
Flow Labelled IP over ATM: Design and Rationale

Greg Minshall Bob Hinden Eric Hoffman Fong Ching Liaw Tom Lyon
Peter Newman ∗

Ipsilon Networks, Inc

ABSTRACT
We describe a system in which layer 2 switching is placed
directly under the control of layer 3 routing protocols on a
hop-by-hop basis. Specifically, ATM switching is controlled
by IP. We couple each ATM switch with a general purpose
computer running IP routing and management protocols.
We define a default ATM virtual channel identifier (VCI) to
be used for transmitting IP packets over ATM links. We
then define mechanisms which allow specific flows to be
transmitted on specific ATM VCIs. The resulting system
obeys IP’s semantics for routing and forwarding, and takes
advantage of ATM’s switching hardware to accelerate the
forwarding of packets. While this system takes advantage
of ATM hardware, the ATM signalling, routing, and man-
agement architecture (as specified by the ATM Forum) is
replaced by the protocols and practices currently in use for
IP routing and management.

Categories and Subject Descriptors
C.2 [Computer Systems Organization]: Computer Com-
munication Networks; C.2.1 [Computer Communication
Networks]: Network Architecture and Design; C.2.6 [Com–

puter Communication Networks]: Internetworking

General Terms
ALGORITHMS, DESIGN, EXPERIMENTATION, MEA–
SUREMENT, PERFORMANCE, STANDARDIZATION

Keywords
IP switching, IP, ATM, IFMP, GSMP, Ipsilon, Flow La-
belled IP

1. INTRODUCTION
IP — the Internet Protocol — [29] exists as an inter-

network layer protocol, allowing datagrams to flow between

∗{minshall,hinden,hoffman,fong,pugs,pn}@ipsilon.com.

Current e-mail addresses for authors:
Greg Minshall <minshall@acm.org>
Bob Hinden <bob.hinden@nokia.com>
Eric Hoffman <yuri@tenuki.org>
Fong Ching Liaw <fongliaw@yahoo.com>
Tom Lyon <pugs@ieee.org>
Peter Newman <peter.newman@ieee.org>

hosts and routers to accomplish the delivery of information
to a node (host or router). During the course of IP’s history,
a number of different link level technologies have been used
to provide bit-pipes between neighboring IP nodes. The ear-
liest technology, the ARPANET, provided a non-broadcast,
multi-access, network with 24 bit addresses [2]; in order to
use the ARPANET, a node’s ARPANET address was em-
bedded in the low order 24 bits of the node’s IP address [31].
Three-megabit Ethernet [16] had an 8 bit address; to utilize
three-megabit Ethernet, a node’s Ethernet address was em-
bedded in the low order byte of a node’s IP address [32].
Ten-megabit Ethernet [35] has a 48-bit Ethernet address; in
order for a node to discover the Ethernet address of another
node, the Address Resolution Protocol (ARP) was devel-
oped [27].

In each of the above cases, running IP over a data link
involved inventing methods of mapping some of IP’s func-
tionality (addressing, mostly) into some data link specific
representation.

Asynchronous Transfer Mode (ATM) is a recent data link
technology [7]. For various reasons (economic and techni-
cal), people would like to run IP over ATM. As with previous
data link technologies, running IP over ATM in an efficient,
manageable way requires inventing some new, ATM-specific,
mechanisms. There have been previous attempts to run IP
over ATM [22]; these attempts, however, have been charac-
terized by attempts to situate the IP routing function at the
edges of an ATM cloud, utilizing other (non-IP) protocols
to manage routing and links within the ATM cloud. Our
choice is to design as simple a mechanism as possible that
keeps IP’s routing and management in control of datagram
flow and adapts to topology changes. Our approach couples
ATM switches with IP routing, creating an entity we term
an IP switch. We believe that the mechanisms created to
support the IP switch may have applicability beyond the
initial application of using ATM as a data link technology.

In choosing the approach, we reveal one of our funda-
mental beliefs: that IP is the right layer to manage data
communications in a network. In the local area, this means
that IP controls the physical links that connect systems. In
the wide area, we believe that the correct model is a separa-
tion between the IP layer, on the one hand, and a supplier
of a bit-pipe, on the other. This belief is not subject to any
empirical test. However, it to a large extent motivates and
guides our work.

1.1 Terminology
In this paper, we adopt the convention of naming a node

as being upstream or downstream with respect to the flow

ACM SIGCOMM Computer Communication Review 81 Volume 36, Number 3, July 2006

of actual data packets (i.e., an FTP data transfer running
over TCP), even when discussing control messages that may
be flowing against the direction of data flow. Thus, if the
packets in the FTP data transfer are being sent across a
specific data link from node A to node B, and node B sends a
control message (relating to the FTP data transfer) to node
A, we say that the downstream node has sent a message to
the upstream node. This is similar to the usage of these
terms in the RSVP protocol [37].

2. A SHORT REVIEW OF ATM AND IP

2.1 ATM Addressing
As opposed to IP datagrams or Ethernet frames, ATM

frames carry no end-to-end addressing information. An ATM
frame carries two fields — Virtual Channel Identifier (VCI)
and Virtual Path Indentifier (VPI) — that together identify
some association (connection, circuit, whatever) between
the sender and receiver. The VCI field is 16 bits; the VPI
field is either 8 or 12 bits, depending on the types of inter-
connected nodes. We call the VPI and VCI fields in a frame
the label for the frame.

In fact, at the hardware level — the level of ATM switches
and NICs — an ATM device has no address. ATM is funda-
mentally a point-to-point technology. The fact that a frame
sent over a given ATM link on a given label will ultimately
arrive at a particular destination is not visible to the ATM
hardware.1

ATM labels are of local significance, having meaning only
at the (ATM) interface on which they are received.

In the standard definition of ATM, labels are bidirectional
— cells sent from system A to system B on label X refer to
the same (high-level) conversation as cells sent on label X
from system B to system A. We do not use this convention;
in our system labels are unidirectional.

2.2 ATM Frame Switching
To a first approximation, we can think of ATM as being

a technology which switches frames.2

Conceptually, each label on an interface at an ATM switch
is associated with a (possibly null) set of tuples (outgoing
interface, outgoing label). Switching a frame that enters an
ATM switch involves looking up this set, then transmitting
the frame out each interface in the set, labelled with the
appropriate label. Notice that this implies that in the case
of multicast the labels of the output frames are indepen-
dent and may have different values. Figure 1 depicts unicast
frame switching; figure 2 depicts multicast frame switching.

ATM switches guarantee that no frames will be delivered
out of order or duplicated. Lost frames are allowed. A Cyclic
Redundancy Check (CRC – actually provided by AAL5, see
footnote 2 and section 6.6) protects frame data against cor-
ruption.

