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ABSTRACT

Knowledge of the largest traffic flows in a network is im-
portant for many network management applications. The
problem of finding these flows is known as the heavy-hitter
problem and has been the subject of many studies in the
past years. One of the most efficient and well-known algo-
rithms for finding heavy hitters is lossy counting [29].

In this work we introduce probabilistic lossy counting (PLC),

which enhances lossy counting in computing network traf-
fic heavy hitters. PLC uses on a tighter error bound on
the estimated sizes of traffic flows and provides probabilistic
rather than deterministic guarantees on its accuracy. The
probabilistic-based error bound substantially improves the
memory consumption of the algorithm. In addition, PLC
reduces the rate of false positives of lossy counting and
achieves a low estimation error, although slightly higher
than that of lossy counting.

We compare PLC with state-of-the-art algorithms for find-
ing heavy hitters. Our experiments using real traffic traces
find that PLC has 1) between 34.4% and 74% lower memory
consumption, 2) between 37.9% and 40.5% fewer false posi-
tives than lossy counting, and 3) a small estimation error.

Categories and Subject Descriptors

C.2.3 [Network Operations]: Network monitoring; G.2.1
[Combinatorics]: Counting problems

General Terms

Algorithms, Measurement, Performance

Keywords

heavy hitters, data streams

1. INTRODUCTION

Network operators are interested in the heavy hitters of
a network, i.e., the traffic flows responsible for most bytes
or packets. This information is useful for a number of com-
mon applications such as identifying denial of service (DoS)
attacks, monitoring traffic growth trends, provisioning net-
work resources and link capacities, and warning heavy net-
work users. In addition, computing heavy hitters has appli-
cations in other disciplines. Search engines compute heavy-
hitter queries, namely frequent user queries, in order to op-
timize caching for these queries, whereas dynamic content
providers keep track of the most frequently-clicked advertise-
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ments and prefer posting these advertisements to increase
their revenues.

Thus, in the past years significant research efforts have
been spent on developing efficient heavy-hitter algorithms.
An efficient and well-known heavy-hitter algorithm is lossy
counting. In this work we introduce probabilistic lossy count-
ing (PLC), which improves lossy counting for finding net-
work traffic heavy hitters. PLC changes the error bound
on the estimated size of an arbitrary traffic flow, relaxing
the deterministic guarantees of the bound from lossy count-
ing. In effect, the probabilistic error bound makes PLC
less conservative in removing state for flows of small size.
Given that flows of small size account for the majority of
network traffic flows, this modification reduces drastically
the required memory for computing heavy hitters. In addi-
tion, PLC finds fewer false-positive heavy hitters than lossy
counting and achieves a low estimation error on the size of
heavy-hitters (although slightly higher than that of lossy
counting).

We evaluate PLC using two sets of traffic traces collected
from different networks. We compare its performance with
two state-of-the-art algorithms, namely lossy counting and
multistage filters [14], and find that PLC exhibits substan-
tially better performance in important evaluated metrics.
In particular, the memory consumption of PLC is between
37.3% and 74% lower than that of lossy counting and be-
tween 34.4% and 48.8% lower than that of multistage filters.
In addition, PLC reduces the number of false positives of
lossy counting by 37.9% and 40.5%. The estimation error
of PLC would be expected to be higher than that of lossy
counting. In practice, we find that the estimation error is
only slightly higher and remains below 0.09% and below
0.0008% for 70% of the heavy hitters in our experiments.
Finally, we find that PLC and multistage filters exhibit sim-
ilar performance in terms of estimation error and numbers
of false positives.

We structure the remaining of this paper as follows. In
the next section, we discuss background information. Then
in Section 3 we review the related work. In Section 4 we
introduce and describe PLC. We evaluate the performance of
the algorithm and compare to lossy counting and multistage
filters in Section 5. Finally, in Section 6 we conclude and
describe future directions.

2. BACKGROUND

The problem of finding heavy hitters can be defined as
given a stream of elements, find those with a frequency above
a user-selected threshold. Each distinct element represents
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a different flow and a sequence of identical elements repre-
sent bytes or packets of a flow. A flow is typically defined as
the set of packets that have common values in one or more
packet-header fields. The most common flow definition is a
five-tuple of the following packet-header fields: source and
destination IP addresses, source and destination port num-
bers, and protocol number.

