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1 Abstract

This paper presents both a retrospective of the devel-
opment of network interface architecture, and perfor-
mance and conformance data from a range of contem-
porary devices sporting various performance enhancing
technologies. The data shows that 10Gb/s networking
is now possible without statefull offload and while con-
suming less than one CPU core on a contemporary com-
modity server.

2 Introduction

From ARPANET [6] and Ethernet [31] in the mid-70s,
through Local Area Networking [42], distributed com-
puting [2], and TCP/IP in the early-80s, significant ma-
turity in the design and philosophy of Internetworking
[9] was reached by 1988. Implementations of TCP/IP
on mainframe and supercomputers in the mid-80s were
reported together with some of the architectural trade-
offs of the time. For example, Kline describes [27]
the implementation of a library-level protocol stack and
Brandriff describes [4] a host based (rather than front-
end processor) implementation.

The advent of workstation class computers [37] in
the late-80s led to significant developments in the de-
sign of network interface hardware, particularly follow-
ing early experiences with ATM networks [28] and the
intent to handle the challenging QoS requirements of
multimedia applications. Early ATM network inter-
faces made use of Programmed IO (PIO)for data trans-
fer. This movement of data proved difficult for the RISC
CPUs of the time, and DMA techniques came to be
used. For example, Davie describes [12] the host inter-
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face used in the AURORA ATM testbed, and Smith and
Traw describe [40] DMA double buffering techniques
and interrupt moderation. The per-byte overheads of
networking were understood and mitigations such as
checksum offload were in use [34, 22]. These develop-
ments to the mid-90s have come to represent the roots
of today’s main-stream LAN interface designs. How-
ever, while is the case that offloads are now regarded
as commodity items, the desirability and utility of even
the most simple offload should remain under debate.
For example Stone and Partridge [36] describe a study
of the root cause of network errors which escape the
Ethernet FCS check and find many systematic errors in
hardware and software.

One architecture which received attention from the
late-80s was that of executing the transport protocol on
the host network interface. Implementations include
the XTP Protocol Engine [8], the Nectar communica-
tions processor [14], and the VMP adaptor [24]. Fol-
low on work [23, 34] based on the Protocol Engine ar-
chitecture implemented TCP/IP on the host interface
for a 622Mb/s ATM network. This TCP/IP offload
architecture was rejected [10, 25] and has not subse-
quently been taken up to any significant degree by the
academic community except recently as a means to an
end for the support of Remote Direct Memory Access
(RDMA)protocols [32].

Another architectural choice which is periodically re-
visited is whether to perform protocol processing in
user or kernel space. Druschel and Davie implemented
[13] an interface which allowed user-space programs
direct access to an ATM adaptor and Thekkath de-
scribes [38] an implementation of a user level TCP/IP
stack over Mach. As well as performance, this work
was concerned with the issues of multi-protocol co-
existence and efficient operation in a micro-kernel envi-
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ronment. By contrast, the Jetstream/Afterburner adap-
tor [16] was used to implement TCP/IP in user space
[15] over a monolithic kernel, as did Pratt using a
firmware modified Gigabit Ethernet NIC [33]. These
were essentially ports of their respective kernel proto-
col stacks to user level over a protected hardware inter-
face. Hybrid models have also been proposed, see [29]
for a survey and perspective. However achieving good
all-round performance has proven to be elusive with-
out a protocol stack implementation which has been ex-
pressly designed for user level operation.

Over the same late-80s to mid-90s period, there was
considerable parallel activity with multicomputer net-
work interface architecture. The ATOMIC project[11]
utilised components from the Mosaic multicomputer to
construct a Gb/s LAN (later commercialised [3]). The
multicomputer environment was somewhat less con-
strained than that of the ATM or distributed systems en-
vironments, application behaviour suited low-overhead
user-level abstractions of communication, and these ab-
stractions were used by host adaptors in conjunction
with high-performance network techniques such as cut-
through [26] and source based [7] routing. Portability
for scientific application codes running on this architec-
ture was largely resolved by the MPI specification [30].
Multicomputer and LAN convergence was proposed in
the early-90s [21, 20] and reports of large-scale deploy-
ments [39] of multicomputer interconnects as a LAN
were made by 1997. However the availability of com-
modity 100Mb/s and 1Gb/s Ethernet meant that a bigger
movement formed around the use of LAN interconnects
in a multicomputer environment [35, 41].

