
SmartRE: An Architecture for Coordinated
Network-wide Redundancy Elimination

Ashok Anand∗, Vyas Sekar† and Aditya Akella∗
∗University of Wisconsin-Madison, †Carnegie Mellon University

{ashok,akella}@cs.wisc.edu, vyass@cs.cmu.edu

ABSTRACT
Application-independent Redundancy Elimination (RE), or identi-
fying and removing repeated content from network transfers, has
been used with great success for improving network performance
on enterprise access links. Recently, there is growing interest for
supporting RE as a network-wide service. Such a network-wide
RE service benefits ISPs by reducing link loads and increasing the
effective network capacity to better accommodate the increasing
number of bandwidth-intensive applications. Further, a network-
wide RE service democratizes the benefits of RE to all end-to-end
traffic and improves application performance by increasing through-
put and reducing latencies.

While the vision of a network-wide RE service is appealing, re-
alizing it in practice is challenging. In particular, extending single-
vantage-point RE solutions designed for enterprise access links to
the network-wide case is inefficient and/or requires modifying rout-
ing policies. We present SmartRE, a practical and efficient archi-
tecture for network-wide RE. We show that SmartRE can enable
more effective utilization of the available resources at network de-
vices, and thus can magnify the overall benefits of network-wide
RE. We prototype our algorithms using Click and test our frame-
work extensively using several real and synthetic traces.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—Network management

General Terms
Algorithms, Design, Management

Keywords
Redundancy Elimination, Caching

1. INTRODUCTION
Redundancy Elimination (RE) for network transfers has gained

a lot of traction in recent years. RE is widely used by data centers
and enterprise networks to improve their effective network capac-
ity, to reduce their wide-area footprint, and to improve end-to-end
application performance. The importance of RE is reflected in the

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’09, August 17–21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$10.00.

emergence of a huge market for RE solutions (e.g., [4, 3, 2, 8, 5])
and their rapidly growing adoption [6, 9].

The success of such deployments has motivated researchers, equip-
ment vendors, and ISPs to explore the potential of network-wide
RE. For example, Anand et al. [12] have recently shown the ben-
efits of supporting RE as a primitive IP-layer service on network
routers. In similar vein, network equipment vendors have high-
lighted network-wide support for content caching and duplicate
suppression as a key focus area in their future development ef-
forts [3, 2]. Broadly speaking, these efforts argue for deploying RE
at multiple points across a large network and using it as a generic
service which is transparent to end-to-end applications.

This vision of network-wide RE is promising for two reasons.
First, a network-wide deployment spreads the benefits of RE to all
end-to-end applications, as opposed to just benefiting transfers on
the individual links of enterprises. Second, it benefits ISPs by im-
proving their effective network capacity and allowing them to better
accommodate the increasing number of bandwidth intensive mul-
timedia and file-sharing applications we see today, and by giving
them better control over traffic engineering operations [12].

While RE has been well-studied in the context of point deploy-
ments (e.g., enterprise WAN access links), there has been little
work on how best to design network-wide RE. Thus, the promise of
network-wide RE remains unfulfilled. In this paper, we study how
to build an effective and practical network-wide RE architecture.

We start by observing that a network-wide RE architecture should
meet three key requirements:

(1) Resource-awareness: RE involves resource-intensive oper-
ations such as indexing content, looking up content fingerprints and
compressing data, and reconstructing the original content from lo-
cally stored information. An ideal approach must explicitly ac-
count for the resource constraints on network elements in perform-
ing these RE functions. These constraints arise mainly from (a)
throughput bounds which depend on the number of memory oper-
ations possible per second and (b) memory capacity which limits
the amount of data that can be cached for RE purposes. Naive
approaches that do not account for these constraints, such as the
strawman framework of Anand et al. [12], offer sub-optimal per-
formance. In contrast, using the limited resources available at each
node intelligently can offer close to the best possible benefits.

(2) Network-wide goals: The architecture should allow network
operators to specify network-wide goals such as increasing overall
efficiency (e.g., improving the network throughput) or to achieve
specific traffic engineering goals (e.g., alleviating congested hotspots).

(3) Flexibility: The architecture must be incrementally adopt-
able providing benefits even under partial deployment, and must
supplement, not replace, current network operations such as exist-
ing routing and network management practices.

87

We present the design, implementation, and evaluation of SmartRE,
an architecture for network-wide RE that meets the above require-
ments. In SmartRE, redundancy elimination is performed in a co-
ordinated fashion by multiple devices. SmartRE uses the available
resources on RE devices efficiently and naturally accommodates
several network-wide objectives.

In describing SmartRE, we focus largely on packet-level RE in
ISP networks [12], where RE devices on routers cache packet pay-
loads and strip duplicate strings from individual packets. However,
we believe that our design can apply to other deployment scenarios,
e.g., in multi-hop wireless networks and datacenters.

In SmartRE, a packet can potentially be reconstructed or de-
coded several hops downstream from the location where it was
compressed or encoded. In this respect, SmartRE represents a sig-
nificant departure from packet-level RE designs proposed in prior
solutions [29, 12], where each compressed packet is reconstructed
at the immediate downstream router. Further, SmartRE uses a network-
wide coordinated approach for intelligently allocating encoding and
decoding responsibilities across network elements.

In general, encoding incurs greater overhead than decoding. Thus,
SmartRE allocates encoding to ingress routers to avoid overload-
ing interior routers that operate at higher line-rates and thus have
stricter resource constraints. Since the number of edge routers is
large, a large number of encoded packets are introduced into the
network. Interior routers in SmartRE perform less expensive de-
coding actions. Decoding is performed in a coordinated fashion
with each interior router responsible for storing and reconstructing
a fraction of the encoded packets on a path. We use hash-based
sampling techniques [31] to facilitate coordination across interior
routers while incurring negligible overhead.

When allocating encoding and decoding responsibilities across
a network, SmartRE takes into account the memory capacity and
packet processing throughput at each RE device along with the
prevailing traffic conditions, and configures the actions of differ-
ent devices so as to best meet an operator-specified network-wide
goal. This ensures that no device is overwhelmed and that RE is
used optimally to meet the network’s objectives.

The duplicate removal and reconstruction logic in SmartRE can
be implemented in high-speed two-port switches or middleboxes,
which can then be deployed across specific ISP links. These enable
incremental adoption in an ISP network. We develop prototypes of
the two-port switches in the Click modular router [21]. Using real
packet traces, we find that the prototypes can perform duplicate
removal at 2.2 Gbps and reconstruction at 8 Gbps.

We conduct an in-depth evaluation of SmartRE as applied to IP-
layer RE in ISP networks using controlled simulations based on
synthetic and real packet traces over several real and inferred ISP
topologies. Across a range of topologies and traffic patterns, the
performance of SmartRE is 4-5× better than naively extending a
single-vantage point RE solution to the network-wide case. Further,
and more significantly, SmartRE achieves 80-90% of the absolute
network footprint reduction of the optimal possible case where RE
devices are not limited by any throughput or capacity constraints.
We also evaluate partial deployment scenarios and find that en-
abling SmartRE on a small set of strategically selected routers can
offer significant network-wide benefits.

2. RELATED WORK AND BACKGROUND
We start by describing prior work on removing duplicate data

from network links, ranging from full object-based approaches to
partial packet-based ones. We then present details of packet-level
RE and describe prior work on enabling packet-level RE as a router
service across ISP networks that forms a key focus in our work.

2.1 Related Work
Object-level caching: Several systems in the past have explored
how to remove duplicate data from network links. “Classical” ap-
proaches such as Web caches work at the object level, serving pop-
ular HTTP objects locally [32]. In similar spirit, CDNs and peer-
to-peer caches [7, 1] perform object-level duplicate removal.
Protocol-independent RE mechanisms: In recent years, a class
of application- and protocol-independent techniques have been de-
veloped which can remove redundant strings from any traffic flow.
Starting with the pioneering work of Spring et al. [29], several com-
mercial vendors have introduced “WAN optimizers” which remove
duplicate content from network transfers. Many of these prod-
ucts [4, 2, 8, 5] work at the level of chunks inside objects and we
refer to them as chunk-level approaches. In contrast, both Spring et
al. [29] and Anand et al. [12] adopt techniques which are similar at
the high level but operate at a packet-level.
Content-based naming for RE: Content-based naming has emerged
as an alternative to enhance web caching (e.g., [19, 26]), content
distribution (e.g., [30, 23, 22]), and distributed file systems (e.g., [11]).
These approaches use fingerprinting mechanisms [24] similar to
packet-level RE to identify addressable chunks. However, these
approaches require modifications to end-systems to fully realize
the benefits of RE. Network-based, protocol-independent RE ap-
proaches are transparent to end-systems and offers the benefits of
RE to end-systems that are not content-aware.

2.2 Packet-level RE Explained
The central idea of packet-level RE is to remove strings in pack-

ets that have appeared in earlier packets. To perform RE across a
single link, the upstream device stores (in memory) packets it has
transferred on the link over a certain period of time. Packet con-
tents are indexed using fingerprints which essentially form content-
based hooks pointing to content in random locations within the
packet. For each incoming packet, the upstream RE device checks
if the packet’s fingerprints have appeared in earlier in-memory pack-
ets. Each matching fingerprint indicates a certain region of partial
overlap between the incoming packet and some earlier packet. The
matching packets are compared to identify the maximal region of
overlap. Such overlapping regions are removed from the incoming
packet and a shim is inserted to tell the downstream device how
to decode the packet using its local memory. A packet can carry
multiple shims, each potentially matching a different in-memory
packet. Decoding is simple: the downstream device uses the shim
in the encoded packet to retrieve the matching packet(s), and fills in
the corresponding missing byte range(s). Chunk-level approaches
work similarly.