A straightforward approach to solving the heavy-hitter
problem is to store each element identifier with a corre-
sponding counter monitoring the number of occurrences of
the element. Then, sorting the elements according to their
counters trivially gives the most frequent elements.

In many practical scenarios this simple solution is not
useful. Data streams have often a very large number of
distinct elements, which results in overwhelming and unpre-
dictable memory requirements for storing element identifiers
and counters. Consider the case of a NetFlow collector that
computes the traffic flows that generated the most traffic
over a period of a month. In a small enterprise network, the
number of unique five-tuple flows over a period of a month
is close to 100 million, which corresponds to 2.5 GBytes of
memory for storing 136-bit flow identifiers and 64-bit coun-
ters. The large memory requirements prohibit the use of the
simple solution in NetFlow collectors and in general in sys-
tems computing heavy hitters over data streams with many
distinct elements. Also, note that using disk to store (a
subset of) the flow identifiers and counters severely impacts
performance and is unsuitable when fast processing is im-
portant.

For these reasons techniques to computing heavy hitters
using fixed or bounded memory resources have been inves-
tigated. A characteristic of these is that they, in principle,
cannot find the exact heavy hitters. As it has been shown [3]
that one cannot find the exact frequency of heavy hitters
using memory resources sublinear to the number of distinct
elements. Instead, memory-efficient techniques approximate
the heavy hitters of a data stream. The approximation typ-
ically lies in that the frequency of an element is estimated
and the computed heavy hitters may include false positives.

Lossy counting [29] is an efficient and well-known algo-
rithm for finding heavy hitters. The algorithm has the fol-
lowing high-level operation. It splits an input stream of
elements into fixed-size windows and processes each window
sequentially. For each element in a window, it inserts an en-
try into a table, which monitors the number of occurrences
of the elements, or, if the element is already in the table, it
updates its frequency. At the end of each window, the algo-
rithm removes elements of small frequency from the table.
The table maintains a small number of entries and can, at
any given point in time, determine the heavy hitters of the
input data stream.

In lossy counting, an important parameter for each dis-
tinct element identifier in the table is its error bound. The
error bound (stored in the table) reflects the potential error
on the estimated frequency of an element due to possible
prior removal(s) of the element from the table. Its impor-
tance lies in its use in removing elements from the table —
an element with a small error bound is more likely to be
removed from the table than an equal-frequency element
having a large error bound is. In Section 4, we exploit this
property together with the characteristics of network traffic
flow sizes to drastically improve on the performance of lossy
counting.
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3. RELATED WORK

The work by Estan et al. [14] introduced novel algorithms
for computing network traffic heavy hitters using limited
memory resources. These provide an alternative to Net-
Flow sampling. The authors proposed to focus flow ac-
counting on heavy-hitter flows in order to deal with the
scalability problems of accounting for all flows. Keys et
al. [22] described algorithms that compute, at streaming
rates, sources or destinations of many flows. These source
and destination-based heavy-hitter algorithms were imple-
mented in the CoralReef [23] traffic monitoring system that
passively inspects packets on high-speed links. A set of stud-
ies by Duffield et al. [10, 11, 12, 13] introduced techniques
for sampling flow records generated by NetFlow or other
flow accounting technologies. The techniques assign a higher
sampling probability to heavy-hitter flows and create a sam-
ple of flow records from which it is then possible to estimate
the size of arbitrary subsets of the original unsampled data.
Heavy-hitter algorithms are available in generic data stream
management systems (DSMS), namely Gigascope [8], which
enable custom processing of traffic data streams, typically at
the cost of worse performance than specialized traffic mon-
itoring systems.

The described papers highlight that the problem of com-
puting heavy hitters appears in different network elements,
e.g., routers, passive sniffers, NetFlow collectors, and DSMSs,
and in different time scales. Devices like routers or sniffers,
which are directly attached to a link, compute heavy hitters
over short time scales of seconds or minutes, whereas Net-
Flow collectors and DSMSs typically compute heavy hitters
over longer time scales of days, weeks, or even months. De-
spite the differences in the time scales, the formulation of
the heavy-hitter problem and the qualitative requirements
in the different settings remain the same.