1We do, however, make use of IEEE-assigned 48-bit MAC
addresses assigned to ATM switches and NICs as local iden-
tifiers, for the purpose of forming point-to-point adjacencies
and to identify specific pieces of hardware for network con-
figuration.
2 In reality, ATM switches cells; a number of cells make
up a frame — an ATM Adaptation Layer 5 (AAL5) frame
— a fact which is somewhat problematic, as we shall see in
section 6.6.

VCI x

x i/f B y

i/f A i/f B VCI y

Figure 1: ATM Unicast Switching
Frames arriving on interface i/f A with label VCI x are transmit-

ted on i/f B with label VCI y.

VCI x

x

i/f B y

i/f C z

i/f D q

i/f A i/f B

i/f D i/f C

VCI y

VCI zVCI q

Figure 2: ATM Multicast Switching
Frames arriving on interface i/f A with label VCI x are transmit-

ted on interface i/f B with label VCI y and on interface i/f C

with label VCI z and on interface i/f D with label VCI q.

2.3 IP
IP enables the transmission of datagrams from a source

to a destination without regard to the data link technology
at either source or destination or between the two.

A fundamental characteristic of IP is the minimal coupling
between nodes. Basically, a router node agrees to provide a
best effort service of forwarding packets towards a destina-
tion. There is very little a priori knowledge necessary for
such data to flow.

In general, there are very few prior agreements that need
to be in place between two nodes before datagrams can be
sent from one node to the other.

3. HOW TO RUN IP OVER ATM
Our goal is an interconnected mesh of IP routers that gets

some of the performance possible by use of layer 2 switch-
ing. In particular, we would like to make routing decisions

ACM SIGCOMM Computer Communication Review 82 Volume 36, Number 3, July 2006

once per flow rather than once per packet. Additionally, we
wish to retain all the features of IP that have enabled it to
interoperate over so many different networks and between
so many administrative domains.

In order to achieve the performance of layer 2 switching,
we partition the application (of being an IP router) between
the software and hardware (ATM switch). Anything that
can be implemented in software can also be implemented in
hardware; thus, how to decompose an application between
hardware and software is not always clear at the outset.
Our (not-particularly-novel) approach has been to decom-
pose things such that the hardware concerns itself with very
simple operations, the semantics and functionality of which
evolve very slowly over time, while at the same time allow-
ing the software to handle the more complex, and possibly
more quickly evolving, operations in a way which allows us
to preserve all of IP’s semantics and manageability.

The summary of section 3 is this: we couple a general
purpose computer with an ATM switch; we define a default
label for transmitting IP datagrams from one IP node to
another over an ATM link; we allow downstream nodes to
tell upstream nodes “send packets that look like this on that
label”; when packets coming in on one non-default label
are being sent out on a non-default label, we can switch
the packets between the incoming and outgoing interface.
The node (computer and ATM switch) we refer to as an
IP switch; the computer itself we refer to as an IP switch
controller. Details follow. . .

3.1 VCI 15 — The Importance of Binding Early
There is a well known VPI/VCI pair (VPI 0/VCI 15) that

is used when sending an IP packet to a node. During initial-
ization, nodes set up their local ATM NICs and ports on any
local ATM switches3 to receive packets sent to this VPI/VCI
and have them processed by their local IP protocol module.
If because of some higher level configuration information,
IP decides to send a packet to a given node connected over
an ATM interface, the sending node can send the packet to
VPI 0/VCI 15.

Since this default VPI/VCI is known to the code compiled
into a host or router, there does not need to be any sort of
configuration, directory, or other information available to a
node to determine how to send an IP datagram on an ATM
link. This reduces the mechanisms which need to be in place
before IP can begin operation, thus simplifying the overall
system. This is very similar to assigning the hexadecimal
value 0x0800 as the ethertype for sending and receiving IP
packets on Ethernet [12].

3.2 Hop-by-hop Forwarding
Specifying this default VPI/VCI allows one to build an IP

network in which nodes are interconnected via ATM links.
In this network, all packet forwarding is handled on a “hop-
by-hop” basis. I.e., each packet is examined individually by
each router in the path, and each router makes an indepen-
dent determination of whether or not to forward that packet
and if so, out which interface to forward it. This behaviour,
which preserves the local autonomy of IP, is depicted in fig-
ure 3.

3It is necessary to set up mapping tables in the ATM switch
such that packets coming in on VPI 0/VCI 15 on a given
port arrive at the IP switch controller on a unique VPI/VCI
pair.

This hop-by-hop model means that the interconnected
mesh of ATM nodes behaves as just like what it really is
— an interconnected mesh of IP routers. Note that at this
level, ATM switches don’t provide any performance advan-
tage.

Host A Host E

IP switch B IP switch C IP switch D

Figure 3: Hop-by-hop Forwarding
A packet sent from Host A to Host E is forwarded hop-by-hop

through IP switch B, IP switch C, and IP switch D. In the dia-

gram, the circles represent ATM switches and the boxes represent

general purpose computers. Solid lines indicate physical connec-

tivity; dotted lines indicate the path taken by a datagram.

3.3 The Flow Management Protocol
The concept of a flow has been used in the Internet con-

text for a number of years [17, 18, 37, 5], normally in a fairly
informal way. In our search for the optimal binding of IP
to ATM, we formalize this concept. I.e., we define a means
of precisely specifying which packets are, and are not, part
of a given flow; this allows one node to tell another node
“packets that look like this should be treated like this”.

The protocol which adjacent nodes use to talk about flows
is known as the Ipsilon Flow Management Protocol (IFMP) [21].
An IFMP flow consists of a flow type, which specifies which
bits of the IP header (and, possibly, beyond) are inspected
to determine membership, as well as a flow identifier, which
specifies the actual values of the bits specified by the flow
type. Flow types are pre-defined; flow identifiers are consed
up as needed by examining the relevant fields of passing
packets.

In our initial system, we have defined two major flow types
with the not-very-imaginative names of type 1 and type 2.
These two flow types are shown in Figure 4.

A type 2 flow consists of all packets between a given pair
of hosts matching in certain other IP header fields.

A type 1 flow has the same characteristics as a type 2 flow,
with the addition of the first 32 bits of the transport payload.
In the case of TCP and UDP, this logically means that the
TCP and/or UDP source and destination port numbers are
included in the flow specification. This has the effect of
binding a flow to a specific conversation between a specific
pair of hosts.

3.4 Use Redirects
Having defined flows, we define in IFMP the ability for a

node to send a redirect, similar to ICMP Redirects [28], up-
stream requesting the upstream node to start sending pack-
ets belonging to that flow over a non-default label. When
the upstream node receives such a redirect, it may choose
to send all future packets in the redirected flow to the label
contained in the redirect message.

