correctness
point of view, Watson’s theory states that one can achieve reliabil-
ity using an SS approach, as long as one can bound exactly three
timers for: (1) the maximum time that a sender expends retransmit-
ting a data packet (G), (2) the maximum time that an acknowledg-
ment is delayed by the receiver (UAT), and (3) the maximum time
that a packet is allowed to live inside the network (MPL). Wat-
son argues that all these times are naturally bounded in actual im-
plementations. And since G and UAT are typically much smaller
than MPL, connection-state timers (at both sender and receiver)
can be bounded by a small factor of MPL. Note that TCP itself,
despite its use of explicit connection-management messages, uses
a connection-state timer (at the sender). And TCPhas touse such a
state timer in order to operate correctly1 . Thus, from a correctness
point of view, there is no way around the need for state timers, only
that TCP relies on less of them.

Our Contribution:
From a performance point of view, to the best of our knowledge,
there is no work that compares the hybrid HS+SS approach of TCP
against the arguably simpler SS approach of Delta-t. In this paper,
we provide a first performance comparison study. We consider the
worst-case scenario of reliablesingle-messagecommunication, and
develop a common analytical model that can be instantiated to cap-
ture either the SS approach or the HS+SS (five-packet exchange)
approach. This analytical model specializes the general model of Ji
et al. [5] for signaling protocols to connection management for re-
liable transport, and so in this paper, we are concerned with unique
issues related to data loss / abort / duplication due to inconsistent
connection-states at the sender and receiver or failure to establish a
connection. The model considers a simplified setting of a single ac-
tive connection at any given time between the sender and receiver,
i.e., a new connection is blocked until the connection-state (mem-
ory) associated with the previous connection is released. Under

1 Obviously, this full-proof correctness assumes that the MPL guar-
antee from the underlying network is not violated. Otherwise, one
can only show correctness with high probability.



this simplified setting, SS is found to have lower message over-
head compared to HS+SS, at the expense of reduced goodput due
to its longer holding time of the connection-state at the receiver.
Thus, HS+SS may seem more attractive in terms of goodput and
memory requirement. However, in today’s computers, memory is
not a concern. We then consider a more detailed simulation model
where more than one connection can be active between a sender
and receiver. We evaluate various approaches in terms of correct-
ness (with respect to data loss and duplication) and robustness to
bad network conditions (high message loss rate and variable chan-
nel delays). Our results show that the SS approach is more robust,
and has lower message overhead and higher goodput. Thus, SS
presents the best choice for reliable applications, especially those
operating over bandwidth-constrained, error-prone networks. This
result also suggests that within a clean-slate transport architecture,
explicit connection management is not needed, and a simple com-
mon packet interface based on Delta-t—rather than TCP vs. T/TCP
vs. UDP,etc.— can be provided to support both transactional and
bulk, reliable and unreliable (unacknowledged) applications.

Organization of the Paper:
Section 2 presents a Markov model that captures the behavior of
either SS (ala Delta-t) or HS+SS (ala TCP) for reliable connec-
tion management. We use this analytical model to compare SS and
HS+SS. We use a more detailed simulation model in Section 3,
to obtain simulation results comparing four reliable transport ap-
proaches (including Delta-t and TCP) under varying packet loss
probability, and varying channel delays that may cause premature
retransmissions. The four approaches to reliable transport that we
evaluate in this paper, represent a spectrum of solutions where the
amount of explicit connection-management messages and the use
of connection-state timers vary: (1) thetwo-packet(DATA and its
ACK) protocol has no connection-state timers nor explicit connection-
management messages, (2) thethree-packetprotocol augments the
two-packet protocol with an explicit connection-management CLOSE
message, (3) thefive-packet(TCP) protocol augments the three-
packet protocol with explicit connection-management/opening (SYN
and SYN+ACK) messages and a connection-state timer at the sender,
and (4) theDelta-tprotocol augments two-packet using only connection-
state timers at both the sender and receiver. Delta-t and its pre-
decessor (two-packet) represent soft-state protocols, three-packet
represents a hard-state protocol, whereas five-packet representsa
hybrid hard-/soft-state protocol. Due to lack of space, we refer the
reader to [4, 2] for a more detailed review of reliable transport ap-
proaches. Finally, Section 4 reviews related work, and Section 5
concludes the paper.

