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ABSTRACT
While multi-player online games are very successful, their
fast deployment suffers from their server-based architecture.
Indeed, servers both limit the scalability of the games and
increase deployment costs. However, they make it easier to
control the game (e.g. by preventing cheating and providing
support for billing). Peer-to-peer, i.e. transfer of the game
functions on each each player’s machine, is an attractive
communication model for online gaming. We investigate
here the challenges of peer-to-peer gaming, hoping that this
discussion will generate a broader interest in the research
community.

Categories and Subject Descriptors
C.2.2 [Computer Communication Networks]: Distributed
Systems

General Terms
Design, Performance, Security

Keywords
Peer-to-Peer, Overlay Online-gaming, Security

1. INTRODUCTION
Today, millions of players are connected to several online

gaming communities [1]. World of Warcraft1 is an impres-
sive example of online game success: more than 6, 000, 000
players pay monthly fees to play in this Virtual World, 500, 000
players being connected at any time. These numbers are ex-
pected to grow in the future.

Most online games rely on a central server or a cluster
of servers. Such architecture allows to easily handle tasks
like players’ access control, management of the states of the
game, synchronization of players, as well as billing.

However, centralized architectures have also many draw-
backs: (1) servers have to be physically deployed, operated
and maintained; (2) they do not scale, and must be dimen-
sioned according to the maximum number of expected play-
ers; (3) they limit service availability, the server being a
single point of failure; (4) it is finally not optimal from a
delay standpoint (choosing a central server with respect to
delay is difficult as there always may be a player with higher
delay.)

1http://www.worldofwarcraft.com/

These drawbacks, the high cost of a centralized solution,
as well as the players frustration in front of under-provisioned
systems and long delays are strong incentives to investigate
alternative decentralized peer-to-peer solutions. Indeed, a
peer-to-peer architecture strongly reduces deployment in-
vestment: there is no need to physically deploy important re-
sources, and all players can benefit from the shared resources
(storage, CPU and bandwidth) making the architecture scal-
able. Moreover, peer-to-peer is by nature more robust as
there is no single point of failure. Consequently, the archi-
tecture does not fail a priori if any of its members leaves the
game (gracefully or because of a crash/disconnect). Last, a
peer-to-peer network can organize itself very easily to opti-
mize the delay among peers.

Aside these practical advantages of peer-to-peer architec-
tures, we foresee that evolutions of online games may indeed
require them to be based on peer-to-peer technologies: fu-
ture virtual worlds could be build on top of infrastructure-
less networks such as Delay Tolerant Networks. Users will
play on their PC or on their television, but also on their
PDAs, cellular phones, etc. Each user will have only an in-
termittent connectivity, or only connectivity to small sets of
devices that are not necessarily those the players want to
interact with. The devices used to play might therefore be
very heterogeneous. Moreover, in addition to classical on-
line games, ”mixed reality games”, where players physical
location impacts the location of the avatar in the game [13],
seem perfectly suited to run on infrastructure-less communi-
cation architectures. In both these contexts, the migration
to peer-to-peer distributed gaming seems even more critical.

While peer-to-peer gaming architectures are promising,
they yield a lot of challenging research topics. In particular,
questions are raised about distributed storage, management
and consistency of the game states, election of the peers to
communicate with, optimization of delays, synchronization
of players and protection against cheating. To our knowl-
edge, little work has been done in this area (see related work,
section 3), especially considering large scale games with pos-
sibly millions of players.

This paper proposes a discussion on peer-to-peer gam-
ing challenges, hoping that it will encourage the research
community to explore this topic further. We do not solve
problems, but rather give hints on possible future research
directions.

2. P2P GAMING CHALLENGES
We focus on the consequences of the game distribution

among the peers in terms of (1) game state management,
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even in the presence of peer failures, (2) delay, (3) scalability
and (4) cheating.

2.1 Game state management
A game is characterized by a set of states, these states

being modified along the game course by events. Whatever
the communication architecture, the system has to guaran-
tee that the game state is consistent among all players, in
other words that the information each player gets reflects all
the relevant events that occurred in the past.

With a peer-to-peer gaming approach, an overlay is con-
structed in order to manage states. The overlay topology
fundamentally influences the way the states are managed.
Two approaches can be considered, static overlay and dy-
namic overlay.