Current heavy-hitter algorithms rely on counting, hash-
ing, or sampling techniques. Manku and Motwani [29] in-
troduced lossy counting, which is a counting-based algo-
rithm for identifying heavy hitters. Karp et al. [21] and
independently Demaine et al. [9] introduced the Frequent
algorithm, which uses a fixed set of counters for finding
heavy hitters and requires two passes over a data stream.
The first pass identifies candidate heavy hitters, while the
second finds the exact frequency of the candidates. In ad-
dition, the Probabilistic-InPlace [9] and Space-Saving [30]
algorithms employ counting techniques to find heavy hit-
ters. In general, counting-based algorithms use 1) a fixed
or bounded number of counters for tracking the size of fre-
quent elements and 2) a condition for periodically deleting
or reallocating counters of infrequent elements. Counting al-
gorithms have low per-element processing overhead, as they
only require incrementing a counter in a hash table, and
a potentially high periodic housekeeping that may involve
sorting and deleting counters.

Hashing-based heavy-hitter algorithms have been proposed
in a number of studies [2, 18, 19, 16, 7, 24, 6]. These
works all use variants of the same underlying data structure
called a sketch', which is an one or two-dimensional array
of hashbuckets. Sketches bear similarities to the well-known
Bloom filters. They use fixed memory resources to esti-

' A number of different names for describing (variations of)
the same data structure exist in the literature, with sketch
being most common.
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mate the frequency of an arbitrary element of a data stream
and provide probabilistic guarantees on the estimation er-
ror. Sketches have a number of applications in networking
problems, namely, in estimating the flow-size distribution of
traffic streams [25, 34], in identifying anomalies [24, 32, 27],
and in traffic accounting [14].

Sophisticated sampling techniques have also been explored
by Gibbons and Matias [17], Demaine et al. [9], Manku and
Motwani [29], and Kamiyama and Mori [20]. Sampling tech-
niques reduce the necessary memory resources and the pro-
cessing overhead for identifying heavy hitters. On the other
hand, they typically exhibit a lower estimation accuracy.

A number of works have studied related problems. Zhao et
al. [35] and Venkataraman et al. [33] introduced data stream-
ing algorithms for finding sources or destinations that com-
municate with many other distinct destinations or sources.
Papagiannaki et al. [31] examined the dynamics of large traf-
fic flows and evaluated the viability of exploiting such flows
for traffic engineering. Chadi et al. [5] examined the prob-
lem of ranking flows from collected traffic samples and found
that high sampling rates are necessary to guarantee correct
rankings. Finally, Babcock and Olson [4] introduced algo-
rithms for the distributed version of the top-k problem, in
which multiple data streams are observed at different van-
tage points and the purpose is to minimize communication
overhead between vantage points for finding the globally &
most frequent elements.

4. PROBABILISTIC LOSSY COUNTING
4.1 Observations leading to PLC

The error bound associated with each element inserted in
the table in lossy counting is used in determining which el-
ements to remove from the table. An element is removed if
the sum of its frequency and error bound is less than or equal
to a given threshold. This condition results in elements with
a large error bound remaining in the table over many win-
dows. The number of entries in the table is analogous to
the queue occupancy problem. When elements stay in the
table for more (fewer) windows, then according to Little’s
law [28], the average size of the table increases (decreases).
Thus, the value of the error bound has a direct impact on
the memory consumption of the algorithm. The main im-
provement of PLC over lossy counting is to make the er-
ror bound substantially smaller than the deterministic error
bound of lossy counting, providing probabilistic guarantees.
As a result, elements stay in the table for fewer windows and
PLC has a lower memory consumption. The probabilistic er-
ror bound guarantees that with a desired probability 1 — ¢,
where § < 1, the error on the frequency of an element is
smaller than the bound.