2.3 Network-wide RE
Why packet-level RE: Both packet- and chunk-level RE are ag-
nostic to application protocols and can be implemented as generic
network services that need not understand the semantics of spe-
cific applications. Prior studies have shown that both approaches
are significantly better than caching entire objects [29]. However,
chunk-level approaches require terminating TCP connections and
partially reconstructing objects before applying compression. This
interferes with the end-to-end semantics of connections and also
imposes high overhead on the RE devices since they must maintain
per-flow state. Packet-level approaches do not interfere with end-
to-end semantics of connections, and where technology permits,
can be transparently supported in routers or middleboxes.
Extending packet-level RE to a network: Since packet-level RE
brings significant compression benefits while operating in a trans-
parent and application-agnostic fashion, Anand et al advocate its

88

use as a router primitive for network-wide RE [12]. In their pro-
posal, each router in an ISP network maintains a cache of recently
forwarded packets. Upstream routers on a link use the cache to
identify common content with new incoming packets and strip these
redundant bytes on the fly. Downstream routers reconstruct pack-
ets from their local cache. This process repeats in a hop-by-hop
fashion along a network path inside an ISP. Anand et al. evaluate
an ideal, unconstrained setting where they assume memory oper-
ations take negligible time and that the caches on each router are
infinite. Under this model, they show that network-wide RE could
offer significant benefits in terms of reducing overall network load
and absorbing sudden traffic overload in situations such as flash
crowds. The central goal of our paper is to design a practical archi-
tecture that can achieve these benefits when RE elements operate
within realistic throughput and memory capacity constraints.

The hop-by-hop approach proposed by Anand et al. is a naive
approach because it takes a very link-local view of RE and does
not account for constraints of the RE devices. In the next sec-
tion, we discuss why this naive approach offers poor performance
in practice and show how smarter caching and coordination can of-
fer vastly improved benefits.

3. BENEFITS OF COORDINATION
We start by describing the practical limits on the throughput of

the two packet-level RE primitives, namely, encoding and decod-
ing. Then, we present qualitative examples highlighting the bene-
fits arising from assigning encoding and decoding responsibilities
across a collection of routers in an intelligent, coordinated fashion.
In particular, we show how this: (1) leads to efficient memory us-
age, (2) ensures RE-related tasks can be performed at full capacity,
and (3) enables incremental deployment. We contrast this against a
naive approach that does not account for resource constraints.

In this section, we assume a hypothetical intelligent, coordinated
approach. This has two implications. First, we have the flexibility
to specify where a packet should be cached along a routing path.
In particular, this allows us to split caching responsibilities along a
path. This is in contrast to the hop-by-hop approach, where each
packet is explicitly cached at every hop along the path. For ex-
ample, if packets p1, . . . , p4 traverse a path I,R1, . . . , R4, we can
specify that each pi is cached at (and only at) Ri. Second, we as-
sume that RE devices that are separated by multiple hops in the net-
work can either implicitly or explicitly maintain a consistent view
of each other’s caches. This means that an encoded packet can po-
tentially be decoded several hops downstream from the point where
it was encoded. In the above example, this means that I can encode
packet p4 with respect to p3 and R3 is responsible for decoding
it. Again, in the hop-by-hop approach, this would not be possible;
each packet would have to be encoded and decoded per-link.

3.1 Encoding and Decoding Throughput
Standalone throughput: The main bottleneck affecting the pro-
cessing throughput of packet-level RE operations is memory ac-
cess. Encoding a packet requires multiple memory accesses and is
much slower than decoding. To see why, suppose that the mem-
ory hardware can support R random memory accesses per second.
For modern DRAMs, the random access latency is 50ns, hence
R = 2 × 107. Suppose that each packet has at most k matches,
and that we compute F fingerprints for each packet. (Note that
since the number of matches can never be more than the number
of fingerprints that were computed, k ≤ F .) Typical values are
F = 10 and k = 3 [12].

The encoding throughput for a standalone RE device is at most
R/F packets per second. This is because each packet, whether it

I R1 R2 R3 R4

Packet arrival order: A,B,C,D,A,B,C,D
Ingress can cache 4 pkts
Routers cache 1 packet

A, B, C, D
B, C, D, A
C, D, A, B
D, A, B, C
A, B, C, D

D
A
B
C
D

D
A
B
C
D

D
A
B
C
D

after
pkt 4

after
pkt 8

Hop-by-hop Redundancy Elimination

Footprint before RE = 8 pkts * 4 hops = 32
Total network footprint after RE = 28
No savings from RE on interior l inks
Each router switches 8 packets

I R1 R2 R3 R4

A, B, C, D
B, C, D, A
C, D, A, B
D, A, B, C
A, B, C, D

A
A
A
A
A

B
B
B
B
B

C
C
C
C
C

Total Network Footprint = 22 packets
33% savings
Routers switch 20% smaller pkts
e.g., R1 need not switch packets 6,7,8

Coordinated Redundancy Elimination

D
D
D
D
D

1
1
1
1

1
1
1

1
1 1

Legend:
RE Device Packet store

Savings from RE

Figure 1: Benefits of a coordinated approach when RE devices
have constraints on memory size.

can be encoded or not, requires F random accesses to determine if
there is a match or not. Once matches are found, further processing
is required to actually create the encodings. On the other hand, de-
coding throughput is at least R/k. This is because each packet has
between 0 and k encodings. Thus, in this standalone case, decoding
is ≥ F/k times faster than encoding. Since k ≤ F , the decoding
throughput is clearly higher.
Throughput on a single link: Given this understanding of the
standalone encoding and decoding throughput, we can now con-
sider the throughput across a single link. For simplicity, let us as-
sume all packets are of the same size MSS . Suppose that the link
capacity is such that it can carry P MSS -sized packets per second.
For instance, if the link speed is 2.4Gbps (OC48), and MSS =
500B, then P = 6 × 105 and for an OC192 link P = 2.4 × 106.
Two cases arise:

1. Slow link (R/F ≥ P): This means that line rate encod-
ing and decoding are possible; e.g., for an OC48 link where
R/F = 2× 106 ≥ P = 6× 105. In this case, the encoder
can encode up to P packets per second, each carrying up to
k matches. The decoder can decode each encoded packet.

2. Fast link (R/F < P): This means that line rate encoding
is not possible. This is the case for OC192 and higher speed
links. (R/F = 2× 106 < P = 2.4× 106). In this case, the
encoder can encode no more than R/F packets per second;
a fraction of packets are left un-encoded to ensure line-rate
operation. Even though the decoder as a standalone operates
F/k times faster, its decoding throughput is now limited by
the encoding throughput immediately upstream. Thus, it is
limited to decoding R/F packets per second.

3.2 Motivating Examples
We present the examples in the context of a “bump-in-the-wire”

deployment where an RE middlebox is attached to router linecards.
Each RE device has pre-specified resource constraints. These cap-
ture hardware limitations (e.g., how many decoding actions can
the device perform per unit time?) or economic constraints (e.g.,
DRAM cost which could limit total memory per device).

These examples also apply when there are resource budgets per
router. For example, processing constraints induced by power/cooling
requirements are better modeled on a per-router/per-PoP basis rather
than per-middlebox. Also, software or virtualized RE deployments
(e.g., [14, 21]) would be characterized by per-router constraints.

As the following examples show, the naive hop-by-hop approach
described in the previous section severely constrains the effective-
ness of redundancy elimination.
Memory efficiency and router benefits: Consider the scenario in
Figure 1. Suppose each RE device on the path has memory to store
only 1 packet for this path (since the devices are shared among the
paths that traverse the link), but the RE devices on the first link can

89

Hop-by-hop Redundancy Elimination

I1

I2

I3

I4

R1 R2 R3

5E

5E

5E

5E

5D
10E

10D

10E

10D

Assume each decoding saves X bytes
Total savings = 5X * 4 + 10X * 2 = 40X

5 enc/s
5 dec/s 10 enc/s, 20 dec/s

Coordinated Redundancy Elimination

I1

I2

I3

I4

R1 R2 R3

5E

5E

5E

5E

0D

0D

20D

Assume each decoding saves X bytes
Total savings = 20X * 3 = 60X

10 enc/s, 20 dec/s

5 enc/s
5 dec/s

Figure 2: Benefits of coordination when RE devices have con-
straints on encoding/decoding throughput.

store 4 packets. Each store is managed in a FIFO fashion. The
hop-by-hop model yields no benefits from RE on the interior links.
A coordinated approach can ensure that the different packets are
stored and decoded at different routers. This helps reduce the total
traffic by 33%. There are secondary benefits in that routers have
to switch smaller packets internally, thereby improving their effec-
tive switching capacity. This example shows that a coordinated
approach can more effectively use a given amount of memory.
Memory access constraints: Consider the example shown in Fig-
ure 2. Here, the links between ingresses I1. . .I4 and the core router
R1 are much slower than the core-core links. Assume that the en-
coding RE device at the slow link can perform 5 packet encodings
per second (this corresponds to case #1 from §3.1 where P = 5).
The encoding RE device at the fast links can perform 10 packet en-
codings per second (this corresponds to case #2 from §3.1 where
R/F = 10). Now, consider the decoding devices. The ones on the
slow links can decode 5 packets per second, while the ones on the
fast link can decode up to 20 packets per second (R/k = 20).