With static overlays, peers are organized in a structured
way, which is independent of the interests of each player.
Each peer gets assigned objects, players or zones to manage.
In other words, the overlay is defined beforehand and data is
injected in this overlay, without rearranging it. Events and
accesses to a state are routed through the overlay e.g. using
a Distributed Hash Table (DHT) as in [12]. In dynamic
overlays instead, peers dynamically construct the overlay
according to their interests and interactions between players.
These interests may be dynamic and change over time.

This discussion raises the question whether the overlay in
the specific case of p2p-gaming should be interest-driven or
not2? To answer this question we believe that it is necessary
to divide game states and events in two types, local and
global.

Global states (e.g. global clock in the virtual world) or
events (e.g. an earthquake that affects the whole virtual
world) are not related to a specific player or location and are
a priori accessible at any time. By contrast, local states or
events are either (1) physically bound to a player’s avatar,
e.g. its state or the one of an object he or she owns, (2)
logically bound to a player or its avatar, e.g. several avatars
of the same clique communicating together, or (3) bound to
a specific location in the game, e.g. the state of an object
at a given location or some local event such as rain on a
limited location. Local states do not need to be consistent
among all players. Other players who don’t interact with it
at this time can update it later.

Since a player is always interested in global states and
events, static overlays are more adapted to handle them.
By contrast, local states and events are better handled by
dynamic overlays, since they can adapt to the dynamic na-
ture of this information. Therefore the two type of overlays
could be used in a complementary way.

Furthermore, other storage and access schemes could fur-
ther complement them. For instance, critical information
like access control policies could be stored and managed on
centralized servers, while unmodifiable information could be
stored on all peers.

Whatever the schemes chosen, handling information con-
sistency becomes an issue with peer failure and churn, i.e.
players that leave and join the game, or nodes that are
disconnected or delayed for a short time because of net-

2Levine et al. [9] had a similar discussion on content-based
multicast, i.e. what the best mapping of content to multicast
groups according to receiver interests.

work congestion. To address this problem, the classical ap-
proach is to replicate game state among several peers. How-
ever, there is trade-off to find between resistance to failure,
churn, performances in terms of reactivity and bandwidth
consumption.

Churn can almost be strongly mitigated if the game is
deployed on Set-Top-Boxes or Residential Home Gateways
that are controlled by some central authority (e.g. the con-
tent provider or the ISP) : these devices being “always on”,
they can participate in the game overlays even if the player
is disconnected from the game or gracefully leaves it. In this
case, the only cause of churn is a device or network failure.

2.2 Delays management
Delays must be kept beneath the human perceptible thresh-

olds. Distributed Interactive Simulation (DIS) and the High
Level Architecture (HLA) standards [11] specify delays be-
neath 200ms. Above that, playing becomes uncomfortable
and there is unfairness if all players do not have the same
delay.

Delays are caused by two factors: (1) the time to transport
and process the information over the network, that we call
network delays, and (2) the time to take into account all
players actions and to synchronize them (e.g. by waiting for
the slowest one) that we call synchronization delays.

Network delays are already often close from or even above
the values tolerated by humans perception. In client-server
architectures this delay is due to either the lack of CPU
resources or bandwidth by the server and the RTT between
each client and its server.

By using a overlay, players ideally communicate directly
with each others without going through a central server.
This removes the risk for the server to become a bottleneck
and reduces the number of hops required for players com-
munication. However, there is a risk to make some specific
nodes in the overlay become themselves bottlenecks, for in-
stance when a node having a low bandwidth manages game
states a lot of other peers are interested in. This advocates
for overlay building mechanisms that take into account avail-
able bandwidth of each peer, RTT between peers, and that
try to let all players experience roughly the same delay so
as to minimizes the effects of synchronization delays.

In both client-server and peer-to-peer technologies, tech-
niques like “dead reckoning” can conceal players with higher
delays by predicting and updating the states of their avatars
according to the previous moves. Once the real actions have
been received from a given player, the predicted state is cor-
rected. However, dead reckoning may result in a degradation
of playing experience [4]. Note also that dead-reckoning has
some cheating issues as discussed in [2].