We used lossy counting to compute the heavy-hitter flows
in a stream of NetFlow records captured in an enterprise
network. Each unique five-tuple flow is represented by a
distinct data-stream element. Figure 1 illustrates the cumu-
lative error distribution of elements inserted in the table in
the 400-th and 1000-th windows. Note that potential error
on the frequency of an element is the result of possible prior
removal(s) of the element from the table. The deterministic
bound and the 95-percentile of the two error distributions
are marked. The 95-percentile indicates a possible value
for the probabilistic error bound corresponding to § = 0.05.
The error of approximately 70% of the elements is equal to
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Figure 1: Error distribution of elements entering
the table at windows 400 and 1,000, 95-percentile of
error distribution, and deterministic error bound of
lossy counting. Note, that the deterministic bound
is significantly larger than the 95-percentile. The
data stream is a NetFlow trace, which we describe
in the evaluation section.

zero, whereas the error of more than 90% of the elements is
significantly smaller than the deterministic error bound. In
addition, in both distributions the 95-percentile is smaller
than half of the error bound. The shape and 95-percentile
of the error distributions denote that a probabilistic error
bound can be substantially smaller than a deterministic er-
ror bound.

Network traffic data contain many short-lived flows of
small size. The NetFlow trace? used for the experiment
shown in Figure 1, had 98.9% of flows that were smaller
than 100 packets. Small flows occupy entries in the table
of lossy counting. Consider, for example, a small flow of
100 packets that enters the table at some window. Lossy
counting assigns a large error bound to the flow and keeps
it in the table for 100 consecutive windows. In general, lossy
counting keeps any flow of m packets in the table for m win-
dows. Assigning a smaller error bound to the flow results in
keeping the flow in the table for fewer windows. Since there
18 a large number of small flows in network traffic traces, a
decrease in the error bound can drastically reduce the num-
ber of table entries. Thus using a probabilistic instead of a
deterministic error bound has the potential to substantially
reduce the memory consumption of the algorithm.

4.2 PLC Description

Formally, a data stream is a sequence of elements e1, ez, . . .
coming from a set E. A traffic data stream can be mapped
into a stream of elements by 1) associating a unique element
with each different flow and 2) repeating multiple copies of
the appropriate element to denote the packets or bytes of a
flow. If N is the length of the input stream at some given
point and s a value in (0, 1), then a heavy-hitter algorithm
seeks to find the elements with frequency larger than sN.

PLC splits an input stream into fixed-size windows of w =
[1/€] elements, where € is an error parameter (e < 1).
Each window is indexed with an integer ¢ such that 1 <

2We describe the NetFlow traces we use for our experiments
in Section 5.
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i < [N/w]. The table of counters is initially empty. The
windows are processed sequentially, and each element e is
checked whether it is already in the table. If it is not, the
estimated frequency ¢ of the element is initialized to one,
and a new table entry (e, é A), where A is the error bound
on ¢, is inserted. If e is already in the table, its estimated
frequency ¢ is incremented by one. At the end of each win-
dow, PLC deletes entries from the table for which ¢+ A <.
Given a heavy-hitter query with a threshold s, the algorithm
returns all elements with ¢ + A > sN. We summarize PLC
in Algorithm 1.

Discussion. Removing an element from the table can
introduce a subsequent error in its estimated frequency. If
a removed element later re-enters the table, then its new
frequency does not reflect the amount removed earlier. Ob-
viously, this error can only underestimate the true frequency
of an element, as a counter is only incremented when a cor-
responding element is observed.

We prove in Appendix A that the true frequency ¢ of an
element in the table is bounded by ¢ < ¢ < ¢é + ¢ with
probability 1 — 4. In other words, i = N/w = €N is a
probabilistic bound on the estimation error associated with
any element. The algorithm has an overall error bound €N,
whereas each element in the table has an individual error
bound A. In Lemma 3 we prove that A < i =eN.

Accordingly, given a heavy-hitter query, the algorithm re-
turns elements in the table with é > (s —€)N. The returned
elements include 1) true heavy hitters with frequency larger
than sN and 2) possible false positives with a true frequency
between (s — €)N and sN. In theory PLC has a small prob-
ability of returning a false negative, i.e., the algorithm may
omit a heavy hitter. A false negative occurs if the error
of an element exceeds the probabilistic error bound. The
probability of false negatives can be made arbitrarily small
by controlling the § parameter. In practice false negatives
are unlikely, which is consistent with our experiments in the
evaluation section that did not reveal any false negative.