Continual software, protocol, and chipset perfor-
mance improvements over the 90s meant that achiev-
able throughputs on commodity hardware grew from
around 130Mb/s in 1996 to Gb/s by 2001 [18]. This im-
pressive performance increase contributed to the resis-
tance met by industry as it attempted to convert mid-90s
work on user-accessible network interfaces [17, 5] into
the Infiniband general-purpose converged interconnect.
This performance trend has continued over the course of
the introduction of 10Gb/s Ethernet. In 2003 Feng re-
ported [19] unidirectional TCP/IP/Ethernet throughputs
of 4Gb/s on commodity and 7Gb/s on next-generation
hardware, and by 2006 10Gb/s line rate has become
possible on a single core of commodity server chipsets.

The remainder of this paper offers a set of compara-
tive micro-benchmark data for some generally available
contemporary 10Gb/s Ethernet NICs. It is hoped that
this data will be a useful calibration point for the com-

munity, particularly at a time when industry is again de-
bating network interface architecture.

3 Offload Taxonomy

The basic act of transmitting and receiving data from a
network interface to an operating system is defined here
as regular networking. A regular network interface per-
forms no processing of the packets above the link layer
protocol. For example, an Ethernet interface may pro-
cess the Ethernet FCS, or perform multicast filtering,
but it does not process the IP headers within the frame.
Nevertheless, a regular adaptor can be a highly tuned
device which is capable of efficient DMA to and from a
host, tracking large numbers of transmit and receive de-
scriptors (and their associated buffers), and balancing
the tradeoffs associated with interrupting the main CPU
in the system.

If the adaptor is capable of providing optimisations
based on the local state contained within the upper
layer protocols embedded within a single frame, then
an adaptor is defined to be a stateless offload adaptor.
There are a number of stateless offloads which can be
performed based on higher level protocols. For exam-
ple TCP/IP checksum calculation and verification, and
TCP Segmentation Offload (TSO)[1]1.

An adaptor which performs optimisations based on
the state contained within upper layer protocols within a
sequence of frames is a stateful offload adaptor. Where
TCP is the higher level protocol, then a statefull of-
fload adaptor is also known as a TCP Offload Engine
(TOE). RDMA optimisations when run over TCP are
also therefore termed statefull offloads.

4 Methodology

For the purposes of this study, the offload fea-
tures as defined in the Taxonomy are grouped into
two sets: NET=

�
regular networking, stateless

offload � and TOE=
�
stateful offloads � .

A number of generally available 10Gb/s Ethernet
NICs were used for benchmarking. Each NIC vendor
is anonymised, we group them as:

�
A,B,C,D,E,F,G � .

All NICs are capable of operation in NET configuration

1The Linux kernel maintainers hold that TSO can be efficiently
performed in software and that contemporary hardware implementa-
tions are really only solving layering issues.
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and
�
E,F,G � are also capable of TOE operation. Ven-

dor E has two firmware/driver combinations, E1 which
supports NET only operation and E2 which supports
both NET and TOE operation.

For each experiment, the vendor supplied tuning pa-
rameters were applied for each vendor’s NIC. In prac-
tice we found that these varied little and are essentially
those described by Feng [19]. Interrupt moderation was
disabled (where possible) for the latency experiment. A
result shown as x indicates that a measurement was not
possible in the given configuration, and indicates that
a measurement was not taken. All experiments were
performed back-to-back, using CX4 cable, and using
latest software from each vendor in Q3 2006. Windows
benchmarking was not undertaken because the available
TOE drivers were too unstable for measurement.

For driver availability over all the NICs, testing was
first performed on a pair of Intel E7520 dual 2.8Ghz
Xeon (EM64T 32bit-mode) / 2GB RAM machines, run-
ning Linux 2.6.9. The TOE measurements require the
installation of a vendor supplied operating system patch
which creates a fast-path from the socket interface to
the driver. No operating system by-pass middleware
was used. Further experiments designed to investigate
the relative performance of the devices over chipset
generations were then made where possible using a
pair of more recent Nvidia NForce Pro2200/2500 dual
AMD285 (dual core 2.8Ghz 32bit-mode) / 4GB RAM
machines, running Linux 2.6.17.

5 Results

5.1 Latency

NetPIPE was used to measure the half-round trip la-
tency ( ���������	� ), results are shown in Table 1. It was
not possible to disable interrupt moderation for the NET
drivers of vendors E and G.