ACM SIGCOMM Computer Communication Review 83 Volume 36, Number 3, July 2006

Vers IHL TOS length

identification fragmentation

TTL PROTO header checksum

IP source address

IP destination address

source port destination port

Figure 4: Flow Definitions
The above represents an IPv4 header along with the first four

bytes of a TCP or UDP header. All the grey areas are used to

define Type 1 flows; only the light grey areas are used to define

Type 2 flows.

Redirect messages are advisory — the upstream node (the
receiver of the redirect) is free to ignore a redirect message.4

After having received and accepted a redirect message, an
upstream node is free to “forget” the redirect at any time.

As a result of the advisory nature of redirects, there is a
minimum amount of time specified between the sending of
a redirect for a flow and the resending of a redirect for the
same flow (nominally one second).

If, after having sent or received a redirect for a flow,
higher-level entities on a router (such as IP routing pro-
cesses) direct that packets for that flow should be sent out
a different interface, the node will send them out the new
interface, not out the interface over which the previous redi-
rect had been sent or received.

3.4.1 Receiver initiated
As noted above, one of the reasons for the success of the

connectionless, datagram model used by IP is the relatively
weak coupling between adjacent network nodes. This de-
coupling allows for substantial autonomy for nodes, allow-
ing them to make decisions based on local policy, and still
provide the basic internetwork service. If we envision large
portions of the Internet using our new data link, it is imper-
ative that we retain this decoupling.

There are two decisions associated with redirecting: 1)
whether or not to redirect; 2) which label to use for the
redirection.

If we required that a node obey a redirect — i.e., if we
made the redirects mandatory — we would be reducing the
autonomy of the nodes. By making the redirects advisory,
we allow the node receiving the redirect to make use of local
policy to decide whether or not to obey the redirect. This
goes in the direction of retaining local autonomy. Thus,

4And, of course, the downstream node need not send redi-
rects; the redirection mechanism is simply an optional per-
formance enhancement, and data communications proceeds
if one or both ends does not support it.

effectively, both neighbors need to agree to redirect before
the redirection happens.

From a purely theoretical point of view, either neighbor
(upstream or downstream) could choose the label to be used
for sending redirected packets. However, in IFMP, we have
opted for having the downstream node choose the label and
send the redirection message. There are several reasons for
this decision.

First, we made a decision that an upstream node should
never send a packet on a non-default label unless the up-
stream node knew (to a very high degree of probability) that
the downstream receiver is aware of what flow the upstream
node associated with the label. Thus, even if the upstream
node chose the label, it might be useful to have at least
one message per redirection sequence from the downstream
node to the upstream node. On the other hand, by having
the downstream node choose the label and send the advi-
sory redirect message to the upstream node, we are able to
reduce the redirection sequence to that single message; i.e.,
the redirection message is not explicitly acknowledged (to
protect against the loss of the redirect message, the down-
stream node is able to monitor packets coming in on the
default label in order to detect that the upstream node has
or has not accepted the redirect5).

Second, in at least the case of today’s ATM hardware
(adapter cards and switches), it is common that the ability
to receive on a label is a more precious resource than the
ability to transmit on a label. (There are, of course, excep-
tions to this.) Thus, very pragmatically, having the receiver
choose the label makes sense.

To take care of the case where the upstream node is only
able to transmit packets within a certain range of labels,
we have provided a label range message which is sent to the
downstream node, informing it of the particulars.

3.5 Get Switched

If a given router has redirected a flow, by sending a redi-
rect message to its upstream neighbor (for that flow), and
has likewise received a redirect message for the same flow
from its downstream neighbor, the router can begin to switch
(rather than hop-by-hop forward) packets belonging to the
flow. To do this, the router instructs its internal ATM
switch to take frames arriving on the interface from the up-
stream neighbor on the redirected upstream label and trans-
mit them on the interface to the downstream neighbor on the
redirected downstream label. Figure 5 shows the exchange
of messages which causes this switching to occur; figure 6
shows the resulting data flow.

3.6 Robustness
In addition to trying to preserve local autonomy, another

goal of our design has been to produce a protocol that is
robust in the face of network and/or node failure. While we
strive to avoid introducing inconsistent state in the network,
we have also been guided by the principle that it should be
possible to bound the amount of time that bad or inconsis-
tent state exists in the network [33]. The specific hazard our
design introduces in the network is that an upstream node

5Notice that, because of the advisory nature of the redirects,
continued reception on the default label does not necessarily
mean that the redirect message was lost; the upstream node
could have decided, for reasons of its own, to ignore the
redirect message.

ACM SIGCOMM Computer Communication Review 84 Volume 36, Number 3, July 2006

1 data 2 data

3 ctl 4 ctl
5 control redirect

6 data 7 data

8 control redirect

9 ctl
10data 11data

Figure 5: The IFMP Dance
Datagrams 1, 6, and 10 are sent from the upstream node; data-

grams 2, 7, and 11 are being forwarded to the downstream node.

Message 3 is a control message from the IP switch controller to

the ATM switch, setting up a remapping; message 4 acknowledges

message 3. Datagram 5 is an IFMP redirect sent to the upstream

node; datagram 8 is an IFMP redirect received from the down-

stream node. Message 9 is a control message to the ATM switch,

remapping the incoming label to the outgoing label; message 9

is an unacknowledged message. In this example, it is assumed

that datagram 1 is forwarded via standard IP hop-by-hop for-

warding; datagram 6 is forwarded via so-called VCx forwarding ;

and datagram 10 is being forwarded by IP switching.

Host A Host E

IP switch B IP switch C IP switch D

Figure 6: IP Switching
In this figure, datagrams from Host A to Host E travel through

IP switch B, IP switch C, and IP switch D without the need for

hop-by-hop forwarding (compare with figure 3).

may be sending a given flow on a label unbeknownst to the
downstream node. There are two subcases: first where the
downstream node thinks a different flow is being transmit-
ted on the label; second where the downstream node thinks
no flow is being transmitted on the label. In the first case,
packets sent on the label will be mis-routed and corrupted;
in the second case, packets will be dropped at the down-
stream node.

In order to reduce this failure from being introduced into
the network, we have designed a simple adjacency protocol
within IFMP. This protocol enables a node to be sure that
its neighbor is the same instance running on the same node.
Figure 7 is the simple state diagram for this protocol; it in-
tentionally resembles the “top half” of the state diagram for
TCP [30]. IFMP redirects are only sent or processed when in
ESTABLISHED state; when leaving ESTABLISHED state,
all redirection state for that link is cleared.6

6There is a minor detail in the case where IFMP packets,
themselves, are sent over a redirected label. In this case,
messages to a (new) instance of a (new) peer may not be

send SYN

SYNSENT
receive SYN

send SYNACK
SYNRCVD

receive
SYNACK

send
ACK

ESTABLISHED

receive
ACK

send ACK

receive
bad ACK

send RSTACK
for bad connection

receive
RSTACK

send SYN

Figure 7: IFMP Adjacency Protocol State Diagram
This state diagram informally documents the state transitions in

forming an IFMP adjacency between neighboring IP hosts and/or

routers.