As we prove in Appendix A, PLC has the same memory
bounds as lossy counting. The memory bound is 1/elog(eN)
for arbitrary data streams and 7/e for data streams in which
the low-frequency elements appear uniformly at random,
which is a property known to characterize real-world data
streams [29]. In addition, the bound is close to 2/e [26] for
data streams that exhibit Zipfian distributions.

4.3 Probabilistic Error Bound

We formulate the problem of finding the probabilistic er-
ror bound A on the estimated frequency ¢ of an element as
follows.

An element inserted in the table can have an error due to
prior removal(s) of the element from the table. The error
of the element is equal to its number of occurrences before
it was last inserted in the table. Let X be a random vari-
able denoting the error of an element that is inserted at
some point in the table. Formally,we want to find an error
bound A that satisfies Pr(X > A) < §, where § is some
small probability, say 0.05.

To find A, we exploit the empirical observation that the

size of network traffic flows follows a Zipfian distribution® [14].

As such, given its simplicity, and relation to the Zipfian dis-
tribution, we use the power-law cumulative distribution [1].

3In Appendix B we discuss how deviations from the Zipfian
distribution affect the performance of PLC.
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Algorithm 1: Pseudo-code of PLC

Input: Stream of elements e
Input: Error parameter €

w = [1/€];
D ={};
J=0;
i =0;
A =0;
forall e do
if e has an entry in D then
| D« (e,¢+1,A);
else
| D« (e,1,A);
end
JH+;
if j == w then
A = ComputeDelta;
forall (e, ¢, A) in D do
if ¢+ A <17 then
| delete (e,é,A) from D;
end

end
Jj=0;
i+
end

end

If Y is a random variable that denotes the true frequency of
an element, then Pr(Y > y) = ay®, where a (o < 1) and g
are parameters of the power-law distribution.

The error associated with elements inserted in the table
is equal to the frequency of these elements. In addition, all
elements inserted in the table at window ¢ have true fre-
quency smaller or equal to ¢ — 1 with probability 1 — § (cf.
Lemma 2 in Appendix A). From these two observations, it
follows that Pr(X > z) = Pr(Y > x’Y < i —1). The last
expression relates the error of elements entering the table
with the true frequency of these elements. The true fre-
quency of an element is now assumed to be described by a
power-law distribution. Using the expression of the power-
law distribution and that «, Pr(Y > y) < 1 we get:

Pr(X >z)=Pr(Y >z|Y <i-1)
_Pri—12>2Y >x)
T o Pr(Y <i—1)
Pr(Y >z)— Pr(Y >i—1)
1—Pr(Y >i—1)
B _(; —1)8 B _ (; —1\8
_ o7 (z 1) Sx (.z 1) W
1—a(i—1)7 1—-(i—1)8
Setting the right side of Equation (1) to a small probability §
and solving for x = A yields:

A= R{/6(1—(G—-1)8)+(i—1)» (2)

Equation (2) gives a closed form for computing the prob-
abilistic error bound A for data streams with power-law fre-
quency distributions.

The next problem necessary to address is the computa-
tion of the power-law parameter 3 used in Equation (2) for
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calculating the probabilistic error bound A. With proba-
bility 1 — 4, the table contains all the elements with true
frequency larger than i — 1. The frequency distribution of
these elements is:

Pr(Y > y|Y >i-1) = Pr(Y > y)/Pr(Y > i-1) =y°/(i-1)"

Observe that this frequency distribution follows a power-
law with the same parameter § as the overall frequency dis-
tribution of a data stream. Consequently, we can estimate
on-line by fitting a power-law on the frequency distribution
of elements in the table with ¢ > ¢ — 1. This approach has
the limitation of using the estimated frequencies ¢ instead
of the true frequencies ¢ for computing 3. In practice, our
evaluation in Section 5 shows that the estimated frequencies
are almost identical to the true frequencies with the error
being very small. For this reason, using the estimated in-
stead of the true frequencies for computing 3 introduces a
negligible error.