Regarding synchronization delays, play-out buffer can be
used to make all players experience the “same” delay. A
basic stop-and-wait protocol like Lockstep [2] waits for the
slowest player to send its actions before updating the game
state. Because it is often unacceptable to make a single
player to slow down the entire game, other techniques like
“Bucket-synchronization” [4] do not require all players to
wait for the slowest one but periodically synchronize all the
received actions. Unavailable information from a player can
then be “replaced” by dead-reckoned state. The number of
peers involved in the synchronization process can be opti-
mized according to the players interests.
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2.3 Scalability
Since each peer contributes in CPU, storage and band-

width resources, most peer-to-peer systems are by nature
more scalable than server based architecture. However, ex-
perience shows that also peer-to-peer systems are limited in
scalability (e.g. Gnutella). Applied to peer-to-peer gaming,
this may be expressed as higher delays when the number
of player increases. To push back these limits, and based
on what is already done today for server-based solutions, we
can envision to improve the scalability by breaking the game
space down into smaller regions and treating each region as
a separate game.

The regions can be statically predefined as in [15] or built
ad-hoc because there are players at one spot in the game.
This approach again raises the difference between non-inte-
rest-driven (fixed and predefined regions) and interest-driven
(ad-hoc) overlay design.

The system can then use a dedicated overlay to manage
the region, or elect a responsible peer acting as a server for
that region: it handles information consistency, and might
even stores all the information of that zone. A peer respon-
sible for a zone is not necessarily in that zone. Instead, a
metric that considers only stability in term of permanence
in the game may help choosing the responsible peer.

However, it is difficult to anticipate scalability issues in
peer-to-peer gaming without experimental deployment.

2.4 Cheating
Resistance to cheating is one of the biggest challenge in

peer-to-peer gaming. We define cheating as an unautho-
rized interaction with the game system aimed at offering an
advantage to the cheater.

We distinguish three categories of cheating3 according to
the threatened game property [10]: (1) Confidentiality, when
the cheater obtains information that he or she is not sup-
posed to, such as elements of the global state of the game
(e.g., a place on the map), interactions between other play-
ers he or she is not involved in, or local information about
another avatar’s confidential characteristics; (2) Integrity,
when the cheater modifies the state of the game or its fun-
damental laws, for instance by modifying the map, the state
of an avatar, or the rules of physics; (3) Availability, when
the cheater delays or switches off (parts of) the game such
as a zone or a set of avatars, for instance when things go
wrong for him or her.

To achieve her goals, a cheater can act on various targets.
First, she can focus on the network and eavesdrop, inject,
delay or drop messages. She may for instance passively ex-
amine the private communications that she is just supposed
to forward. Peer-to-peer architectures are probably more
vulnerable to this kind of attacks, since in server based ar-
chitecture each player communicates only with the server
and is not involved in message forwarding.

Second, a cheater may target the game states. She can
for instance use the application data she stores (that in the
peer-to-peer case may not be only related to her) to dis-
cover where specific entities are hidden in the virtual world,
or modify the state of the virtual world or of avatars. While
client-server solutions can benefit from a trusted server to
manage the game states and ensure its integrity and confi-

3In this paper, and by contrast with the field of security, we
do not consider the case of vandals, that are not cheaters
because their actions offer them no advantage in the game.

dentiality, game states are distributed among the peers in
peer-to-peer architectures. Consequently the cheater poten-
tially controls the information stored on its peer.

Finally, a cheater may target the game application itself,
or even the host system on which it runs. For instance, she
may reverse-engineer the game application to obtain more
precise information on how it works. She can also modify the
rules by changing the code of the program, or by tweaking
the pseudo-random number generator of the host system it
runs on. Here again peer-to-peer architectures are probably
more vulnerable to these cheats because they are made of a
set of a priori untrusted peers and cannot rely on a trusted
server to implement the security critical primitives.

This list of target is not exhaustive. Particularly, we have
not considered the cheating methods that use other com-
munications channels, such as the one for which the cheater
uses its phone to call other players and disclose them infor-
mation while he is not supposed to be able to communicate
with them in the game. Using once again the terminology
of the security field, these cheating methods can be related
to “side-channel attacks”.