In addition, redirection messages are sent with a monoton-
ically increasing sequence number. This allows the message
receiver to process messages in a correct order. (The IFMP
specification is somewhat silent on what a “correct order”
means; basically, messages may be skipped (there is no re-
transmission), but if message i is processed after message
j, but i < j, then message j must be re-processed after
processing message i.)

We recognize that inconsistent state may develop occa-
sionally between nodes, even with the barriers we have put
up to prevent such an occurrence. We attempt to limit the
lifetime of such bad or inconsistent state in the network by
associating lifetimes with redirection messages. After the
lifetime expires, upstream nodes are required to stop send-
ing messages on the redirected label. Lifetimes are expressed
in units of one second in an 8-bit field. Typically, lifetimes
are on the order of one or two minutes; these values corre-
spond to the results reported by Claffy, et al. [5].

In addition to the lifetime mechanism, there is a reclaim
message which is part of the redirection protocol. This al-
lows a downstream node to request that an upstream node
quit using a given label. A reclaim ACK from the upstream
node confirms the reclaim, allowing the downstream node
to reuse that label for another flow.

4. CONTROLLING THE ATM SWITCH
The interface between the IP switch controller, which is

running IP routing and management protocols, and the ATM
switch is a simple protocol known as the General Switch
Management Protocol (GSMP) [20]. This is a fairly lightweight

received at the peer, since the peer is not listening to the
redirected label. For this reason, IFMP packets are always
sent on the default label.

ACM SIGCOMM Computer Communication Review 85 Volume 36, Number 3, July 2006

Connection Management Messages
Add branch add one output branch for a VCI
Delete branch delete one output branch for a VCI
Delete tree delete all output branches for a VCI
Verify tree consistency check (as GSMPis unreliable)
Delete all delete all output branches on a port
Move branch move the destination port of an output branch

Port Management Messages
Bring up set a port’s administrative state to in service
Take down set a port’s administrative state to out of service
Internal loopback set the port to internal loopback
External loopback set the port to external loopback
Bothway loopback set the port to both internal and external loopback
Reset input port reset an input port
Reset event flags flow control for Event Messages

Statistics Messages
VC activity check for traffic activity on a VCI
Port statistics get per-port cell (and frame, if available) counters
VC statistics get per-VCI cell (and frame, if available) counters

Configuration
Switch configuration learn the identity of the switch
Port configuration learn the type and status of a single switch port
All ports configuration learn the type and status of all the ports on the switch

Event Messages
Port enabled a port is physically ready to send/receive
Port disabled a port is no longer physically ready to send/receive
Invalid VPI/VCI one or more cells with an invalid VCI have been received at a port
New port a new port has been recognized
Dead port a previous port has disappeared

Figure 8: A brief overview of GSMP facilities

protocol designed to allow the control of almost any ATM
switch from an attached system. GSMP allows the con-
trolling system to: determine the ATM switch’s configura-
tion and enumerate its interfaces; gather simple per-port
and per-VCI statistics; and set up the tables that map be-
tween incoming interface and VCI and outgoing interface(s)
and VCI(s). GSMP also includes a simple, unacknowledged,
event reporting message to inform the IP switch controller
when exceptions occur. Figure 8 gives an overview of GSMPś
functionality.

GSMP turns out to be easy to implement in many switches:
we’ve implemented it on three quite different switches from
different manufacturers, taking between 500 and 2500 lines
of C code in the implementations.

Implementing our system on top of GSMP has allowed
us to decouple the IP switch controller from the attached
ATM switch, which allows engineering to proceed in paral-
lel on the two systems. The decoupling we achieve by using
GSMP is also useful in allowing different IP switch controller
and ATM switch combinations over time, allowing a site to
install different sets of hardware as needed to handle evolv-
ing workloads.

5. BRIEF INTERLUDE

5.1 Why Do This?
While at first glance it may appear that in adopting IP

as our control protocol, we are substantially increasing the
computational load at every ATM switch. However, there
is no reason to believe that the computational requirements
for doing IP routing and forwarding is any higher than those
required for other approaches which make use of ATM using
native ATM signalling.7

By using IP as the control protocol, each ATM link be-
comes an IP point-to-point link. By doing this, IP is able
to manage each of these links, and has cognizance of their
existence.

As one example of the advantage of doing this, efficient
support for IP multicast [8], which is tricky to do using con-
ventional approaches to ATM, works without requiring any
additional effort in our approach. As different downstream
peers send redirect messages upstream, they are connected,
within the ATM switch, to the source interface which is re-
ceiving the multicast packets from further upstream; down-

7It is questionable whether ATM to the desktop is an eco-
nomically, technically, or practical solution in the face of the
fairly rapid development of desktop Ethernet technology; for
this reason, we have engineered our system with corporate
and/or campus backbone connectivity in mind.

ACM SIGCOMM Computer Communication Review 86 Volume 36, Number 3, July 2006

stream peers which have not sent redirect messages receive
the multicast packets via hop-by-hop forwarding on the de-
fault label.8

5.2 Why Should This Perform Well?
Our claim is that using the ATM switch to speed up for-

warding rates will have a positive effect on performance.
But, this is clearly dependent on the traffic workload; if all
the packets that come through are singletons, i.e., packets
from single-packet flows, the system will spend all its time
doing hop-by-hop forwarding, and the ATM switch will not
help performance at all.

In previous work [22], using a fairly simple algorithm for
deciding which flows to switch and which flows not to switch,
our simulator was able to switch over 80% of the packets,
accounting for over 90% of the bytes, setting up less than 120
flows per second, when running off of a trace of data from
the Internet. Thus, there is reason to believe that a majority
of the packets are from a restricted number of flows.

6. THORNY DETAILS

6.1 Secure Switching
We are building a system which allows very fast IP switch-

ing between ATM nodes. One very common use for IP
routers is to install a firewall [4] between administrative do-
mains. We have tried to engineer our protocol design such
that, quite often, firewalls can be built such that most pack-
ets through the firewall are switched rather than routed.

Basically, the idea is this: IP packets for a flow are routed
until the firewall software is convinced that subsequent IP
packets in the flow are safe. At that point, the firewall
software allows the flow to be switched.

This approach does not, by any means, cover all the ways
a site may want to control traffic transiting a firewall. How-
ever, it does deal with a fairly large subset of firewall policies
in a very efficient manner.