2. ANALYTICAL MODEL

2.1 Model Description
In this section we develop a Markov chain model, shown in

Figure 1, whose state transition rates can be instantiated to cap-
ture the behavior of either the five-packet protocol (ala TCP) or the
Delta-t protocol. The ability of instantiating both protocols in a
common model underscores that reliable transport approaches rep-
resent a spectrum of solutions that we should study to better un-
derstand the fundamental cost/performance tradeoffs. Our model
specializes the general signaling model of [5] to connection man-
agement for reliable transport, and so in this paper, we are con-
cerned with unique issues related to data loss / abort / duplication
due to inconsistent connection-states at the sender and receiver or
failure to establish a connection. The model considers a simpli-
fied setting of a single active connection at any given time between
the sender and receiver,i.e., a new connection is blocked until the
connection-state (memory) associated with the previous connection
is released. Later, in Section 3, we remove this simplification and
allow multiple active connections between a sender and receiver.

In our model, a state is a two-dimensional tuple representing
whether the connection is established at the sender and receiver.
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Figure 1: Markov Model

The symbol “⋆” denotes that state has been initialized at this end,
whereas “−” denotes that state has not yet been installed at this
end. Table 1 lists the parameters of the protocols and the underly-
ing network channel. All time variables are assumed to be exponen-
tially distributed. In our model, we assume a lossy FIFO network
(channel), and that in the five-packet protocol, data is sent piggy-
backed on the initial SYN message. Though we capture the pos-
sible loss and retransmission of the initial message (SYN+DATA
in five-packet and DATA in Delta-t), for simplicity, we assume that
remaining control packets, which are much smaller in size, are not
lost. Thus, we do not have to worry about receiving (and possi-
bly accepting) duplicates at the receiver—we study this aspect by
simulation later in Section 3.
• Markov state(⋆,−)1 captures the initial stage when the sender
attempts to initialize a connection with the receiver. The sender
transmits either a SYN+DATA message (in five-packet) or a DATA
message (in Delta-t).
• Markov state(⋆,−)3 captures the case when the sender’s first
attempt to initialize the connection failed. This happens when the
first SYN+DATA (in five-packet) or DATA (in Delta-t) is lost. In
this state, the sender keeps retransmitting the initial message. Note
that this is an inconsistent state since there is no corresponding con-
nection state yet established at the receiver.
• Markov state= captures the case when the receiver gets the initial
message (SYN+DATA or DATA). This is aconsistentstate where
both the sender and receiver have the state information of the con-
nection between them. Henceforth all control messages exchanged
are transmitted in this state, which lasts until the receiver closes the
connection.
• Markov state(⋆,−)2 captures the case when the connection is
closed at the receiver whereas it is still open at the sender. In reli-
able transport protocols, to avoid inconsistency, the sender should
not close the connection before the receiver does [3]. In our model,
we assume that connection-state timers are set correctly so that the
sender always closes after the receiver does.

Table 1: Parameter Definitions

Parameter Definition
p Packet loss probability
D Channel delay

RTO Retransmission timeout
MPL Maximum packet lifetime
Rtime Connection-state lifetime at receiver for Delta-t

C Connection-state lifetime at receiver for TCP

At the initial state(⋆,−)1, the initial message arrives at the
receiver with probability(1−p) or gets lost with probabilityp. The
first case is modeled by a transition from state(⋆,−)1 to = with
rateλr = (1 − p)/D, whereD is the channel delay. The second
case is modeled by a transition from state(⋆,−)1 to (⋆,−)3 with
rateλl = p/D. Note that bothλr andλl are the same for both
five-packet and Delta-t protocols.