In summary, PLC 1) processes a data stream as described
in Algorithm 1; 2) at the beginning of each window uses
Equation (2) to compute the probabilistic error bound A of
each new element that will be inserted in the table during the
window; and 3) periodically estimates the parameter 8 by
fitting a power-law on the estimated frequencies of elements
with ¢ >4 — 1.

4.4 Dimensioning

The only user-selected parameter of the algorithm is the
window length w or equivalently the error parameter €, as w =
[1/€]. The choice of w affects the memory consumption and
the estimation accuracy of the algorithm. The error bound
of PLC is a function of w, whereas the empirical memory
consumption of the algorithm is linearly dependent on w.
This is because a larger window results in observing a larger
number of distinct elements within a window and thus the
number of table entries and the memory consumption in-
crease. In addition, the error parameter e determines the
overall error bound of the algorithm eN.

We describe three approaches that can be used to select
a value of w. One option is to use the available memory re-
sources for computing heavy hitters and the memory bound
of the algorithm to derive a value for w. Setting the mem-
ory bound to the available memory resources and solving
for w gives a parameter choice that guarantees the algo-
rithm will not exceed the available memory resources. This
approach is simple and provides strong guarantees on mem-
ory consumption. On the other hand, there is the limitation
that the empirical memory consumption of PLC is signifi-
cantly lower than the memory bound. As a result, PLC will
not fully use the available memory resources for computing
heavy hitters and the system will be over-provisioned.

A second option is to empirically evaluate the memory
consumption of the algorithm in the target environment us-
ing training data. In the evaluation section we show that,
and explain why, the memory consumption of PLC achieves
its maximum in the first few windows and then decreases
with time. Using training data, one can thus measure the
maximum memory consumption of the algorithm for differ-
ent values of w. Selecting the value of w that results in
maximum memory usage close to the available memory re-
sources addresses the over-provisioning problem of the first
option. One limitation is that it relies on training data for
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Table 1: Statistics of Enterprise and Datacenter
datasets.
Dataset Enterprise | Datacenter
Date 2006-05-22 | 2006-11-01
Duration one hour two hours
NetFlow packets 7,628 75,162
Flow records 234,931 2,158,637
Unique flows 113,281 1,468,221
Unique source IPs 7,801 108,511
Unique destination IPs 9,578 110,741

the target environment and requires conducting experiments
to determine w.

A third option is to select the error parameter e based
on a desired bound on estimation accuracy. For example,
a practitioner seeking to find heavy hitters with frequency
larger than sIN can select an appropriate value of € so that
the bound on the estimation error eN is small compared
with the threshold for heavy hitters siV.

The choice of one of the three methods for dimensioning
PLC depends on the priorities and requirements of a system
designer. The first and third choice provide strong guaran-
tees on the memory consumption and estimation accuracy
of the algorithm, whereas the second choice utilizes better
available memory resources and tailors the operation of the
algorithm to the specifics of the target environment.

5. EVALUATION

In this section, we evaluate the performance of PLC and
compare it with that of lossy counting and of multistage
filters.

Datasets. Our experiments used two NetFlow traces.
The first, which we call Enterprise, was collected from the
network of the IBM Zurich Research Laboratory. It hosts
approximately 400 employees and at least as many net-
worked workstations. NetFlow data are collected at the
two border routers of the network and sent to a NetFlow
collector.

The second trace, which we call Datacenter, comes from a
data center that hosts a large number of high-volume web-
sites. The data center serves between 300 and 1,600 flows
per second and approximately 30 thousand distinct client IP
addresses are observed within five minutes of normal busi-
ness hours. We summarize the statistics of the Enterprise
and Datacenter traces in Table 1.

Metrics. We evaluate the memory consumption of the
three algorithms. We monitor 1) the number of table en-
tries of PLC and lossy counting at the beginning and end
of each window, i.e., after and before removing small flows,
and 2) the total memory usage of a multistage filter and
report the memory usage in terms of equivalent number of
PLC table entries.

The second set of experiments evaluates the estimation
accuracy of the algorithms. We periodically issue a heavy-
hitter query, compute the relative estimation error (i.e., the
difference between the true and estimated size of a flow nor-
malized by the true size of the flow) of each flow returned,
and find the average error over all returned flows.