In the hop-by-hop case, the number of packets decoded by a
downstream RE device is the same as the number of packets en-
coded by the immediate upstream device. Assuming each decoding
saves X bytes, the hop-by-hop approach removes 40X bytes (5X
on 4 ingress-core router links, and 10X on two core-core links).
Consider an alternative coordinated scenario, in which the RE de-
vices on interior routers are not involved in encoding and can de-
code at the maximum rate. In this case, devices on R1 and R2 can
just forward encoded packets and R3 can allot its full decoding ca-
pacity. This will reduce the total network footprint by 20× 3×X.
(Since R3 is 3 hops away from the ingress, for each decoded packet
we save 3 hops in the network footprint). Also, some of the devices
perform no RE function; yet this architecture is 1.5× better than
the hop-by-hop approach.
Benefits under partial deployment: In Figure 2, consider a par-
tial deployment scenario with no RE devices attached to router R1.
In the hop-by-hop approach, the total savings would only be 10X
(only on link R2-R3). Note that since the coordinated approach
did not involve R1, it provides 60X savings even with partial de-
ployment. Network operators can thus realize significantly more
benefits with partial deployment with a coordinated design.

The above examples demonstrate the benefits of a hypothetical
intelligent and coordinated approach. Next, we describe how we
can implement this hypothetical approach in practice.

4. SmartRE DESIGN
In this section, we formally describe the design of SmartRE, an

architecture for redundancy elimination that draws on the principles
of spatially decoupling encoding and decoding responsibilities, and
coordinating the actions of RE devices for maximum efficiency.
Our description focuses on SmartRE as applied to an ISP network.

SmartRE synthesizes two ideas: packet caches for redundancy
elimination [29, 12] and cSamp [31]. SmartRE leverages ideas
from cSamp to split caching (and decoding) responsibilities across
multiple router hops in a network. It specifies the caching respon-

Figure 3: Schematic depiction of SmartRE.

sibility of each RE device in terms of a hash-range per path per
device. Each device is responsible for caching packets such that
the hash of the packet header falls in its assigned ranges. By us-
ing the same hash function across the network and assigning non-
overlapping hash ranges across devices on the same path, SmartRE
leverages the memory resources efficiently without requiring ex-
pensive cache coordination protocols.

A network operator can specify different ISP-wide objectives,
e.g., minimizing network utilization, aiding traffic engineering goals.
SmartRE uses a network-wide optimization framework that takes
into account the prevailing traffic conditions (volume, redundancy
patterns), the network’s routing policies, and the capacities of indi-
vidual RE devices to assign encoding and decoding responsibilities
across the network to optimally satisfy the operator’s objectives.

4.1 System Overview
We focus our discussion on the design of three key elements

(Figure 3): ingress nodes, interior nodes, and a central configu-
ration module. Ingress and interior nodes maintain caches storing
a subset of packets they observe.

Ingress nodes encode packets. They search for redundant con-
tent in incoming packets and encode them with respect to previ-
ously seen packets using the mechanism described in §2. In this
sense, the role of an ingress node is identical in the naive hop-by-
hop approach and SmartRE.

The key difference between the hop-by-hop approach and SmartRE
is in the design of interior nodes. First, interior elements need not
store all packets in their packet cache – they only store a subset
as specified by a caching manifest produced by the configuration
module. Second, they have no encoding responsibilities. Interior
nodes only decode packets, i.e., expand encoded regions specified
by the ingresses using packets in their local packet cache.

The configuration module computes the caching manifests to op-
timize the ISP objective(s), while operating within the memory and
packet processing constraints of network elements. Similar to other
proposals for centralized network management (e.g., [18, 15, 13]),
we assume that this module will be at the network operations cen-
ter (NOC), and has access to the network’s traffic matrix, routing
policies, and the resource configurations of the network elements.

4.2 Network-wide Optimization
The configuration module uses a network-wide view of traffic

patterns and resource constraints to compute how and where de-
coding should be done to optimize ISP objectives.
Assumptions and Terminology: We assume that the traffic ma-
trix (volume of traffic in bytes and packets between every pair of
ingress-egress routers) and the routing path(s) between an ingress-
egress pair are known and given as inputs. We use the subscripts
p and q to indicate paths, r to denote a node (either a router or a

90

bump-in-the-wire middlebox) and the notation r ∈ p to denote that
node r lies on the path p. vp is the total traffic volume, in bytes,
flowing on path p in a specific measurement interval. distancep,r

is the upstream latency (e.g., hop count, OSPF weights, physical
fiber distance) of path p up to node r. In our current framework,
distancep,r is specified in terms of the hop count.

We also assume that we know the redundancy profile of the net-
work from historical traffic data or using periodic reports from
ingress nodes. This redundancy profile is specified in terms of
two constants for every pair of paths. These are (1) matchp,q

(measured in packets), the number of matches that traffic flowing
through path p observes with traffic on path q and (2) matchlenp,q

(in bytes) denoting the average match length observed within these
packets (this is bound by the MSS). As a special case, matchp,p

and matchlenp,p capture intra-path redundancy. As such, our cur-
rent focus is on redundancy between paths with the same ingress.

The configuration module maximizes the total savings (i.e., min-
imizing the network footprint or the link utilization-distance prod-
uct), while respecting the operating resource constraints: i.e., the
total available memory (Mr) and the total decoding processing
power (Lr) per node. A network operator could specify other network-
wide objectives as well.
Formulation: The key variables in the formulation are the dp,r

values. Each dp,r specifies the fraction of traffic on path p that node
r caches. We now describe how the variables dp,r are determined.
First, we model the packet store capacity constraints on each node:

∀r,
X

p:r∈p

dp,r × vp ≤ Mr (1)

Next, we model the total packet processing capabilities on each
node. The processing capabilities are bound by the number of
memory operations that can be performed in unit time.1 For each
interior node, there are two types of memory operations that con-
tribute to the processing load: caching and decoding. We assume
for simplicity that both operations are equally expensive per-packet,
but it is easy to incorporate other models as well. The total num-
ber of packets that will be stored by r on path p is dp,r× vp

avgpktsize
.

(avgpktsize appears because vp is in bytes but the load is per packet.)
The total number of matches that will be decoded by node r isP

p,q:r∈p,r∈q dq,r ×matchp,q .2 Thus, we have

∀r,
X

p,r∈p

dp,r
vp

avgpktsize
+

X

p,q:r∈p,q

dq,r matchp,q ≤ Lr (2)

There is a natural constraint that the total range covered on each
path should be less than or equal to 1:

∀p,
X

r:r∈p

dp,r ≤ 1 (3)

Next, we compute the total savings in the network-wide foot-
print. The savings provided by node r for traffic on path p (Sp,r)
depends on the redundancy that p shares with other paths that tra-
verse r and the caching responsibility that r has for these paths. It
also depends on the location of r on the path p – the more down-
stream r is (higher distancep,r), the greater savings it provides.

1We do not explicitly model CPU constraints because these are
subsumed by processing constraints imposed by memory accesses.
2Strictly speaking, this is an approximation that assumes that the
matches are uniformly spread out across the different dq,r ranges.
In practice, this is a reasonable assumption.

Sp,r =
X

q:r∈q

dq,r × distancep,r ×matchp,q ×matchlenp,q (4)

The objective then is to maximize
P

p

P
r Sp,r . Note that max-

imizing this objective, subject to the constraints captured by Equa-
tions 1–3 is a linear programming (LP) formulation and thus can be
solved efficiently using off-the-shelf LP solvers (we use CPLEX).
The output of the LP solver is d∗ = {d∗

p,r}, the optimal solution to
the formulation.

We can augment this framework to incorporate resource con-
straints on ingress nodes as well. We omit this extended formu-
lation for brevity, but use it in our evaluation.

4.3 Encoding and Decoding
In the next few sections, we provide details on the actions taken

by nodes in the network given the allocations derived by the central
configuration module.
Assigning caching responsibilities: The output of the optimiza-
tion framework is a set of caching manifests which specify the
caching responsibilities for each node. Each node’s manifest is
a set of key-value pairs {〈p,HashRange〉}, indexed by the path
identifier p. We use a simple procedure takes in the solution d∗ as
input and iterates over the paths one by one. For each p, a vari-
able Range (initially zero) is advanced in each iteration per node,
in order of location on the path, by the value d∗

p,r, and node r is
assigned the hash range [Range ,Range + d∗

p,r). Thus, nodes on
the path p are assigned non-overlapping hash ranges to ensure that
the caching responsibilities for nodes on the path are disjoint. We
use the on-path ordering to simplify the encoding algorithm (see
the discussion in §5.1).

For example, suppose there are three nodes r1 , r2 , and r3 on
path p (in order of distance from the ingress), and the optimal so-
lution has values d∗

p,r1 = 0.2, d∗
p,r2 = 0.3, and d∗

p,r3 = 0.1.
The ranges assigned to r1 , r2 , and r3 for path p will be [0, 0.2),
[0.2, 0.5), and [0.5, 0.6).