In the (⋆,−)3 state, the sender keeps retransmitting the ini-



tial message. A successful retransmission causes a transition from
(⋆,−)3 to = with rateλt. Since the probability of successful mes-
sage arrival is(1−p) and the sender retransmits the message every
RTO, λt = (1 − p)/RTO. Again,λt is the same for both proto-
cols.

In the = state, the sender and receiver exchange all control
messages (ACK in Delta-t, and SYN+ACK, ACK and CLOSE in
five-packet), completing the delivery of the data. The receiver then
closes the connection and clears the connection state. We denote
by 1/µr the average lifetime of the connection state at the receiver.
For the five-packet protocol,1/µr = C, whereC is the time be-
tween receiving the SYN+DATA message and the CLOSE mes-
sage. For Delta-t,1/µr = Rtime, whereRtime = 2×MPL+G
[12]. Closing the connection at the receiver causes the transition
from state= to (⋆,−)2 with rateµr. The setting ofµr andω is
what makes our model specific to connection management for reli-
able transport, specializing the general signaling model of [5].

In state(⋆,−)2, the sender’s connection-state timer expires
with rateω. For both protocols,1/ω = MPL so that the sender
does not close the connection before a last message sent by the re-
ceiver can potentially arrive—this takes, in the worst case, MPL.

In this model, we assume that there is no waiting time between
two consecutive connections. As soon as the sender closes the
connection, it starts a new one which causes the transition from
(⋆,−)2 to (⋆,−)1. This allows us to compute, for each proto-
col, the maximum rate of establishing connections (i.e. goodput,
defined in Equation 1), by considering the message rate at state
(⋆,−)1 where new (single data-message) connections are started.

2.2 Model Solution and Performance Calcu-
lations

Using our Markov model, we can derive the following perfor-
mance metrics:
•Goodputϑ: rate of successfully establishing connections, or equiv-
alently, rate of successfully delivering data packets since we as-
sume one data packet per connection.
• Message rateϕ: total transmission rate of messages, including
data and control messages. This metric reflects a protocol’s com-
munication and processing overhead.
• Receiver connection-state lifetimeη: fraction of the connection
lifetime during which connection-state is maintained at the receiver.
This metric captures a protocol’s memory requirement at the re-
ceiver.

Let πi denote the steady-state probability of being in statei. A
new connection is established when the system is in state(⋆,−)1.
Therefore, for both protocols, the goodputϑ, is computed as the
message rate in state(⋆,−)1. Since the average message rate in
this state isλr + λl = 1/D, then:

ϑ = π(⋆,−)1/D (1)

The average message rate for five-packet is obtained by mul-
tiplying the probability of being in each state by the message rate
at that state. In state(⋆,−)1, the message rate isλr + λl = 1/D.
In state(⋆,−)3, the message rate is the rate of retransmitting the
initial message, which is 1

RTO
. In state=, since we assume that

the remaining four (control) messages of the five-packet exchange
are successfully transmitted, this happens over four channel delays
(i.e., C = 4 × D), thus the message rate in this state is4

4D
= 1

D
.

Finally, in state(⋆,−)2, no messages are sent since the sender sim-
ply waits for MPL before clearing its connection-state. Thus, the
message rate for five-packet is given by:

ϕfive =
1

D
π(⋆,−)1 +

1

RTO
π(⋆,−)3 +

1

D
π= (2)

Similarly, the message rate for Delta-t is computed as follows:

ϕdelta =
1

D
π(⋆,−)1 +

1

RTO
π(⋆,−)3 +

1

Rtime
π= (3)

Note that for delta-t, in state=, only the acknowledgment for the

initial DATA message is sent during the connection-state lifetime
at the receiver, thus the message rate is1/Rtime.

The receiver maintains a connection-state only in the= state.
Given that on average, each connection lasts for1

ϑ
, and the fraction

of time that the receiver has a state for that connection isπ=, then
the connection-state lifetime at the receiver is given by:

η =
1

ϑ
π= (4)

2.3 Analytical Model Results
The above analytical model can be solved to obtain results

comparing five-packet and Delta-t. Consider the following mean
parameter values:D=250 msec,RTO=1250 msec, andMPL =
α × D where we setα to 480 (yielding a typical MPL value of
2 minutes).