6.1.1 Wire representation
As part of our effort to make it possible to convince oneself

of the security of switching IP packets in a flow through a
firewall, we have changed the wire representation used in
the various flow types. In general, those header fields which
are involved in the flow definition are not sent across the
data link. This is possible because senders do not transmit
packets on a given label until the receiver knows which flow is
being transmitted on that label. Since the receiver has that
knowledge, it is able to reconstitute the packet (by supplying
the missing header fields).

The reason for elliding the header fields has to do with
trust. For example, if an upstream node has initiated a flow
to the corporate public FTP server which has been switched,
it can then dally a bit, and then inject packets (to the cor-
porate billing server, say) into the flow. If the entire header
were sent across the firewall, it is possible that because of a
programming error at the terminus of the flow, the invalid

8There is an issue of the support provided by the previous
generation (and some current generation) of ATM switches
for multicast in general – it has tended to be added as an
afterthought. Multicast is difficult to implement in many
designs, but we hope that many ATM designers understand
the importance of strong support of multicast.

packets are routed to the very machine the firewall was try-
ing to protect. By elliding the header fields, we prevent such
an attack from taking place.

Needless to say, there is a significant downside to our wire
representation. First off, if a node receives a packet on an
“unknown” label, it is unable to do anything with the packet
(since it cannot reconstitute the original packet). Second, if
a packet sent on a non-default label is captured “on the wire”
(by a program like tcpdump(1) [14], say), there is “outside”
knowledge that needs to be applied before interpreting the
packet.9

6.2 TTL
The goal of our design is to be able to use IP switch-

ing to forward packets while, at the same time, remaining
subservient to IP routing for determining paths through the
network and obeying all the rest of the IP semantics. One of
the basic requirements of IP is that the Time To Live (TTL)
field of the IP header in a packet be decremented at each
node and, if it reaches zero, the packet be discarded (and
an ICMP Time Exceeded error message [28] be returned to
the source of the packet).

In the case where a flow is being switched, there is no
process at intermediate switches decrementing the TTL and
checking for a zero value. Thus, we need to add a bit of
complexity to our system to make sure that packets flow
only as far as they should and that error are generated. To
accomplish this, our flow identifiers in redirection messages
include a specific TTL value (i.e., packets which are the same
in all fields except the TTL values are considered to be part
of two distinct flows). This ensures that a packet with a
TTL of zero will never be switched through a node. The
price of this is an increase in the number of flows created.

6.3 IP Header Checksum
A complication is that the IP specification [29] requires a

router to check the IP header checksum at each hop. We do
not do this for packets which are being switched through a
node. We do not provide a long justification for this practice;
we merely note that the “next generation” of IP, IPv6 [9],
does not even include a header checksum, supposedly be-
cause many current high-speed IP routers update, but do
not check, the IP header checksum [13]. (In IPv6, the lack
of an Internet header checksum has led to the specification
that transport protocols, such as TCP and UDP, must in-
clude checksums which cover the so-called pseudo-header to
protect applications against mis-delivery of datagrams; this
same protection is provided in our system since the ultimate
recipients of datagrams do check the IP header checksum,
in addition to whatever transport-layer checking they may
do.)

We do, however, require that each node that modifies the
IP header checksum do so in an error preserving way, i.e.,
not by recomputing the checksum, but by updating it in such
a way that correct checksums are taken to correct checksums
and (more importantly) incorrect checksums are taken to in-
correct checksums. This means that at the next downstream
node that checks the checksum (possibly the ultimate desti-
nation) will detect any errors that may have crept into the
IP header during its transmission.

9In actual fact, we reconstitute the packet before handing
the packet to tcpdump(1).

ACM SIGCOMM Computer Communication Review 87 Volume 36, Number 3, July 2006

6.4 TTL and Header Checksum
There is a link between our wire representation, IP switch-

ing, and the IP header checksum. The node which needs to
convert between our wire representation and the “canoni-
cal” IP representation needs to include the correct value for
the TTL field in the canonical representation. However, this
node does not know what the value for the TTL field was
when the header checksum was computed. This is because
the header checksum may have been computed by its imme-
diate upstream neighbor, in which case the value of the TTL
field was the value known to the node; however, if the imme-
diate upstream neighbor had switched the packet from one
of its upstream neighbors, the value of the TTL field when
the header checksum was computed will have been greater
than the value associated with the incoming label.

In order to deal with this, we logically subtract the value
of the TTL field from the header checksum in a packet at the
point where the packet is being converted from canonical IP
representation to our link-specific wire representation. The
node which is converting back to the canonical IP represen-
tation then adds the expected value for the TTL field (i.e.,
the value associated with the flow associated with the label
on which the packet has been received). The effect of this,
assuming no errors are introduced in the transmission path,
is that the header checksum contains the value it would have
contained had the packet been forwarded hop-by-hop (and
the TTL decremented and the checksum updated) by all the
upstream nodes. Since we perform the subtraction and ad-
dition in an error preserving way (as mentioned above), the
effect of errors introduced into the IP header in the trans-
mission path is that an incorrect header checksum will be
be produced, which will cause the packet to be rejected the
next time the header checksum is checked.

6.5 Fragmentation
When Mogul and Kent wrote their paper Fragmentation

Considered Harmful [15], they didn’t know the half!
Remember that our flow type 1 includes (TCP or UDP)

source and destination port numbers. Unfortunately, frag-
mented IP datagrams carry these port numbers only in the
first fragment of the datagram. We could send subsequent
fragments on a type 2 flow, or on the default flow, but this
seems non-optimal. In particular, we would like to avoid in-
troducing any more re-ordering than necessary for packets
in a given flow; sending packets for the same flow on differ-
ent labels risks introducing systematic reordering (of NFS
traffic, say) for the lifetime of the flow.

As an implementation (not a protocol) issue, we keep
track of the identification field from the IP header of recently
seen packets that are part of a given flow. If a subsequent
packet arrives that contains other than the first fragment of
a datagram, we compare the identification field in the frag-
ment with our list of recently seen identification fields. If
we find a match, we send the datagram on the type 1 flow
associated with the recently seen identification field.

6.6 Packet Shredding
From a data networking point of view, one of the features

of ATM that presents difficulties is the fact that the unit of
transmission at the data link layer (cells) is not the same as
that at the internetwork layer (packets). In particular, the
unit of loss at the two layers is different, and this presents
problems [34].

The protocol that reassembles packets from cells, AAL5,
detects the last cell of a frame via a bit in this last cell of the
frame. If the last cell in frame N is dropped, then frames
N and N+1 are spliced and are taken by the reassembly
process to be one frame. Most likely, the CRC which AAL5
uses to protect against errors will detect this corruption, and
so both frames N and N+1 will be dropped [25].10

Our system is sensitive to these errors in the following
way: when we decide to start or stop switching the packets
in a given flow, we do this by directing the local ATM switch
to change the mapping for cells received over the incoming
interface/label. This remapping occurs on a cell boundary.
If this cell where the remapping takes place is other than the
first cell in a packet, one or two packets will be effectively
“shredded”.