For each path p, an interior node r only stores packets whose
hashes falls within the range assigned to it for p. To do this, the inte-
rior node computes a hash over the packet header HASH(pkt .header)
and decides whether or not to cache the packet. HASH is computed
over the fields of the packet header that uniquely identify a packet,
the src/dst IPs, src/dst ports, protocol, and the IP ID field, and re-
turns a value in the range [0, 1]. These are invariant fields that do
not change along the routing path [17].
Encoding at the ingresses: We first present a high-level overview
of the encoding algorithm at each ingress. We defer to more de-
tailed issues in §5.

Figure 4 shows the pseudocode for an ingress node. The ingress
encodes packets with respect to packets in its store. When matches
are found, it computes a shim header (Figure 5). The shim header
has 2 parts: a fixed length path identifier field specifying the path
identifier for the current packet3, and a (possibly variable length)
description of the matches. Each match is specified using three
fields: (i) the path identifier for the packet in the ingress’s cache
with which a match was found, (ii) the unique hash for the match-
ing packet computed over the invariant header fields, and (iii) the
matched byte region.

The ingress stores packets whose hashes fall in the total covered
range for the path. It ignores other packets as matches with these
cannot be decoded downstream. When the ingress cache is full, it
evicts packets in FIFO order.
3If interior nodes can get the pathid from MPLS labels or routing
information, this is not necessary.

91

PROCESSPACKETINGRESS(pkt , ingress)

// Steps 1–4 are for encoding
// Use routing/MPLS info for the next two steps

1 egress ← FINDEGRESS(pkt)
2 pathid ← GETPATHID(ingress , egress)

// this step depends on the overlapmatrix (see §5)
3 candidates ← GETCANDIDATES(pathid)

// encodedpkt carries the shim header (Figure 5)
4 encodedpkt ← ENCODE(pkt , candidates)

// Steps 5–7 are for caching
// what is

P
r∈PATH(pathid) dpathid,r for this path?

5 coveredrange ← GETCOVEREDRANGE(pathid)
// only store packets with hash within covered range

6 h← HASH(pkt .header)
7 if (h ∈ coveredrange) then

ADDPKTTOSTORE(pkt , pathid , h)
// forward as usual

8 FORWARD(encodedpkt)

Figure 4: Pseudocode for ingress node.

IP Header
Transport
Header

SmartRE Shim
Header

Packet
Payload

Pathid MatchSpec 1 MatchSpec 2 MatchSpec n...

Pathid of
Matched Packet

Hash of matched
packet’s header

Matched region
<s tar tby te , endbyte>

Figure 5: Format of the SmartRE shim header.

Decoding at interior nodes: Figure 6 shows the algorithm at an
interior node. The node reads the shim header and checks if any of
the matches are in packets that it is currently caching. Each match-
spec carries the pathid and the hash of the reference packet with
which a match was found. Thus, the interior node can determine
if it has cached the reference packet.4 If so, the node reconstructs
the corresponding match region(s). Note that different matched re-
gions may be reconstructed by different downstream nodes as the
packet traverses the path.

5. ENSURING CORRECTNESS IN SmartRE
As we saw in the previous section, there are three key features

in SmartRE: (1) it allows a packet to be decoded multiple hops
downstream from the ingress where it was encoded, (2) it splits
caching (and decoding) responsibilities along the RE elements on a
path, and (3) it uses a network-wide approach for allocating caching
responsibilities.

These three features are essential for efficiently utilizing the avail-
able RE resources (e.g., caches, memory accesses) to derive close
to optimal network-wide benefits. For example, (1) means that each
decoding operation performed by an interior router H hops down-
stream is H times as effective in reducing the network-wide foot-
print as the same operation performed by the router adjacent to the
ingress. Similarly, (2) means that each cache entry is utilized effi-
ciently. (3) combines these features to achieve network-wide goals;
this could mean that RE elements common to paths that share re-
dundant content are assigned inter-path decoding responsibilities.

4Errors due to hash collisions are highly unlikely.

PROCESSPACKETINTERIOR(encodedpkt , r)

// r is the node id
// Steps 1–2 are for decoding
// Check if any decoding needs to be done

1 mymatches ← PROCESSSHIM(encodedpkt .shim)
// this may only partially reconstruct the packet

2 decodedpkt ← DECODE(encodedpkt ,mymatches)
// Steps 3–6 are for caching

3 pathid ← GETPATHID(encodedpkt)
// what is my assigned hash range for this path?

4 myrange ← GETRANGE(pathid , r)
5 h← HASH(pkt .header)
6 if (h ∈ myrange) then

ADDPKTTOSTORE(decodedpkt , pathid , h)
// forward as usual

7 FORWARD(decodedpkt)

Figure 6: Pseudocode for an interior node.

I R1

R3

R2

R4

E1

E2

P1

P2

P1,R1 [0,0.2]

P2,R1 [0,0.1]

P1,R2 [0.2,0.5]

P2,R2 [0.1,0.4]

P1,R3 [0.5,0.7]

P2,R4 [0.4,1.0]

OverlapMatrix[P1,P2] = [0,0.4];
R1,R2 (common to P1,P2) store pkts in this range on P2
OverlapMatrix[P2,P1] = [0,0.5];
R1,R2 store pkts in this range on P1

OverlapMatrix [P_i,P_j] = range for packets
 on path P_i that can be chosen to encode
packets on path P_j

Figure 7: Example showing the overlap matrix.

However, these features raise some issues with respect to correct-
ness; i.e., will an encoded packet be decoded correctly before it
leaves the network perimeter. Specifically, we identify three issues:

1. How can an ingress decide if encoding a packet w.r.t a pre-
vious packet will be valid–will that previous packet be avail-
able in a cache on the path taken by the current packet? (§5.1)

2. Since interior elements may be assigned responsibilities across
multiple ingresses, how does each encoder maintain a con-
sistent view of the caches at interior elements? That is, if an
ingress encodes a packet, will the decoders have the required
matched packets or would they have evicted them? (§5.2)

3. As decoding responsibilities are split across a path, some
packets may be encoded when they reach their assigned caching
nodes. Should we cache such encoded packets? (§5.3)

We present lightweight solutions to address these issues in the
context of SmartRE. However, the issues themselves are more gen-
eral to the design of network-wide RE solutions.

5.1 Identifying valid inter-path encodings
If the ingress identifies a match with a packet that traversed the

same path it can encode the match. However, when the ingress sees
a match with a packet from another path, it needs to ensure that
this can be successfully decoded downstream. The overlapmatrix
specifies valid inter-path encodings, and in Figure 4, the function
GETCANDIDATES checks overlapmatrix to find valid encodings.

Figure 7 shows a simple example of what the overlap matrix
means. We have two paths P1 and P2. The caching responsibil-
ities of each node are specified in terms of hash-ranges per path.
Suppose a new packet A belonging to P1 arrives at I . I finds a

92

match with packet B sent earlier along P2. Now, I has to de-
cide whether A if encoded w.r.t B can be decoded downstream.
If HASH(B) ≤ overlapmatrix [P1 , P2], one of R1 or R2 will be
able to decode the match. Otherwise, B is stored on nodes that do
not lie on P1 and thus A cannot be encoded with respect to B.

Let us go back to the discussion of on-path ordering (§4.3). The
configuration module generates the overlapmatrix from the LP
solution and distributes it to the ingresses. On-path ordering en-
sures that each entry in this matrix is one contiguous range instead
of several disjoint ranges. This simplifies the description of the
overlapmatrix and also simplifies the process by which the in-
gresses identify valid encodings.

5.2 Using cache buckets to ensure consistency
In hop-by-hop RE, each node’s packet store is perfectly in sync

with the upstream node’s packet store. However, SmartRE needs to
explicitly ensure that ingress and interior caches are consistent.

To see why this is necessary, consider the following scenario.
Packet X is initially cached at interior node R and the ingress
I . Consider the case when R and I maintain independent FIFO
caches. Suppose X is evicted from R’s cache due to a sudden in-
crease in traffic along paths from other ingresses. Now, packet Y
arrives at I . I finds a match with X and encodes X with respect
to Y . Clearly, R will not be able to reconstruct the matched region
for Y . The packet Y would thus have to be dropped downstream
or rejected by the application at the end-host.

To address this, we use a lightweight, yet robust, consistency
mechanism. The main idea is to divide the ingress packet store
into buckets; each bucket corresponds to a hash range assigned to a
specific interior node-path pair. Interior stores are organized simi-
larly. As a packet arrives at the ingress, it is stored into the per-path
per-range bucket into which its hash falls. This explains the pa-
rameters pathid and h to ADDPKTTOSTORE in Figures 4 and 6
– together they identify the bucket in which to store the packet.
Each bucket is a circular buffer; as a bucket gets full, packets get
evicted in FIFO order to accommodate newer packets. The size of
each bucket is determined by the LP solution and the traffic patterns
(i.e., d∗

p,r× vp); the configuration module also specifies these sizes
as part of the caching manifests. When new solutions are computed
in response to traffic or routing dynamics, the bucket sizes can be
reassigned appropriately.