As expected, for both protocols, we observe that message rate
is directly proportional to packet loss probability,i.e., message rate
increases as the packet loss probability increases, because of re-
transmissions. (Plots are not shown due to lack of space.) The
message overhead is higher under five-packet due to its extra ex-
plicit connection-management messages (five to eight times that of
Delta-t).

Given that the above model assumes that the only message that
can get lost is the initial message of the connection (SYN+DATA
in five-packet and DATA in Delta-t), once the initial message is
successfully received, the connection-state lifetime at the receiver
is not affected by the packet loss probability.

Comparing the receiver’s connection-state lifetime of both pro-
tocols, the ratio of Delta-t’s to that of five-packet is given by:

Rtime

C
=

2MPL + G

4D
(5)

Since typicallyG ≪ MPL, and we takeMPL = α × D, we
have:

Rtime

C
≈

2αD

4D
=

α

2
(6)

Thus forα = 480, the connection-state lifetime at the receiver under
Delta-t is 240 times that of five-packet.

Recall that the above analytical model also assumes that a new
connection is blocked until the connection-state (memory) associ-
ated with the previous connection is released,i.e., a single active
connection is allowed at any given time between a sender and re-
ceiver. Because of this, we observe that the five-packet protocol
has higher goodput than (about 1.5 times) that of Delta-t. The rea-
son is that under five-packet, the average lifetime of a connection
is shorter, because of shorter lifetime of the connection-state at the
receiver (C < Rtime), at the expense of explicit synchroniza-
tion (connection-management) messages. Also, as expected, for
both protocols, we observe that goodput decreases (slightly) as the
packet loss probability increases.

In summary, this simple analysis exposes a fundamental trade-
off between message overhead and memory requirement. Delta-
t has lower message overhead, but keeps connection-state longer,
which, under this simplified model, reduces goodput because a new
connection gets blocked until memory for the connection-state of
the previous connection is released. This may make an HS+SS ap-
proach (ala TCP) appear attractive. However, in a more realistic
setting and given that memory is not a concern in today’s com-
puters, the conclusion might be different. So, in the next section,
we consider a more detailed simulation model where: (1) we re-
lax the assumption that only the initial message is lost and con-
sider a wide range of channel loss rates and delays, and (2) we al-
low multiple connections to be active at a time between a sender
and receiver. The second point is justified in practice because:
(1) Memory is not a concern in today’s computers. For example,
given reasonable assumptions on the connection arrival rateλ, say
10 connections per second, MPL of say, 120 seconds, a typical
connection-state sizeS of 500 bytes, then the averagetotal mem-
ory for active connections required by a Delta-t’s receiver (server)



is λ × S × (2 × MPL) = 10 × 500 × (2 × 120) = 1.2M bytes.
This memory requirement is easily accommodated given that in a
typical server today, the total memory space allocated for maintain-
ing connection states is approximately 100M bytes. (2) In practice,
many concurrent conversations can be established between a sender
and receiver given a large enough space of connection identifiers to
assign them.

3. SIMULATION

3.1 Simulation Model
We use event-based simulations to compare four protocols—

two-packet, three-packet, five-packet and Delta-t—in terms of cor-
rectness, robustness and performance.

In our simulation model, all types of messages may get lost
with probabilityp, or delayed in the underlying channel. We use a
two-state Markovian channel-delay model with a short-delay state
and a long-delay state. The mean of short and long channel delays
are 250 and 1000 milliseconds, respectively.2 If the channel is in
the short (long) channel-delay state for a message, then with prob-
ability 0.8 it will stay in the same state for the subsequent message,
or with probability 0.2 it will transit to the long (short) channel-
delay state. For any message, the delay is upper bounded by the
Maximum Packet Lifetime,MPL, which is set to 2 minutes.