Additionally, when we remap a flow, there is the possibil-
ity of a short burst of out of order packets being delivered
to the ultimate destination. For example, if the flow was
being processed hop-by-hop, and is then switched, the “ear-
lier” hop-by-hop, packets may well be overtaken by later,
switched, packets.

6.7 Cell Interleaving
If cells from more than one packet are interleaved over the

same VCI, the reassembling AAL5 will think that each cell
is from the same packet, and so will reassemble a “Franken-
stein’s monster” of a packet (which, again, will likely be
discarded as a result of AAL5’s protective CRC [25]).

This introduces a scalability problem. If a given router
is a junction point for a number of flows from upstream,
all of which will follow the same path going downstream,
these flows cannot be combined by switching, but must be
presented to the router and, thus, combined into a single flow
by intervention on a packet-by-packet basis by the router.

6.8 Address Resolution/Location
One advantage of a shared, broadcast subnet, such as Eth-

ernet, is that a host on the subnet can be located by broad-
casting an address resolution request [27]. While the exact
same issue does not arise in our scheme, something similar
does happen. In an Ethernet network, often it is possible to
unplug a system from one port (in an Ethernet switch, say)
and into another port (of the same switch) without needing
to reconfigure any part of the system. In order to provide
the ability for the same sort of flexibility in our system, the
IFMP adjacency protocol (see section 3.6) allows systems to
advertise their configured IP address(es) to their peers. By
coupling this with a routing protocol (such as OSPF [19])
which supports so-called host routes a certain amount of
dynamism in terms of physical connectivity is supported.

7. OUR IMPLEMENTATION
We have implemented two separate systems — one host

and one IP switch — using the approach discussed in this
paper. Both systems are based on a 4.4BSD-based kernel
(FreeBSD 2.0.5).

The IP switch can control an ATM switch and/or connect
to an Ethernet, FDDI, or other, local area network. For the
IP switch, we have heavily modified the lower levels of the

10It is interesting to note that had AAL5 been designed with
both an “end of frame” bit and a “beginning of frame” bit,
only frame N would have been dropped.

ACM SIGCOMM Computer Communication Review 88 Volume 36, Number 3, July 2006

kernel, both for performance and for the funcitonality we
require. Figure 9 is a representation of the internal structure
of the IP switch.

Initialization Gated
Mrouted Admin

NIC

flow table
forwarding

VCx
forwarding

flow classification
creation and
forwarding

GSMPIFMP

Active Flows
table

IP Forwarding
tables

VCI Resources
table

Classifier
table

ps1 ps2

psNIC

GSMP

Figure 9: IP switch Internal Structure
At initialization, the default label (VPI 0/VCI 15) on each ex-

ternal interface is mapped to deliver frames through the psNIC

interface to the IP switch controller. Packets received on one of

these default labels are first looked up in the Active Flows Table

(AFT). If no entry is found in the AFT, the packet is classified

and (in the normal case) forwarding information is determined all

of which is stored in a new entry in the AFT. As a byproduct of

this, a note is recorded in the entry in the IP forwarding table used

to determine the fowarding information; should this entry change

in the future, the entry in the AFT will be updated. Succeeding

packets in the same flow will be discovered in the AFT which

caches the forwarding information, allowing the packet to be for-

warded without any recourse to the IP forwarding table. When

the classifier determines that this flow should be redirected to a

specific label, an IFMP packet will be sent upstream (see Fig-

ure 5). When a packet arrives on a specific label, the specific

entry in the AFT (previously associated with the specific label)

is accessed directly, and the previously cached forwarding decision

is replayed; in this case (known as VCx forwarding) the lookup in

the AFT is bypassed.

For the host, we constrained ourselves to only add a (some-
what large) device driver to the system, and otherwise not
modify the kernel or any other part of the system in any
way. The host implementation, which talks over a standard
ATM card, looks similar to the implementation in the IP
switch; the most notable difference is that the host imple-
mentation has no notion of the IP forwarding table (and,
thus, there is no need for the dependency mechanism). We
are in the process of porting the host implementation to
other hardware/software platforms.

We are currently using a small network (consisting of 5
IP switch systems in series) as the operational network for
about seventeen members of our group.

8. FUTURES

8.1 Flow Granularity
Our current protocol specifies relatively fine-grained flows;

the coarsest is approximately host-to-host while the finest
grained flow is approximately application to application. We
feel this level of granularity matches well with the needs of
routers “lower down” in the Internet infrastructure (at the
corporate/campus backbone and/or departmental/branch of-
fice level). However, for routing higher up in the infrastruc-
ture (within the backbone of the Internet, say), fine-grained
flows do not scale as the numbers are probably too high. We
will be exploring what is required in coarseness to provide
service at that level of the Internet.

8.2 Frameization

As mentioned above, the fact that we are conceptually
working at the level of packets, but ATM works at the level
of cells, causes certain problems. One possible solution to
this class of problems is to make switches more aware of
packets. For example, the shredding problem introduced
in section 6.6 could be solved by having switches execute
remapping operations only on frame boundaries. Similarly,
switches could (try to) transmit a complete frame’s worth
of cells before transmitting any other cells.

We could also cause host adapters to transmit all the cells
from one frame before transmitting cells from another frame.

Notice that none of these modifications would necessarily
eliminate the reordering discussed in section 6.6.

8.3 Flows as Manageable Objects
We have defined type 1 and type 2 flows as a mechanism

to allow us to use hardware (ATM hardware, in this case)
to speed up forwarding by switching rather than routing.
Having defined flows in this way, however, we expose an
opportunity to have network administrators specify policies
for different classes of flows. A simple firewall, for exam-
ple, would say that “packets that look like that should be
directed to /dev/null”. Or, different amounts of system re-
sources could be allocated to different classes of flows.

8.4 QOS
With what we have implemented in IFMP and GSMP our

switching path looks very much like a very simple, single
class, tail drop router (as does our forwarding path in the
IP switch controller, for that matter). If the ATM switch
implements an algorithm like RED [10], a better version of
this single class router is available.

However, it is quite often the case that an administrator
would like to give different service levels to different classes
of flows. Examples of these different service levels are well
known [11, 6].

The current forwarding model implemented in the ATM
switch is very straightforward, and therefore was quite easy
to define (so easy, that it is hard to claim we even defined
it, as it was really already there in the ATM switch). With
a few very simple operations on the switch (basically, map
label X to label Y), we are able to have the switch do exactly
as IP routing would have done. This is primarily because

ACM SIGCOMM Computer Communication Review 89 Volume 36, Number 3, July 2006

the IP routing semantics are so loose: “send this packet out
that interface to that next hop”

It would be desirable to support different service levels in
the IP switch. For example, the RSVP protocol [37] could be
used to communicate desired service levels to the IP switch.
However, if we allow different service levels, we will need to
modify GSMP in order to specify some simple operations
on ATM switches which allow the various policies flowing
out of the different service levels to be implemented. Our
suspicion is that defining such a set is going to be difficult.