5.2 Bandwidth and CPU Efficiency

NetPerf was used to measure the CPU efficiency (E)
for a single uni-directional stream at peak bandwidth
(typically around 32KB message size) and 9KB MTU.
Efficiency is expressed as % of a single CPU core per
Gb/s. Table 2 shows results on the E7520 platform. Ta-
ble 3 shows the same experiment on the Nvidia platform
where possible.

Vendor Latency (us)
E7520 Nvidia

A NET 13.7 x
B NET 17.8 14.9
C NET 15.4 8.9
D NET 18.9 13.2
E1 NET 55.5 x
E2 NET 77.7 76.8
E2 TOE 130.0 129.0
F NET 18.7
F TOE 15.8
G NET 54.4 x
G TOE 56.3 x

Table 1: Latency

Vendor Bandwidth (Gb/s) E(TX) E(RX)
A NET 6.2 8.9 7.9
B NET 6.2 x x
C NET 7.2 10.0 8.0
D NET 5.9 11.9 10.9
E1 NET 7.3 8.9 10.2
E2 NET 3.1 13.0 10.3
E2 TOE 2.4 7.5 6.4
F NET 4.9 9.2 9.2
F TOE 4.9 10.0 7.0
G NET 1.5 33.7 27.0
G TOE 6.1 13.9 9.0

Table 2: Peak Bandwidth and Efficiency (E7520)

Vendor Bandwidth (Gb/s) E(TX) E(RX)
A NET x x x
B NET 6.4 10.2 9.6
C NET 9.8 6.7 7.6
D NET 6.8 7.2 8.2
E1 NET x x x
E2 NET 3.4 8.7 7.6
E2 TOE 2.4 6.3 5.5
F NET 6.8 8.9 10.3
F TOE 3.6 7.6 7.1
G NET x x x
G TOE x x x

Table 3: Peak Bandwidth and Efficiency (Nvidia)
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5.3 Multi-Stream Bandwidth

The HighPerf script from the Chariot test bench was
used to generate 5 simultaneous uni-directional streams
on the Intel E7520 platform. Results are shown in Table
4. Bandwidth is as reported by the Chariot test bench.
MTU is 9KB. The same experiment was then performed
on the Nvidia platform using the same NIC (Vendor
F) in both its TOE and NET configurations. Results
are shown in Table 5. Of particular note is the relative
improvement for the NET configuration compared with
the TOE.

Vendor Bandwidth (Gb/s)
A NET 6.1
B NET 5.2
C NET 5.7
D NET 5.9
E1 NET 5.5
E2 NET 3.4
E2 TOE 6.4
F NET 5.7
F TOE 6.5
G NET 1.3
G TOE 6.0

Table 4: Chariot HighPerf (E7520)

Platform Bandwidth (Gb/s)
1500mtu 9000mtu

E7520 NET 3.4 5.7
Nvidia NET 6.1 6.7
E7530 TOE 6.3 6.5
Nvidia TOE 6.8 6.5

Table 5: Chariot HighPerf (Chipset Comparison)

5.4 RFC Conformance

RFC conformance expressed as a % of ANVL tests
passed for each RFC section (in the tool’s suite) is given
in Table 6 for Linux (2.6.9) and NIC vendors F and G
in their TOE configuration. Vendor F does not appear
to implement SACK, therefore micro-benchmark data
for this device will not extrapolate to good performance
in a network which is experiencing loss. Vendor G re-
sponds to most ANVL tests by resetting the connection.

(A root-cause analysis of this problem would probably
quickly improve conformance levels.)

RFC Conformance (% Pass)
Linux F G

793 76 71 11
1122 86 77 3
1191 65 6 0
1323 89 84 0
2001 83 67 0
2018 100 18 0
2581 83 67 0

Table 6: RFC Conformance

5.5 Conclusions

The data presented represents a snapshot of 10 Gb/s
Ethernet NIC performance on commodity hardware and
confirms that line-rate and sub-10 us latency is achiev-
able with or without a full offload implementation. Our
opinion is that this situation is very similar to that of
1 Gb/s Ethernet in 2001, and that the current crop of 10
Gb/s offload devices therefore again represents a point
solution.

Of note is that the performance improvements from
the more recent chipset platform were shown to signif-
icantly errode the benefits of a TOE device2. It is rec-
ommended that experimenters be aware that their mea-
surements and hence conclusions could be very differ-
ent depending on the test platform.

The RFC conformance data we took should warn
users that any statefull offload devices may not be oper-
ating at the same level of conformance than that of the
operating system being offloaded.
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