New connections arrive according to a Poisson process at the
rate of 10 connections/second. For all protocols, the sequence num-
ber for each connection is randomly chosen, uniformly from the
range [0, 10000], and we set the maximum number of retransmis-
sion attempts foranymessage to five.

In the following subsections we present and discuss our simu-
lation results. Each plot is obtained by averaging ten independent
runs, and each run attempts to establish 1000 connections. All re-
sults are shown with 95% confidence intervals—in some plots, the
intervals are too small to be visible.

3.2 Summary of Observations
Before presenting our simulation results in detail, we summa-

rize our main observations:
• Delta-t is more robust than five-packet (ala TCP)under high
packet loss probability and low retransmission timeout values (or
highly variable channel delays). Byrobustness, we mean that per-
formance does not precipitously degrade under worse loss/delay
conditions [6]. The extra explicit connection-management mes-
sages of five-packet make it vulnerable to connection aborts, re-
sulting in increased percentage of aborted connections (and hence,
data).
•Robustness of Delta-t comes at the price of keeping the connection-
state at the sender and receiver for longer time compared to five-
packet. This is to guarantee no duplicates are accepted. Since
memory requirement is not a concern in today’s computers, longer
duration of connection-states is not an issue. AndDelta-t yields
higher goodput (rate of successfully established connections) than
five-packet (ala TCP)under high/variable packet loss/delay condi-
tions. Thus, Delta-t can provide better support for applications that
are delay-sensitive as well. On the other hand, five-packet relies on
explicit connection-management (handshaking) messages to verify
that a received SYN message is not a duplicate (from an old con-
nection). This makes five-packet (ala TCP) quite vulnerable under
bad network conditions.
• Delta-t has less implementation complexity—it has less number
of protocol states3 , and no separate connection-management mes-
sages.
• From a correctness standpoint, both Delta-t and five-packet (ala
TCP) guarantee correct no-loss/no-duplication behavior. On the

2 This yields a range of RTT that is consistent with Internet mea-
surements [1].
3 Not to be confused with the states of our common analytical
model, where we abstract many protocol states.

other hand, two-packet and three-packet can accept duplicate con-
nections. But, from a performance standpoint, three-packet cuts
the amount of duplication to about half that of two-packet at the
expense of doubling message overhead. They both provide higher
goodput than Delta-t and TCP, and lower message overhead com-
pared to TCP. Thus,if the application can handle duplicates itself,
depending on the level of duplication that can be tolerated, three-
packet may be more attractive than two-packet.

3.3 Performance Metrics
We consider the following metrics for evaluating the perfor-

mance of the different connection management schemes. As noted
in Section 1, connection management is separate from data-transfer
functions such as error / congestion / flow control. However, given
that connection management may piggyback signaling information
over data / acknowledgements, inconsistent connection-states may
result in data loss or duplication. In our scenario of single-message
connections, all these metrics are to be considered connection-management
specific, i.e., duplicate connections delivering duplicate data, or
aborted connections causing application data not to be delivered
may happen due to inconsistent connection-states at the sender and
receiver, or failure to open a connection.
• Percentage of Correctly Received Data: Receiving a data mes-
sage correctly means that the data message is acceptedexactly once
by the receiver. In other words, the data message was neither lost
nor duplicated.
• Percentage of Duplicate Data: Duplicating a data message means
that the receiver mistakenly accepted the data message more than
once.
• Percentage of Lost Data: A data message is lost if it is lost in the
network (channel) and an acknowledgment from a previous con-
nection (with the same sequence number) is mistakenly associated
with it.
• Percentage of Aborted Data: A data message is aborted (i.e., not
delivered to the receiving application) if it exceeds its retransmis-
sion limit, or its associated connection is aborted because the re-
transmission limit of any connection-management message is ex-
ceeded.
• Message Rate: We define it as the total number of messages
sent—data, connection-management messages, acknowledgments
and retransmissions—per time unit.
•Message Overhead: We define it as the average number of connection-
management messages, acknowledgments and retransmissions sent
during a connection.
• Goodput: We define it as the rate ofnew (unique) successfully
established connections from the sender to receiver.