8.5 Layer 2 Switches
This paper has discussed IP switching running on ATM

switches. However, our methods are equally appropriate for
other point-to-point switching technologies, such as frame
relay [3].

8.6 IFMP on Shared Multicast Media
Above, we discussed the reasons we have chosen to make

IFMP redirection driven by the downstream node. Having
made that decision, we are faced with how to generalize
IFMP to work on a shared multicast media (such as some
sort of hack to run over Ethernet by overloading some field
in the Ethernet header to carry label information). The
problem here is that if want to be able to redirect multi-
cast packets, then all the receivers need to agree on which
labels are valid, and the binding between labels and flows.
Concepts such as the “designated router” of OSPF [19] and
IS-IS [23] may prove valuable here, but we have not as yet
done much work in this area.

8.7 Virtual Paths
ATM offers a facility known as virtual paths which are

coarser than virtual circuits. Basically, one virtual path
consists of a number of virtual circuits. Our current system
does not provide support for virtual paths, but we have the
beginnings of what such support might look like.

We would provide virtual path support to connect IP
switches across a public (or private) non-IFMP ATM net-
work. The non-IFMP ATM network would be provisioned
to offer a virtual path between a pair of IP switches. Labels
exchanged by IFMP would be relative to the configured vir-
tual path. One physical link to the non-IFMP ATM network
could be configured with a number of virtual paths, each ter-
minating at a different IP switch. The IP switch would treat
each such virtual path as a separate logical interface.

This would allow for packets to be switched from ingress
point to egress point with no handling by forwarding code
(except during flow setup and route transitions). However,
packets would enter and leave the non-IFMP ATM network
multiple times. (Clearly, locating an IP switch inside the
public ATM network would be preferable.)

9. RELATED WORK
The traditional approach to running IP over ATM has

been to layer a new addressing scheme on top of ATM, thus
creating problems which our approach completely avoids.
This approach has also tended to lead to viewing ATM as
the cloud, with IP routers interfacing from the edges of this
cloud. For a good summary, including a full set of references,
of this work, see [1]; [22] provides a fuller critique of the
traditional approach.

A number of projects have focussed in on the concept
of using ATM as a backplane- or bus-replacement within a
router itself. Such a project is that of Parulkar, et al [26],
which designs a system to integrate IP and ATM. In this
design, the line cards process IP datagrams, using the ATM
switch/backplane to query special routing cards for forward-
ing information and then for forwarding the packet to the
output line card. Integral in the design are two types of in-
terfaces: line cards which connect to hosts or “conventional”
routers, and special router interfaces which connect to other
IP/ATM routers. The second type of interface uses a mech-
anism to bind individual flows to specialized VCIs to allow
ATM-level switching of datagrams.

ATM typically runs over SONET. One approach to run-
ning IP over ATM is to bypass ATM completely by run-
ning IP directly over SONET [36]. This approach allows
for straight-forward interconnection of systems via SONET
lines, but doesn’t provide for any hardware-assisted speedup
of forwarding.

The BBN Multigigabit router project [24] is building a
router which is in many ways similar in its internal ar-
chitecture to our system (as well as being similar in many
ways to [26] mentioned above). A general purpose computer
runs routing protocols and builds up forwarding tables; this
computer is connected to interface cards and forwarding en-
gines via a PCI bus. Communication between interface cards
and forwarding engines is via an internal, 50 Gigabit/second
crossbar switch.

The approach we have seen which is closest to ours is
formally unpublished work of Masataka Ohta (Tokyo Insti-
tute of Technology), and Hiroshi Esaki and Ken-ichi Nagami
(both of Toshiba Corporation), and related, similarly for-
mally unpublished work of Yukinori Goto (of the Nara In-
stitute of Science and Technology).11 The Ohta, et al, work
is known as “Conventional IP over ATM”; the work of Goto
is known as “Session Identity Notification Protocol”. The
Ohta work proposes treating ATM switches as routers, which
is quite similar to our work. Ohta proposes using QoS sig-
nalling protocols (such as RSVP) to set up flow-specific
VCIs. There is some discussion in Ohta’s work of issues
with respect to TTLs. The Goto work involves a mecha-
nism for binding a specific flow to a VCI, and is again very
similar to our work. The difference in the binding mecha-
nism is primarily that Goto proposes having the upstream
node announce its intention to send traffic on a certain VCI
and then commence sending. We feel that it is preferable
to have the downstream node make the redirection decision
(for reasons discussed in section 3.4.1).

10. ACKNOWLEDGEMENTS
Http://www.research.att.com/biblio.html, the network bib-

liography maintained by Henning Schulzrinne, was extremely
helpful in the writing of this paper. Thanks to K. Claffy and
L. Huston.

11. REFERENCES
[1] A. Alles. ATM internetworking, May 1995.

http://www.cisco.com/warp/public/614/12.html.

11As of this writing, both the Ohta and Goto papers have
only been published as Internet Drafts, an ephemeral pub-
lication.

ACM SIGCOMM Computer Communication Review 90 Volume 36, Number 3, July 2006

[2] BBN Inc. Specifications for the interconnection of a
host and an IMP. Report 1822, Bolt Beranek and
Newman, Inc., December 1983.

[3] T. Bradley, C. Brown, and A. Malis. Multiprotocol
interconnect over frame relay. Request for Comments
(Draft Standard) RFC 1490, Internet Engineering
Task Force, July 1993,
ftp://ds.internic.net/rfc/rfc1490.txt. (Obsoletes
RFC1294).

[4] William R. Cheswick and Steven M. Bellovin.
Firewalls and Internet Security: repelling the wily
hacker. Addison-Wesley, Reading, Massachusetts,
1994.

[5] Kimberly C. Claffy, Hans-Werner Braun, and
George C. Polyzos. A parameterizable methodology
for Internet traffic profiling. IEEE Journal on Selected
Areas in Communications, 13(8), October 1995,
ftp://ftp.sdsc.edu/pub/sdsc/anr/papers/flows.ps.Z.

[6] David D. Clark, Scott Shenker, and Lixia Zhang.
Supporting real-time applications in an integrated
services packet network: architecture and mechanism.
In SIGCOMM Symposium on Communications
Architectures and Protocols, pages 14–26, Baltimore,
Maryland, August 1992. ACM, http://ana-
www.lcs.mit.edu/anaweb/pdf-papers/csz.pdf.
Computer Communication Review, Volume 22,
Number 4.