5.3 Handling gaps in encoded packets
An interior node may not have the full payload for packets for

which it is assigned caching responsibilities. This could happen if
at the time the packet reaches this node, there is still some decoding
to be done downstream. Thus, the node only sees a partially recon-
structed packet. This creates a problem if subsequent packets need
to be encoded with respect to a packet with some decoding “gaps”.
To see why this is an issue, consider the example in Figure 8. In the
example, even though the ingress can encode C with respect to its
cached version of B, R1 which is storing an incomplete version of
B cannot decode this match.

One option is that the ingress does not use encoded packets for
future encodings. Thus, packet B which was encoded with respect
to A is not even stored at I . Another option is to use these encoded
packets maximally, i.e., all non-gap regions in the packet are used
to match further packets. Thus, router I in the example stores B
but nullifies the bytes in B that matched A. Future packets can only
be encoded with respect to non-null regions of B. Both solutions
ensure correct end-to-end packet delivery, but provide lower redun-
dancy elimination than the ideal case when there are no decoding
gaps. Since the second solution achieves better redundancy elim-

I R1 R2

A arrives,
cached at I, R2

B arrives
part ial match with A
Encoded w.r.t A
Cached at I, R1 A is evicted A is evicted

R1 stores
B-with-gap

C arrives,
part ial match with A,B
Cannot encode w.r.t B!

A

A

B

B

C

B

D

D arrives
matches non-gaps in B
Can encode w.r.t B

Figure 8: Example of how decoding gaps may occur.
ination, we implement this option. In our experiments with real
packet traces, we found that with the second option, the effective
loss in redundancy elimination is less than 3%.

6. IMPLEMENTATION ISSUES

6.1 Encoder and Decoder Implementation
We implement the encoding and decoding algorithms from §4.3

and §5 in Click [21]. The key components of the encoder are: fin-
gerprint computation per packet, a packet store for caching packets,
and a hash table for mapping fingerprints to the packets they were
found in (similar to [29, 12]).

Like most RE systems, we use Rabin fingerprinting [24]. Each
Rabin fingerprint captures a fixed 64 byte region in a packet [12].
We store a maximum of F = 10 fingerprints per packet in the fin-
gerprint hash table. This reflects a reasonable throughput-redundancy
tradeoff based on real traces.

We segment the packet store into logical buckets per interior-
node-path pair (§5.2). The encoder inserts each packet into the
appropriate bucket in FIFO order. In addition to payloads, we store
the IP headers for each packet because a hash of the headers is used
to decide decoding and storage responsibilities (Figure 5). Also, the
encoder flags one bit in the IP header (e.g., TOS field) to indicate
that the packet has one or more shims that need to be decoded.

In prior RE solutions [29, 12], each fingerprint in the fingerprint
hash table is associated with the most recent packet for which it is
computed. In SmartRE, this raises issues with packets being un-
decodable due to gaps. (To elaborate, this most recent packet may
itself have been encoded and thus further encodings with respect
to this packet will lead to decoding gaps as discussed in §5.) To
address this issue, when a packet sees a match and the match re-
gion is grown to the maximal byte range, the fingerprints of this
packet that mapped into the maximal range are re-associated with
the matched in-cache packet. Also, the maximal byte range in the
incoming packet is zeroed out. This ensures ensure that bytes in the
maximal match region are not used for encoding. Our implemen-
tation is thus conservative; we sacrifice some performance in favor
of correctness.

The decoder implementation largely follows the discussion in
§4.3. The last decoder on a path clears the flag in the header indi-
cating that the packet has been fully decoded.

6.2 Configuration Parameters
Parameters for the LP optimization: To specify parameters to
the LP formulation, we need to fix a certain measurement epoch.
However, this epoch cannot be arbitrary, as the RE capabilities are
limited by the storage available at the ingresses. Thus, we define
the notion of a network data retention time determined by the size
of the ingress packet stores. All values in the formulation (i.e., the
match profiles and the traffic matrix) are specified in terms of this
common value. In real deployments, we expect ISPs to employ
ingress caches storing few tens of seconds worth of data.

93

Traffic and routing dynamics: The dominant source of traffic dy-
namics are time-of-day and day-of-week effects [25]. Fortunately,
these are predictable and we can use historical traffic matrices to
model these effects.

Routing changes are trickier because an ingress may incorrectly
assume that a downstream node will be able to decode a match.
Two scenarios arise. First, if routes are computed centrally [18],
SmartRE can use the new routes to recompute a new caching strat-
egy and disseminate it to the ingresses. However, the recompu-
tation may take few tens of seconds, and we need to ensure cor-
rectness during this transient state. Second, the ingresses do not
receive new caching strategies, but instead receive the current rout-
ing information (e.g., OSPF monitor [27]) and avoid encodings that
are non-decodable after the routing change. This ensures correct-
ness but sacrifices some performance. Note that this also solves the
transient problems in the first scenario.
Changes in redundancy profiles: To estimate the redundancy pro-
files, the ingress RE devices maintain simple counters to track matches
between paths. The ingresses periodically report these values to the
central configuration module. Note that this adds very little over-
head to the ingress implementation. However, since these could be
large,5 they will be reported infrequently (e.g., every 30 minutes).

This raises the issue of staleness of redundancy profiles. This
may have two effects: (1) It may affect the optimality of the con-
figuration without affecting solution correctness. This is an ac-
ceptable operating mode for SmartRE and we evaluate it further
in §7. (2) Significant changes in the redundancy profile may in-
crease decoding load on each node (§4.2, Equation 2) and affect
solution feasibility. To handle the second issue, each ingress tracks
the actual number of matches per interior node and will not burden
overloaded interior nodes with additional decoding responsibilities.
Thus, changes in redundancy profiles do not affect correctness.

Additionally, SmartRE can use a triggered approach. For exam-
ple, under flash-crowd-like scenarios where traffic patterns change
dramatically, the affected ingresses can report the large changes
to the NOC. This can trigger an immediate recomputation of the
caching manifests instead of the periodic recomputation.

6.3 More on Correctness
Consistent configurations: The bandwidth overhead for dissem-
ination is low as the configuration files are quite small (1-2 KB
per device). However, differences in the distances between the
devices and the NOC could lead RE devices to use inconsistent
caching configurations. To mitigate this, we can use latency in-
formation from topology maps to schedule the transfers to ensure
that all devices receive the new configurations at approximately the
same time. Also, for a small transition interval (few tens of mil-
liseconds), all RE devices honor both configurations. That is, the
encoders and decoders store packets assigned by either the old con-
figuration or the new one. (RE devices can allot a small amount of
spare memory for this purpose). This may result in a small per-
formance reduction, as some packets may get decoded before their
optimally assigned decoders, but it ensures correct packet delivery.
Errors due to packet drops: Packet drops can cause encoder and
decoder caches to get out of sync. Packet drops cause two issues:
(1) Packets which are encoded w.r.t the dropped packet cannot be
decoded downstream; (2) When the higher-layer application re-
transmits the dropped packet, it is likely that the retransmission will
get encoded with respect to the dropped packet, and get dropped
again. TCP-based applications can typically recover from single

5With n access routers, there are O(n2) paths. Even restricting to
paths with the same ingress, the overhead for transmitting redun-
dancy profiles is O(n3).

Network PoP-level Router-level
(AS#) # PoPs Time # Routers Time
NTT (2914) 70 0.92 350 55.41
Level3 (3356) 63 0.53 315 30.06
Sprint (1239) 52 0.47 260 21.41
Telstra (1221) 44 0.29 220 16.85
Tiscali (3257) 41 0.21 205 11.05
GÉANT 22 0.07 110 2.48
Internet2 11 0.03 55 0.48

Table 1: LP solution time (in seconds).

packet drops in a window, but drops of retransmitted packets (case
#2) severely impacts TCP throughput. We handle the latter as a spe-
cial case. If an ingress sees a packet which has a full content match
and the same connection 5-tuple match with an in-cache packet, it
will not encode this packet.

7. EVALUATION
Our evaluation is divided into the following sections: (1) Bench-

marks of the Click prototype and time taken by the optimization
framework. (2) Benefits of SmartRE compared to the ideal and
naive approaches using synthetic traces with different redundancy
profiles and resource provisioning regimes. (3) Evaluation using
real packet traces collected at a large US university’s border router
and at a university-owned /24 prefix hosting popular Web servers.
(4) Impact of staleness of redundancy profiles. (5) Benefits under
partial deployment.

For the following results, we use PoP-level ISP topologies from
Rocketfuel [28] and add four access routers to each PoP to obtain
router-level topologies.

7.1 Performance benchmarks
LP solution time: Table 1 shows the time taken to generate the
caching manifests (on a 2.80 GHz machine) for seven PoP- and
router-level topologies. Even for the largest router-level topology
(NTT), the time to solve (using CPLEX) is < 60s. We envision
that reconfigurations occur on the scale of a few minutes – this
result shows that the optimization step is fast enough to support
such reconfigurations.
Encoding and decoding rates: We now try to understand how the
encoders and decoders can be used in practical ISP deployments.
To do so, we benchmark the implementations on a standard desktop
machine and extrapolate the performance to more realistic settings.

We run our prototypes on a desktop with 2.4GHz CPU, with a
DRAM latency of 90ns (benchmarked using PAPI6). We use real
packet traces from the /24 prefix. (This trace was 35% redundant
using a 600 MB packet cache and 10 fingerprints per packet.) In
addition to computing the raw throughput, we also compute the
effective throughput after subtracting the overhead due to Click op-
erations. This extrapolates the results to a SmartRE middlebox im-
plemented on an FPGA [20] which would be constrained only by
memory accesses and have no software overhead.