In the following plots, we do not show the percentage of lost
data, since there was no data loss for all protocols. This is be-
cause for each connection, we use a new sequence number that is
randomly chosen from a large range. That makes itunlikely that
an (old) acknowledgment from a previous connection carries the
same sequence number as a new data message that gets lost in the
channel, such that it is wrongly assumed to have been successfully
delivered.

3.4 Set 1: Effects of Packet Loss Probability
For this first set of results, to model the variability in channel

delay and its impact on the estimation of round-trip time (RTT),
which in turn affects the per-packet Retransmission Timeout (RTO),
we assume thatRTO is exponentially distributed with mean 1250 mil-
liseconds. (This value is twice the average RTT over the simu-
lated two-state delay channel.) We plot our performance metrics
for varying packet loss probability.

Figure 2(a) shows that as the packet loss probability increases,
the percentage of correctly received data generally decreases (three-
packet is the exception as we explain later). This is because the
percentage of aborted messages increases due to the per-message
limit on number of retransmissions. Delta-t’s performance remains
almost unaffected, showing very high resiliency to packet loss. On
the other hand, the performance of five-packet precipitously de-
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Figure 2: Effects of Varying Packet Loss Probability.

grades once the packet loss probability exceeds 0.25. This is be-
cause of five-packet’s use of explicit connection-management mes-
sages, SYN and SYN+ACK, which when continually lost and their
retransmission limit exceeded, the connection establishment fails
and so data delivery is aborted.

Consistent with the correctness of Delta-t and five-packet, Fig-
ure 2(b) shows that both do not accept duplicates. For the three-
packet protocol, data duplication decreases as the packet loss prob-
ability increases, since premature retransmissions that cause dupli-
cates are lost in the channel. This behavior of three-packet results
in increasing the percentage of correctly received data. On the other
hand, under two-packet, the percentage of duplicate data increases
as packet loss probability increases due to the loss of acknowledg-
ments, which triggers more retransmissions and hence duplicates.

Figure 2(c) shows the probability of aborting data increases as
the packet loss probability increases. This is because the sender
gives up delivering a message if it continues to be lost and its re-
transmission limit is reached. Five-packet (ala TCP) is the least
robust among all protocols.

Figure 2(d) shows that the message rate increases in all pro-
tocols as the packet loss probability increases. Five-packet proto-
col has the highest message rate due to explicit control messages
whereas Delta-t has the lowest message rate among all protocols.

The number of messages exchanged during the lifetime of a
connection is shown to increase in Figure 2(e), for all protocols, as
the packet loss probability increases, because of increased retrans-
missions. Delta-t and two-packet have the lowest message over-
head.

The goodput is shown in Figure 2(f). For all protocols, except
for five-packet, the goodput does not change much as the packet
loss probability increases—although time to successfully complete
a connection increases, the number of concurrent active connec-
tions also increases, yielding similar goodput. On the other hand,
five-packet (ala TCP) suffers from increased percentage of aborted
connections (data), noticeably beyond a packet loss probability of
0.25, which results in less data being delivered to the receiving ap-
plication, yielding lower goodput.

3.5 Set 2: Effects of Retransmission Timeout
In this second set of results, we fix the packet loss probability

p to 0.1, and we plot our performance metrics for varying RTO.
Figure 3(a) shows that, except for Delta-t, the percentage of

correctly received data decreases for lower RTO (i.e., when RTO is
underestimated). This is because when RTO is low, there are more
premature retransmissions. This increases the percentage of dupli-
cates under two-packet and three-packet, as seen in Figure 3(b).
Under five-packet, low RTO increases the percentage of aborted
connections, and consequently data, as seen in Figure 3(c). This is
because SYN or SYN+ACK messages get prematurely retransmit-
ted and their retransmission limit exceeded.