[7] Martin de Prycker. Asynchronous Transfer Mode:
Solution for Broadband ISDN. Ellis Horwood,
Chichester, England, 1991.

[8] S. Deering. Host extensions for IP multicasting.
Request for Comments (Standard) STD 5, RFC 1112,
Internet Engineering Task Force, August 1989,
ftp://ds.internic.net/rfc/rfc1112.txt. (Obsoletes
RFC0988).

[9] S. Deering and R. Hinden. Internet protocol, version 6
(ipv6) specification. Request for Comments (Proposed
Standard) RFC 1883, Internet Engineering Task Force,
January 1996, ftp://ds.internic.net/rfc/rfc1883.txt.

[10] Sally Floyd and Van Jacobson. Random early
detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking,
1(4):397–413, August 1993,
http://www-nrg.ee.lbl.gov/floyd/red.html.

[11] Sally Floyd and Van Jacobson. Link-sharing and
resource management models for packet networks.
IEEE/ACM Transactions on Networking, 3(4):22,
August 1995, ftp://ftp.ee.lbl.gov/papers/link.ps.Z.

[12] Charles Hornig. A standard for the transmission of ip
datagrams over ethernet networks. RFC 894, Internet
Engineering Task Force, April 1984,
ftp://ds.internic.net/rfc/rfc894.txt.

[13] Christian Huitema. IPv6: The new Internet Protocol.
Prentice Hall, Upper Saddle River, New Jersey, 1996.

[14] Van Jacobson et al. tcpdump(1), BPF, 1990,
ftp://ftp.ee.lbl.gov/tcpdump.tar.Z.

[15] Christopher A. Kent and Jeffrey C. Mogul.
Fragmentation considered harmful. ACM Computer
Communication Review, 17(5):390–401, 1987.
SIGCOMM ’87 Workshop.

[16] Robert M. Metcalfe and David R. Boggs. Ethernet:
distributed packet switching for local computer

networks. Communications of the ACM,
19(7):395–404, July 1976.

[17] D. Mills and H. Braun. The NSFNET backbone
network. ACM Computer Communication Review,
17(5), August 1987. SIGCOMM ’87 Workshop.

[18] David L. Mills. The Fuzzball. In SIGCOMM
Symposium on Communications Architectures and
Protocols, pages 115–122, Stanford, California, August
1988. ACM. also in Computer Communication Review
18 (4), Aug. 1988.

[19] J. Moy. OSPF version 2. Request for Comments
(Draft Standard) RFC 1583, Internet Engineering
Task Force, March 1994,
ftp://ds.internic.net/rfc/rfc1583.ps. (Obsoletes
RFC1247).

[20] P. Newman, W. L. Edwards, R. Hinden, E. Hoffman,
F. Ching Liaw, T. Lyon, and G. Minshall. General
switch management protocol specification version 1.0.
Technical report, Ipsilon and Sprint, February 1996,
http://www.ipsilon.com.

[21] P. Newman, W. L. Edwards, R. Hinden, E. Hoffman,
F. Ching Liaw, T. Lyon, and G. Minshall. Ipsilon flow
management protocol specification for ipv4 version
1.0. Technical report, Ipsilon and Sprint, February
1996, http://www.ipsilon.com.

[22] P. Newman, T. Lyon, and G. Minshall. Flow labelled
ip: A connectionless approach to atm. In Proceedings
of the Conference on Computer Communications
(IEEE Infocom), page 1, April 1996,
http://www.ipsilon.com/ pn/papers/infocom96.ps.

[23] D. Oran. OSI IS-IS intra-domain routing protocol.
Request for Comments (Informational) RFC 1142,
Internet Engineering Task Force, December 1991,
ftp://ds.internic.net/rfc/rfc1142.ps.

[24] Craig Partridge. private communication, March 1996.

[25] Craig Partridge, Jim Hughes, and Jonathan Stone.
Performance of checksums and CRCs over real data.
In SIGCOMM Symposium on Communications
Architectures and Protocols, page 9, Cambridge,
Massachusetts, September 1995.

[26] Guru Parulkar, Douglas C. Schmidt, and Jonathan
Turner. IP/ATM: A strategy for integrating IP with
ATM. In SIGCOMM Symposium on Communications
Architectures and Protocols, page 10, Cambridge,
Massachusetts, September 1995.

[27] D. Plummer. Ethernet address resolution protocol: Or
converting network protocol addresses to 48.bit
ethernet address for transmission on ethernet
hardware. Request for Comments (Standard) RFC
826, Internet Engineering Task Force, November 1982,
ftp://ds.internic.net/rfc/rfc826.txt.

[28] J. Postel. Internet control message protocol. Request
for Comments (Standard) STD 5, RFC 792, Internet
Engineering Task Force, September 1981,
ftp://ds.internic.net/rfc/rfc792.txt. (Obsoletes
RFC0777).

[29] J. Postel. Internet protocol. Request for Comments
(Standard) RFC 791, Internet Engineering Task Force,
September 1981, ftp://ds.internic.net/rfc/rfc791.txt.
(Obsoletes RFC0760).

[30] J. Postel. Transmission control protocol. Request for
Comments (Standard) STD 7, RFC 793, Internet

ACM SIGCOMM Computer Communication Review 91 Volume 36, Number 3, July 2006

Engineering Task Force, September 1981,
ftp://ds.internic.net/rfc/rfc793.txt.

[31] Jon Postel. Address mappings. RFC 796, Internet
Engineering Task Force, September 1981,
ftp://ds.internic.net/rfc/rfc796.txt.

[32] Jon Postel. A standard for the transmission of ip
datagrams over experimental ethernet networks. RFC
895, Internet Engineering Task Force, April 1984,
ftp://ds.internic.net/rfc/rfc895.txt.

[33] Yakov Rekhter. private communication, January 1996.

[34] A. Romanow and S. Floyd. The dynamics of TCP
traffic over ATM networks. In SIGCOMM Symposium
on Communications Architectures and Protocols,
pages 79–88, London, UK, September 1994.

[35] J. F. Shoch. An introduction to the ethernet
specification. ACM Computer Communication Review,
11(3), July 1981.

[36] W. Simpson. PPP over SONET/SDH. Request for
Comments (Proposed Standard) RFC 1619, Internet
Engineering Task Force, May 1994,
ftp://ds.internic.net/rfc/rfc1619.txt.

[37] Lixia Zhang, Stephen Deering, Deborah Estrin, Scott
Shenker, and Daniel Zappala. RSVP: a new resource
ReSerVation protocol. IEEE Network, 7(5):8–18,
September 1993,
ftp://parcftp.xerox.com/pub/net-research/rsvp.ps.Z.

ACM SIGCOMM Computer Communication Review 92 Volume 36, Number 3, July 2006

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