First, we benchmark the encoder. To understand the maximum
throughput of a memory-bound RE middlebox, we follow the method-
ology of Anand et al. [12]: (1) load the packet trace into memory,
(2) precompute and load fingerprints for all packets into memory,
(3) encode packets one by one, and report the throughput.

We configured a packet store to hold 600MB of packet payloads;
the corresponding fingerprint index was 400MB in size. Using 10
fingerprints per packet, the effective throughput obtained for en-
coding was around 2.2Gbps (after subtracting the Click overhead).
We also ran this on a machine with 120ns memory latency and

6http://icl.cs.utk.edu/papi/

94

Match Redundancy Throughput (Gbps)
Specs In software W/o overhead

1 24.1% 4.9 8.7
2 31.6% 4.5 7.9
3 34.6% 4.3 7.7
4 34.7% 4.3 7.6
5 34.8% 4.3 7.6

Table 2: Trade-off in redundancy and decoding throughput
with number of match-specs.
the throughput dropped to 1.5Gbps. Extrapolating, we conclude
that with lower DRAM latencies, the encoder can operate at OC-
48 linerates. (Today’s high-end DRAMs have ≤ 50ns latency as
opposed to 90ns on our desktop). Other SmartRE operations, e.g.,
redundancy profile computation, storing in isolated buckets etc.,
add negligible overhead.

Next, we evaluate the decoding throughput. This depends on the
number of match regions encoded in packet shims: as more regions
get encoded, more redundancy is identified, but the throughput de-
creases as the number of memory accesses increases. We study this
tradeoff in Table 2. The decoding store size was set to 600MB.
We see that decoding is roughly 3-4× faster than encoding, since
it involves fewer memory operations per packet. While decoding
throughput does decrease with more matches (due to more memory
accesses), the decrease is small for ≥ 2 matches. Our implemen-
tation uses a maximum of 3 match-specs as a tradeoff between the
amount of redundancy identified and the throughput.

Our simple encoder and decoder implementations can roughly
operate on OC-48 (2.5Gbps) and OC-192 links (10Gbps), respec-
tively. In networks where such links are used, SmartRE can lever-
age the encoding and decoding capabilities of nodes to give opti-
mal benefits. Middleboxes based on these simple designs can also
be used in ISPs that employ faster links, e.g., 40Gbps for the core.
The only difference is that each decoder may be able to act only on
one-fourth of the packets entering the router; the rest of the pack-
ets need to be decoded at other locations. In this case, the bene-
fits of SmartRE may not be optimal. We explore the gap between
SmartRE and the optimal in greater detail next.

7.2 Synthetic trace study
We compare the benefits of SmartRE, the hop-by-hop approach

without any resource constraints (i.e., hop-by-hop ideal), the hop-
by-hop approach with actual resource constraints, and a special
case of SmartRE called edge-based RE. In both SmartRE and edge-
based RE, encoding is a one-time task; performed only at the in-
gresses. However, decoding happens only at the edge of the net-
work in edge-based RE, unlike SmartRE. While SmartRE can ef-
fectively operate under all types of redundancy profiles, edge-based
RE is effective only when intra-path redundancy is the dominant
source of repeated content. Hop-by-hop ideal represents the best
possible benefits achievable from network-wide RE assuming that
RE devices are unconstrained. Our main goals are to understand
how close to ideal SmartRE gets, how much better it is than other
approaches, and what factors contribute to SmartRE’s performance.
Setup: We implemented an offline emulator using Click to com-
pare different network-wide RE solutions. We assume a middlebox
deployment where each network link has RE devices attached on
both ends of the link. For SmartRE, the device at one end of a link
is used for decoding/encoding packets in one direction, and the one
at the other end is used for the reverse direction.

Encoders at each access link store T seconds of packets (e.g.,
3 GB memory at 2.4 Gbps implies T = 10s). Decoders at the
edge have the same cache size as the encoders. Each interior RE
device uses a 6GB cache which we consider to be reasonable from
a cost view-point in practical settings; we also evaluate the effect

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

c
ti
o

n

Reduction in Network Footprint

Hop-by-Hop
Edge-based

SmartRE
Hop-by-Hop Ideal

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

c
ti
o

n

Reduction in Network Footprint

Hop-by-Hop
Edge-based

SmartRE
Hop-by-Hop Ideal

(a) 50% redundancy trace (b) 25 % redundancy trace
Figure 9: CDF of network footprint reduction across ingresses
for Sprint (AS1239) using synthetic traces.
of varying this cache size. We model the throughput of each device
in terms of the total number of memory operations per second. We
select bounds that reflect the throughput achieved by our software
prototypes. Assuming (conservative) memory latencies of 100ns,
20 lookups for encoding each packet, and 4 lookups in total for
decoding each packet, this translates into 0.5 million encodings and
2.5 million decodings per second respectively.
Traffic model: We use a gravity model based on city populations to
determine the fraction of traffic from each ingress access router to
an egress PoP. Within each PoP, the traffic is divided equally among
the 4 access routers. Each trace’s redundancy profile is specified by
three parameters: γ, γintrapop , and γintrapath . γ is the overall traffic
redundancy per-ingress access link. γintrapop determines the redun-
dancy within the traffic destined for the same egress PoP. Within
each egress PoP, γintrapath determines the intra-path redundancy of
the end-to-end path between the ingress and egress access routers.
These parameters specify how redundant the traffic is, and how lo-
calized or how dispersed the redundancy profile is. If γ is high then
the traffic is highly redundant; if γintrapop is high then most of this
redundant traffic is destined to the same PoP; if γintrapath then most
of the intra-PoP redundancy is within the same ingress-egress path.
Results: We first consider the single-ingress case, where traffic
originates from a single ISP PoP. In this case, the decoding capa-
bilities in the network are split proportionally by volume across
all ingress-access routers; on each link L, each ingress I’s share
is volI(L)

vol(L)
, where volI(L) is the volume of traffic originating at

ingress I flowing through link L and vol(L) is the total volume
of traffic through L from all ingresses. The following results use
two configurations with γ = 25% and γ = 50% redundancy, with
γintrapop and γintrapath set to 0.5 in each case. Our choice of γ is
based on measurements of redundancy in real traffic traces from
enterprise and university networks [10].

Our main metric of interest is the fractional reduction in the net-
work footprint (§4). Figure 9 shows a CDF of the reduction in net-
work footprint for the four solutions for the Sprint topology. The
footprint reduction of SmartRE is 24-30% across the ingresses for
the 50%-redundant trace (12-15% for the 25%-redundant trace),
indicating the extent to which the aggregate utilization of the ISP
improves for traffic from the ingress in question. The median frac-
tional reduction across the ingresses for the 50%-redundant trace in
SmartRE is 5× better than the naive approach. More importantly,
the median value is less than the ideal unconstrained case with no
processing and memory constraints by only 0.04 in absolute terms.

Figure 10 shows the network-wide reduction for 4 tier-1 ISPs.
Here, we consider the top 20 PoPs (by degree) in each topology,
and assume that the total traffic entering each of the 80 ingresses
(4 per PoP) is the same. For simplicity, we also assume that the
redundancy profile is the same across all ingresses. Across the dif-
ferent topologies, SmartRE is consistently 4× better than the naive
approach; even the edge-only variant of SmartRE is roughly 2−3×
better than a naive approach. Also, SmartRE is quite close to the
unconstrained ideal case and provides 80-90% of the ideal savings.

95

 AT&T Sprint AOL NTT
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
R

ed
uc

tio
n

in
 n

et
w

or
k

fo
ot

pr
in

t

Hop−by−hop Edge SmartRE Ideal

 AT&T Sprint AOL NTT
0

0.05

0.1

0.15

0.2

0.25

0.3

R
ed

uc
tio

n
in

 n
et

w
or

k
fo

ot
pr

in
t

Hop−by−hop Edge SmartRE Ideal

(a) 50% redundancy trace (b) 25 % redundancy trace

Figure 10: Network-wide footprint reduction for four tier-1 ISP
topologies using synthetic traces.

Importance of SmartRE optimizations: SmartRE takes into ac-
count three factors while assigning caching responsibilities across
RE devices in the network: (1) memory constraints on RE devices,
(2) packet processing constraints imposed by memory accesses,
and (3) traffic and routing matrices and redundancy profiles. We
evaluate the relative importance of these next.

To do so, we consider four hypothetical scenarios:
1. SmartRE with no memory constraints (SmartRE-nomem);

setting each Mr =∞ in the LP from § 4.2.
2. SmartRE with no packet processing constraints (SmartRE-

noproc); setting each Lr =∞ in the LP .
3. A heuristic (Heur1) where the hash-ranges are divided equally

across the RE devices on a path – if there are k RE devices
on the path p, each caches 1

k
of the packets on this path.

4. A second heuristic (Heur2) similar to the one above, ex-
cept that RE devices further downstream are assigned more
caching responsibilities. Specifically, if path p has k hops,
then the ith hop caches i

P
k
j=1 j

of the packets on this path.