To address cheating, two complementary approaches can
be considered: cheating-resistant systems and cheating-evi-
dent systems. Cheating-resistant systems’ goal is to prevent
cheating. Among the relevant services are (1) player au-
thentication, (2) accountability (that allows to impute the
actions of a player to him or her after he or she played), (3)
confidentiality of information and communications, (4) ap-
plication integrity and (5) tamper-proof devices to prevent
a cheater from interfering with the game application and its
data. By contrast, cheating-evident systems’ goal is to re-
actively detect cheaters and punish them (e.g. ban them or
degrade their experience).

Cheating prevention and detection could be relatively sim-
ple in a centralized server-based architecture, especially be-
cause a reasonably controlled and thus trustworthy server
is available. A peer-to-peer environment yields more chal-
lenges. First, it may be very complicated to apply cheating
resistance extensively to a whole peer-to-peer architecture,
that is mostly made of uncontrolled hosts. Moreover, it is
unclear where to place the mechanisms to be used: on all
the devices that take part to the game, or only on a subset of
them? In this latter case how is this subset selected? Aside
from this, in the case of a fully decentralized approach, the
management of trust between the devices and between the
players is a complex issue. How can we be sure that a de-
vice or a player acts faithfully? How is trust established and
maintained? How is slandering handled? All these questions
are close from the one that are yet only partially solved in
security proposals for peer-to-peer and ad hoc networks.

Another way to prevent cheating, that takes advantage
from the feature of distribution of peer-to-peer architectures,
would be to make a peer to handle a region only if its player’s
avatar is not present in it. However, this solution remains
hazardous, because a player may nevertheless want to cheat
and influence what happens in this region, due to the side
effects it involves (e.g. making avatars of its team win, mak-
ing an enemy avatar eliminated etc.). Thus, such a proposal
would also require to authorize a peer to handle a region
only if the events that happen on it have no interaction with
its player’s interests. This may be a very difficult problem,
because it is very complex to define precisely each player’s
interests, especially when handling the side effects.
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3. RELATED WORK
MiMaze [4, 5] was one of the first attempts to design a

fully distributed online game. It relies on IP Multicast:
each player has an entire replication of the virtual world
on his machine (as opposed to having just a partial view),
and multicasts its actions to all others players. This tech-
nique can be considered as peer-to-peer, since each player
communicates its actions directly to the other players.

More recent papers proposed fully-distributed peer-to-peer
gaming solutions, that either rely on structured overlays (i.e.
DHT) or an unstructured peer-to-peer architecture. All take
locality into account, and build the storage and communi-
cation system accordingly. More precisely, Knutsson et al.
[8] present a peer-to-peer solution for massively multi-player
games based on the structured overlay Pastry [12]. Scribe [3]
is used as a multicast application layer build on top of Pas-
try. The approach divides the virtual world into fixed and

predefined regions and elects (with the help of the DHT)
one peer as “coordinator” for each region. The coordina-
tor maintains the state of the region he is responsible for
(which is not necessarily the region where he is playing) and
multicasts (using Scribe) updates to all peers in the same
region. The paper also discusses how the coordinator should
be replicated in order to be robust to peer failures. However,
[6] argues that the communication overhead induced by the
multicasting of state information to the peers of a region in
[8] is too high.

In a similar mindset, [15] proposes to split the virtual
world into hexagonal cells, each cell being mapped to a de-
termined node (using a DHT). Using a master and slave
node mechanism for each cell, this approach further allows
players to extend their view to neighboring cells and not
being bound by the border of a cell.

Regarding cheat-proof distributed gaming, Yan et al. [14]
have proposed a classification of cheating in online games.
This classification, that is made of 15 categories, is built
upon existing attacks and may not be able to integrate new
kinds of attacks that may appear, especially in p2p-gaming.

Baughman et al. [2] propose the cheating-prevention gam-
ing protocols “Lockstep” and “Asynchronous Synchroniza-
tion” (AS). Lockstep is a stop and wait protocol with com-
mitment. Each player sends a hash of its next move to all
other players. Once everybody has sent her commitment, all
players reveal their real moves. However, this approach does
not scale. AS relaxes the synchronization of Lockstep, and
only imposes synchronization between players that “see”
each other in the game. The problem with lockstep and
AS is that they assume homogeneous players with respect
to their network and client resources. This assumption is
relaxed by the follow-up work, Ghost [7].