Delta-t is the most resilient to underestimated RTO with re-
spect to all performance metrics. Delta-t is least affected since a
connection is openedinstantlyat the sender once the sender sends
a new data message. And the receiverinstantlyopens its side of
the connection once it receives the data message. From then on,
the sender and receiver stay synchronized, until the connection-
state timers expire. Five-packet is only resilient to duplication (Fig-
ure 3(b)), which is expected given its provably correct no-loss/no-
duplication behavior. Two-packet and three-packet, like Delta-t, do
not suffer from aborted connections (Figure 3(c)) since they do not
rely on explicit connection-opening messages.

Under all protocols, lower RTO causes premature retransmis-
sions, which increase both the total number of messages sent (mes-
sage rate in Figure 3(d)) and the message overhead (Figure 3(e)).

Figure 3(f) shows that the goodput of two-packet and three-
packet does not change much for varying RTO. The goodput of
five-packet and Delta-t is lower than that of other protocols—the
price of providing correct no-loss/no-duplication behavior. Five-
packet uses explicit connection-management (handshaking) mes-
sages, whereas Delta-t forgoes explicit handshaking by maintaining
connection-states for longer periods of time. Under lower RTO,
the goodput of Delta-t is higher than that of five-packet. This is
because five-packet aborts more connections (and hence data mes-
sages) when the retransmission limit of connection-opening mes-
sages (SYN and SYN+ACK) is exceeded due to increased number
of premature retransmissions.

4. RELATED WORK
Approaches to connection management for reliable transport
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Figure 3: Effects of Varying Retransmission Timeout.

have been studied since the 70s from acorrectnesspoint of view.
Belsnes [2] studied the correctness of different end-to-end proto-
cols, such as two-packet, three-packet, four-packet and five-packet
(without the sender’s connection-state timer). Watson [12] built on
the two-packet protocol and designed Delta-t, a pure timer-based
protocol for reliable connection management. TCP [9] is funda-
mentally a five-packet exchange protocol, with an added connection-
state timer at the sender to ensure that the sender does not close
the connection before the receiver does and all packets (including
duplicates) have died out. Other work (e.g., [10, 7, 8]) stud-
ied variants of timer-based and explicit connection-management
(handshake-based) protocols, and combinations thereof, again from
a correctness point of view.

None of these prior studies investigated reliable connection
management from aperformancepoint of view. To the best of
our knowledge, this paper presents a first performance compari-
son across a spectrum of reliable transport solutions. We evalu-
ated various approaches in terms of many metrics, stressing them
to assess their robustness to extreme network conditions. Recently,
there has been great interest in understanding similar protocol de-
sign tradeoffs in a quantitative manner. Jiet al. [5] and Lui et al.
[6] studied such tradeoffs for general reservation/signaling proto-
cols. Our work specializes the general signaling model of [5] to
connection management for reliable transport, and so in this paper,
we are concerned with unique issues related to data loss / abort /
duplication due to inconsistent connection-states at the sender and
receiver or failure to establish a connection.

5. CONCLUSION
This paper presents the first performance and robustness com-

parison of a spectum of reliable transport approaches, from pure
soft-state (ala Delta-t), to pure hard-state (three-packet), and hy-
brid hard-/soft-state (ala TCP). Our results show that a soft-state
(SS) approach is more robust to high packet losses and channel
delay variations as it does not rely on explicit handshaking mes-
sages for opening and closing connections. An SS approach can
more easily establish its connections and deliver its data reliably.
Though SS may have not looked attractive in the past due to its ad-
ditional memory requirement for keeping connection-states, mem-

ory is no longer a concern. Thus, an SS approach represents the
best choice for reliable applications, especially those operating over
bandwidth-constrained, error-prone networks. Future work includes
developing a new transport architecture based on an SS approach—
where explicit connection management is not needed— that ex-
poses a simpler common packet interface than what we have to-
day (UDP vs. TCP vs. T/TCPetc.) to both reliable and unreliable
(unacknowledged), bulk and transactional applications.
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