Table 3 compares the performance of these schemes with SmartRE
and the ideal solution with no resource constraints. Note that Heur1
and Heur2 are also resource aware; the effective caching and decod-
ing responsibilities are capped off by the actual memory and pro-
cessing constraints. We see three effects. First, SmartRE performs
significantly better than both heuristics showing that accounting for
traffic, routing, and redundancy patterns while assigning caching
responsibilities is necessary. Second, the gap between SmartRE-
nomem and SmartRE is negligible. This is because cache size has
a natural diminishing property (see Figure 11); it is necessary to
have a sufficiently large cache but increasing it further does not
help much. Finally, relaxing processing constraints does not help
too much. This is because the core RE devices are not overloaded
for the redundancy profile we use for this evaluation (γintrapop =
γintrapath = 0.5) and perform fewer decodings than their effec-
tive capacity. However, in other redundancy profiles where the
core devices operate at full capacity, the gap between SmartRE and
SmartRE-noproc is more noticeable (not shown).

SmartRE with no resource constraints is still 0.04 lower than
the ideal solution. This is an effect of enforcing non-overlapping
caches. For example, consider two paths 〈X, A, B〉 and 〈X, A, C〉
with the same ingress X and a packet P along 〈X, A,B〉 that
matches future packets on both paths. If we allow caches to over-
lap, P can be stored on both A and B, to achieve optimal RE. If
we use non-overlapping caches, P can be on either A or B, but
not both. This sacrifices either inter-path RE (if we store P on B
alone) or the footprint reduction for intra-path RE (if we store P
on A alone). Allowing caches to overlap can yield better RE when
there are no memory constraints. However, overlapping caches are
not optimal in realistic settings with actual resource constraints.
Further, there are other practical difficulties in extending SmartRE
to allow overlapping caches (see §8).

Topology Heur1 Heur2 SmartRE SmartRE SmartRE Ideal
(equal) (distance) nomem noproc

Sprint 0.145 0.168 0.264 0.267 0.274 0.31
ATT 0.138 0.162 0.244 0.248 0.262 0.297
AOL 0.152 0.178 0.267 0.277 0.278 0.33
NTT 0.142 0.167 0.259 0.264 0.278 0.31

Table 3: Understanding the relative importance of the different
components of SmartRE’s optimization.

(γintrapop , γintrapath) Reduction in network footprint
SmartRE Edge Hop-by-hop Ideal

(0.5, 0.5) 0.26 0.12 0.08 0.31
(0.5, 0.75) 0.28 0.18 0.08 0.31
(0.75, 0.75) 0.38 0.27 0.11 0.42
(0.25, 0.5) 0.18 0.05 0.06 0.20

Table 4: Exploring different redundancy profiles on the Sprint
topology, with total redundancy γ = 0.5.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 2 4 6 8 10 12 14 16

R
e
d
u
c
ti
o
n
 i
n
 N

e
tw

o
rk

 F
o
o
tp

ri
n
t

Cache Size(GB) of interior devices

T=10s

Figure 11: Varying cache size in the interior using a synthetic
trace over the Sprint topology.

Varying redundancy profiles: Table 4 compares different types of
redundancy profiles. While SmartRE is consistently better, the im-
provement depends on the redundancy profile. For example, when
intra-path redundancy dominates (0.75, 0.75), SmartRE is not sig-
nificantly better than the edge-based variant. Again, across all the
profiles, SmartRE is within 0.04 of the ideal unconstrained case.

The configuration (0.25, 0.5) where there is significant redun-
dancy across egress PoPs should be ideal for SmartRE. However,
all three approaches fare poorly, and hop-by-hop marginally out-
performs the edge-only approach. The latter does poorly in this
case because most of the redundancy is inter-path, not intra-path.
We were surprised at why SmartRE and even the ideal case did
worse in this scenario. We find that shortest path routing between
the top-20 PoPs in this ISP does not allow for much scope for on-
path coordination between paths because the paths have very few
hops in them. In this context, redundancy-aware routing [12] can
additionally boost the performance of SmartRE.
Memory provisioning: Figure 11 shows the effect of adding more
cache memory to interior devices, while keeping the cache size on
the edge devices fixed. Adding cache memory to the interior has
two benefits. (1) The total on-path memory increases and greater
intra-path redundancy is identified. However, this increase hap-
pens only up to a certain point when the total memory on a path
matches the memory used for encoding. (2) Interior nodes see re-
dundancy between paths from same ingress destined to different
egresses. The amount of inter-path redundancy increases monoton-
ically with memory. Adding more memory to core devices lever-
ages such sources of redundancy that cannot be identified in an
edge-only approach. While adding more memory in the core ex-
ploits more redundancy, the benefits are marginal beyond 4GB. Be-
yond this, the amount of inter-path redundancy identified is small.

7.3 Evaluation Using Real Traces
We use packet traces collected at a large US university to ex-

amine the effectiveness of SmartRE with real traffic patterns. To
simulate a real trace over a specific topology, we map the observed

96

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

c
ti
o
n

Reduction in Network Footprint

Hop-by-Hop
Edge-based

SmartRE
Hop-by-Hop Ideal

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4

F
ra

c
ti
o
n

Reduction in Network Footprint

Hop-by-Hop
Edge-based

SmartRE
Hop-by-Hop Ideal

(a) High volume /24 trace (b) University trace

Figure 12: CDF of network footprint reduction across ingresses
on Sprint topology extrapolating from real traces.

IP addresses to the nearest PoP in the ISP topology. We used one
trace capturing all traffic leaving the university (which was 15% re-
dundant with 10s of encoding cache) and another trace for traffic
leaving the /24 prefix (40% redundant).

We start with the single-ingress case. Figure 12 shows the CDF
of footprint reduction on the Sprint topology using both all-university
and /24 prefix traces. Again, SmartRE outperforms the hop-by-
hop approach by 4-5×. In the University trace, SmartRE is almost
indistinguishable from the ideal case; in the /24 trace the median
performance difference is 0.04.

We observed substantial variance in the relative performances
of the naive approach and SmartRE across different ingresses (not
shown). We explored this further, focusing on the top-4 ingress
PoPs in the topology (by degree). For two of the PoPs (Seattle
and Dallas) SmartRE is 7-8× more effective than the naive ap-
proach. For the remaining two (New York, Chicago), it is 3-4×
better. There are two factors here. First, a majority of the traffic is
destined to New York and Chicago and there is considerable over-
lap within this traffic. Second, the paths from the other two PoPs
to New York and Chicago share many intermediary nodes. Thus,
SmartRE can better exploit this inter-path redundancy.

We also conducted the network-wide evaluations across 4 ISP
networks. SmartRE reduced the network-wide footprint by 20%
and 13% on average across the 4 networks for the /24 and all-
university traces respectively.

7.4 Effect of Stale Redundancy Profiles
As discussed in §6, SmartRE uses the redundancy profile ob-

served in the current epoch to compute caching manifests for the
next epoch. We evaluate the impact of using stale redundancy pro-
files (SmartRE-stale) compared to SmartRE-ideal which uses up-
to-date information (as in the rest of this section so far).

We study variants of SmartRE-stale which differ in the time be-
tween when redundancy profiles were computed and when they
are used. We use the real packet traces from §7.3 for this study.
We evaluate time lags of 10, 20, 30 and 40 minutes (not shown).
We find that SmartRE-stale performs close to SmartRE-ideal (and
hence ideal RE), with the worst-case footprint reduction being at
most 0.05 worse than SmartRE-ideal. We investigated why SmartRE
performs well even with a stale redundancy profile and found that
the traffic volume to the large cities (Chicago and New York) dom-
inates the overall benefits and the redundancy profiles for these are
stable. While these results are preliminary, they are encouraging–
the dominant sources of redundancy appear to be stable and SmartRE
can provide benefits even with stale redundancy profiles.
Flash-crowd scenarios: Next, we study how staleness can affect
RE performance in more sudden flash-crowd-like scenarios. First,
we increase the total traffic volume entering at a particular ingress
to saturate its upstream bandwidth, keeping the redundancy at each
ingress fixed at 50%. In this setup, the footprint reduction is 0.26

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 10 20 30 40 50 60R
ed

uc
tio

n
in

 N
et

w
or

k
F

oo
tp

rin
t

Number of RE devices (cache size 6 GB)

BWDistance
PathCoverage

Figure 13: Two partial deployment strategies on the Sprint
topology (x=65 represents full deployment). Each device has
a 6GB cache.

with an up-to-date traffic matrix and redundancy profile; with older
inputs the reduction is 0.23 − 0.25 depending on the ingress. Sec-
ond, we increase the aggregate redundancy for a specific ingress
from 25% to 50%, keeping the redundancy from other ingresses
fixed at 25%. Depending on the ingress that has increased redun-
dancy, the footprint reduction is 0.14 − 0.15 with up-to-date pro-
files and 0.10−0.11 with an old profile. These experiments further
confirm that while up-to-date profiles yield better RE performance,
even stale profiles can yield substantial benefits. However, for dra-
matic changes, profiles should be updated using the triggered up-
date mechanism discussed in §6.

7.5 Partial deployment benefits
The middlebox-style implementation of encoders and encoders

makes SmartRE amenable to incremental and partial deployment,
in that the encoders/decoders can be installed at locations where
reduction in network load is desired most.

We emulate a situation where an ISP would like to mitigate the
impact of redundant traffic originating from certain high-volume
PoPs (say, top 5 by volume) by deploying RE middleboxes strate-
gically in its network. (Encoding RE boxes are deployed at each of
a PoP’s ingress access links). We ask if SmartRE is useful even on
a limited scale.