4. CONCLUSIONS
Based on the hypothesis that centralized architectures will

not scale for online gaming as more and more players are
involved in a single session, this paper presented research
challenges related to the use of peer-to-peer technologies.
While they are pervasively used for all kind of applications
involving numerous users, we showed that a lot of work is
still required to apply them to online-gaming. Particularly,
we identified the following axes of research: first, new over-
lay managements are necessary to fulfill both the strong re-
quirements of delay and information consistency that mul-

tiplayer gaming exhibits; second, the community needs to
check experimentally that these new overlay managements
are really scalable; finally, ways to handle cheating in such
uncontrolled networks are such to be found. In summary,
the main challenge seems to be how to manage the overlays
as there are many candidate parameters to optimize con-
currently, that will most probably make the optimisation
problem NP-hard.

5. ACKNOWLEDGMENTS
We would like to acknowledge Christophe Diot and Eric

Diehl for their helpful comments and Moritz Steiner for
pointing to some interesting references.

6. REFERENCES
[1] An Analysis of MMOG Subscription Growth web site.

http://www.mmogchart.com/.
[2] N. E. Baughman, M. Liberatore, and B. N. Levine.

Cheat-proof playout for centralized and peer-to-peer
gaming. IEEE/ACM Transactions on Networking. To
appear.

[3] M. Castro, P. Druschel, A.-M. Kermarrec, and
A. Rowstron. Scribe: A large-scale and decentralised
application-level multicast infrastructure. IEEE Journal on
Selected Areas in Communication (JSAC), 20(8), 2002.

[4] L. Gautier and C. Diot. Design and evaluation of mimaze, a
multi-player game in the internet. In Proceedings of IEEE
Multimedia Systems Conference, June 1998.

[5] L. Gautier, C. Diot, and J. Kurose. End-to-end
transmission control mechanisms for multiparty interactive
applications on the internet. In Proceedings of IEEE
INFOCOM’99, Mar. 1999.

[6] T. Iimura, H. Hazeyama, and Y. Kadobayashi. Zoned
federation of game servers: a peer-to-peer approach to
scalable multi-player online games. In Proceedings of ACM
SIGCOMM 2004 workshops on NetGames ’04, pages
116–120, New York, NY, USA, September 2004.

[7] A. S. John and B. N. Levine. Supporting p2p gaming when
players have heterogeneous resources. In Proceedings of
NOSSDAV ’05, June 2005.

[8] B. Knutsson, H. Lu, W. Xu, and B. Hopkins. Peer-to-peer
support for massively multiplayer games. In Proceedings of
IEEE INFOCOM’04, March 2004.

[9] B. N. Levine, J. Crowcroft, C. Diot, J. Garcia-Luna-Aceves,
and J. F. Kurose. Consideration of receiver interest for ip
multicast delivery. In Proceedings of IEEE INFOCOM’00,
Mar. 2000.

[10] D. of Defense. Trusted Computer System Evaluation
Criteria (The Orange Book), Dec. 1985. DoD 5200.28-STD.

[11] M. Pullen, M. Myjak, and C. Bouwens. Limitations of
Internet protocol suite for distributed simulation in the
large mulitcast environment, Feb. 1999. Request For
Comments 2502.

[12] A. Rowstron and P. Druschel. Pastry: Scalable, distributed
object location and routing for large-scale peer-to-peer
systems. In Proceedings of the IFIP/ACM International
Conference on Distributed Systems Platforms
(Middleware), November 2001.

[13] B. Wietrzyk and M. Radenkovic. Enabling rapid and
cost-effective creation of massive pervasive games in vey
unstable environments. In IEEE/IFIP WONS 2007,
January 2007.

[14] J. Yan and B. Randell. A systematic classification of
cheating in online games. In Proceedings of the 4th
Workshop on NetGames’05, October 2005.

[15] A. P. Yu and S. T. Vuong. Mopar: a mobile peer-to-peer
overlay architecture for interest management of massively
multiplayer online games. In Proceedings of NOSSDAV ’05,
pages 99–104, june 2005.

ACM SIGCOMM Computer Communication Review 82 Volume 37, Number 1, January 2007