We examine two strategies. In both cases, our goal is to deploy
RE boxes where there is a lot of traffic aggregation. We first count
the number of shortest path routes traversing each interior link. In
the first strategy we simply deploy decoders on links which lie on
many of the network paths from the 5 ingresses in question to other
egresses. The second strategy is smarter, in that it first weighs each
path traversing a link by the volume of traffic it carries and the
distance of the link from the corresponding ingress, and ranks links
according to the total weights of paths traversing them.

Figure 13 shows that in both cases, deploying RE middleboxes
on a small number of links (e.g., < 10 out of a maximum of 65)
still offers reasonable benefits in network-wide utilization (roughly
10% compared to the best possible 26%). The smarter strategy
works better with 50% - 70% deployment. Figure 13 indicates
that for partial deployments even simple strategies work well. This
can be further enhanced by weighing each path with the expected
amount of redundancy based on historical observations.

7.6 Evaluation Summary

• SmartRE is on average 4-5×more effective than a naive hop-
by-hop approach.
• SmartRE, even under strict resource constraints on both mem-

ory and memory access throughput, achieves 80-90% of the
performance of an ideal unconstrained RE solution which as-
sumes no memory or processing constraints.
• The above results are consistent across several redundancy

profiles and on both synthetic and real traces.
• The global resource-aware optimization in SmartRE is nec-

essary for good RE performance; simple heuristics for as-

97

signing caching responsibilities do not yield sufficient net-
work footprint reduction.
• SmartRE can provide benefits comparable to the ideal sce-

nario even under partial deployment or with slightly out-of-
date redundancy profiles.

8. DISCUSSION
Multi-hop wireless: We believe that SmartRE can be used to en-
hance caching systems in other contexts, e.g., multi-hop wireless
networks [16]. Coordinated caching can help in two ways here: (1)
improving the effective memory usage at multihop nodes by chunk-
ing large transfers and apportioning each chunk to a specific node
(this replaces blind caching at all on-path routers) and (2) prevent-
ing multiple nodes from retrieving a popular chunk from a single
cache - this creates contention for the medium and may wipe out
the benefits of caching. We can limit each cache’s encoding respon-
sibilities and this creates an even distribution of caching/encoding
across nodes in the network.
Allowing overlapping ranges in SmartRE: We saw in §7.2 that
allowing caches to overlap may improve RE performance. How-
ever, there are two practical difficulties. First, the formulation from
§4.2 becomes more complicated. Specifically, we can no longer
model the second term in Equation 2 and the savings term in Equa-
tion 4 as linear expressions; in fact, it is not even clear if we can pre-
cisely model these terms. Thus, it is difficult to obtain the optimal
caching responsibilities in this setting. Second, in order to maintain
a consistent view with every decoder each ingress has to either (a)
keep duplicate copies of packets that belong to overlapping ranges
or (b) use additional mechanisms to keep track of whether a packet
has been evicted from an interior node and also maintain the ap-
propriate mappings between fingerprints to the packets in the store.
Additionally, the ingress needs to explicitly decide which of the de-
coders is responsible for reconstructing encoded regions in case the
matched packet is cached on multiple downstream nodes. The per-
formance of SmartRE with non-overlapping ranges is already close
to the ideal scenario. Thus, we do not consider this extension to al-
low overlapping caches because the marginal improvement does
not merit the increased implementation complexity.

9. CONCLUSIONS
As Internet traffic volumes increase and more bandwidth-intensive

applications appear, redundancy elimination (RE) has emerged as
a promising practical solution to increase end-to-end application
throughput. More recently, there has been interest in expanding the
scope of RE to network-wide scenarios with the grander vision of
offering this as a primitive IP-layer service within ISP networks.

This paper takes this vision one step closer to reality. We look
beyond a naive link-by-link view and adopt a network-wide coor-
dinated approach. We design and implement a framework called
SmartRE based on these high-level design principles. SmartRE is
naturally suited to handle heterogeneous resource constraints and
traffic patterns and for incremental deployment. We address sev-
eral practical issues in the design to ensure correctness of operation
in the presence of network dynamics. Across a wide range of eval-
uation scenarios, SmartRE provides 4-5× improvement over naive
solutions and achieves 80-90% of the performance of an ideal, un-
constrained RE network-wide alternative.

A natural extension is to apply SmartRE to datacenter and multi-
hop wireless networks. Another area of future work is to expand the
scope for RE by allowing multiple encoders per-path (in contrast to
encoding only at the ingress) and exploring the interplay between
RE techniques and network coding.

Acknowledgments
We thank Tom Anderson, Flavio Bonomi, Bruce Davie, K. K. Ra-
makrishnan, Srini Seshan, David Wetherall, and the anonymous re-
viewers for their valuable feedback that helped improved our pa-
per. This work was supported in part by an NSF CAREER Award
(CNS-0746531) and an NSF NeTS FIND Award (CNS-0626889).

10. REFERENCES
[1] Akamai Technologies. http://www.akamai.com.
[2] BlueCoat: WAN Optimization. http://www.bluecoat.com/.
[3] Cisco Content Aware Networks – Some Areas of Interest.

http://www.cisco.com/web/about/ac50/ac207/crc_new/
ciscoarea/content.html.

[4] Cisco Wide Area Application Acceleration Services.
http://www.cisco.com/en/US/products/ps5680/Products_
Sub_Category_Home.html.

[5] Citrix, application delivery infrastructure. http://www.citrix.com/.
[6] Computerworld - WAN optimization continues growth.

www.computerworld.com.au/index.php/id;1174462047;fp;
16;fpid;0/.

[7] PeerApp: P2P and Media Caching. http://www.peerapp.com.
[8] Riverbed Networks: WAN Optimization.

http://www.riverbed.com/solutions/optimize/.
[9] WAN optimization revenues grow 16% - IT Facts. www.itfacts.biz/

wan-optimization-market-to-grow-16/1205/.
[10] A. Anand and C. Muthukrishnan and A. Akella and R. Ramachandran.

Redundancy in Network Traffic: Findings and Implications. In Proc. of
SIGMETRICS, 2009.

[11] A. Muthitacharoen, B. Chen, and D. Mazieres. A low-bandwidth network file
system. In Proc. of SOSP, 2001.

[12] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker. Packet Caches on
Routers: The Implications of Universal Redundant Traffic Elimination. In Proc.
of SIGCOMM, 2008.

[13] H. Ballani and P. Francis. CONMan: A Step Towards Network Manageability.
In Proc. of SIGCOMM, 2007.

[14] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In vini veritas:
realistic and controlled network experimentation. In Proc. of SIGCOMM, 2006.

[15] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der
Merwe. Design and implementation of a Routing Control Platform. In Proc. of
NSDI, 2005.

[16] F. Dogar, A. Phanishayee, H. Pucha, O. Ruwase, and D. Andersen. Ditto - A
System for Opportunistic Caching in Multi-hop Wireless Mesh Networks. In
Proc. of Mobicom, 2008.

[17] N. Duffield and M. Grossglauser. Trajectory Sampling for Direct Traffic
Observation. In Proc. of SIGCOMM, 2001.

[18] A. Greenberg, et al. A Clean Slate 4D Approach to Network Control and
Management. CCR, 35(5), Oct. 2005.

[19] J. C. Mogul, Y. M. Chan, and T. Kelly. Design, implementation, and evaluation
of duplicate transfer detection in HTTP . In Proc. of NSDI, 2004.

[20] J. W. Lockwood et al. NetFPGA - An Open Platform for Gigabit-rate Network
Switching and Routing . In Proc. IEEE MSE, 2007.

[21] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The click modular router.
SIGOPS Oper. Syst. Rev., 33(5):217–231, 1999.

[22] K. Park, S. Ihm, M. Bowman, and V. Pai. Supporting practical
content-addressable caching with CZIP compression. In Proc. of USENIX ATC,
2007.

[23] H. Pucha, D. G. Andersen, and M. Kaminsky. Exploiting similarity for
multi-source downloads using file handprints. In Proc. of NSDI, 2007.

[24] M. Rabin. Fingerprinting by random polynomials. Technical report, Harvard
University, 1981. Technical Report, TR-15-81.

[25] M. Roughan et al. Experience in Measuring Internet Backbone Traffic
Variability:Models, Metrics, Measurements and Meaning. In ITC, 2003.

[26] S. Rhea, K. Liang, and E. Brewer. Value-based web caching. In Proc. of WWW,
2003.

[27] A. Shaikh and A. Greenberg. OSPF Monitoring: Architecture, Design and
Deployment Experience. In Proc. of NSDI, 2004.

[28] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies with
Rocketfuel. In Proc. of SIGCOMM, 2002.

[29] N. Spring and D. Wetherall. A protocol-independent technique for eliminating
redundant network traffic. In Proc. of SIGCOMM, 2000.

[30] N. Tolia, M. Kaminsky, D. G. Andersen, and S. Patil. An architecture for
internet data transfer. In Proc. of NSDI, 2006.

[31] V. Sekar et al. cSamp: A System for Network-Wide Flow Monitoring. In Proc.
of NSDI, 2008.

[32] A. Wolman et al. On the scale and performance of cooperative Web proxy
caching. In Proc. of SOSP, 1999.

98

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