The third metric evaluates the prevalence of false posi-
tives. We periodically issue a heavy-hitter query and com-
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Figure 2: Memory consumption comparison of PLC and lossy counting (LC) algorithms. The plots depict
the number of table entries versus the window index for the Enterprise and Datacenter datasets.

pute the false positives ratio (FPR), which is the ratio of
false-positive heavy hitters to the total number of returned
heavy hitters.

5.1 Comparison with lossy counting

Figure 2 compares the memory consumption of PLC and
of lossy counting (LC). Subfigures 2(a) and 2(b) correspond
to the Enterprise trace, whereas Subfigures 2(c) and 2(d)
correspond to the Datacenter trace. In all the experiments,
the window length parameter w was set to 100,000. As
expected, PLC exhibits a lower memory consumption than
lossy counting. In particular, using the Enterprise trace, the
average and maximum number of table entries of PLC were
37.3% and 21.7% lower than the corresponding numbers of
lossy counting. Using the Datacenter trace, the memory
savings of PLC in terms of average and maximum number
of table entries were 74% and 38.1%, respectively.

The difference in the number of table entries of the two
algorithms occurs because the algorithms use a different er-
ror bound A. Assume a flow of 100 packets that enters the
table at window 1,000. This flow is small and does not be-
long to the heavy hitters. Lossy counting assigns a large
deterministic A = 999 and the flow remains in the table for
100 windows, i.e., until window ¢ = 1,099, at which time
the removal condition ¢ + A < i is satisfied. On the other
hand, PLC assigns a smaller A that is equal to 136.5 (assum-
ing 8 = —0.9 and 6 = 0.01). The flow-removing condition is
then satisfied at the end of the window when the flow enters
the table. Consequently, the flow remains in the table only
for a single window.

Consider a short flow to be one that enters the table at
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some point in time but is not in the table at the end of an
experiment. These account for 90% and 98% of the flows in
the Enterprise and Datacenter traces, respectively. Signifi-
cant is the average number of windows a short flow is in the
table. In the Enterprise trace, short flows occupy a table
entry for an average of 3.72 windows with PLC and of 7.49
windows with lossy counting. Similarly, in the Datacenter
trace they are in the table for an average of 1.98 windows
with PLC and of 10.51 windows with lossy counting. The
reduction in the number of windows short flows remain in
the table explains the memory improvements of PLC over
lossy counting.

In addition, note that in the Subfigures 2(b) and 2(d)
the PLC algorithm reaches its maximum memory utiliza-
tion during the first few windows and that then the number
of table entries gradually decreases. This behavior is be-
cause of the flow-removing condition ¢+ A < ¢. The index ¢
increases linearly and has a small value in the first few win-
dows. Therefore, in the first windows only a few flows are
removed and the number of table entries becomes relatively
high. The probabilistic A parameter exhibits a sublinear in-
crease and with time it becomes substantially smaller than
the window index ¢. To illustrate this, we plot in Figure 3 the
probabilistic and deterministic A in the experiments with
the Datacenter trace versus 7. The probabilistic A becomes
increasingly smaller than ¢ and thus the removal condition
is satisfied for more flows and the number of table entries
decreases. On the other hand, the deterministic A of lossy
counting is equal to A = ¢ — 1 and increases linearly with
the number of windows. Thus, the number of table entries
of lossy counting remains high. The behavior of the prob-
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Figure 3: Values of the deterministic and probabilis-
tic parameter A using the Datacenter trace.

abilistic A in Figure 3 highlights the following important
property of PLC: with time the number of small flows that
occupy a table entry decreases. Thus, the memory gains of
PLC over lossy counting are larger for longer data streams.
This is why the average number of windows for which small
flows remain in the table decreases from 10.51 to 1.98 in the
longer Datacenter trace, while it decreases from 7.49 to 3.72
in the shorter Enterprise trace.

Next, we evaluate the accuracy of PLC in estimating the
sizes of heavy hitters and compare to the accuracy of lossy
counting. It is expected that PLC has a lower estimation
accuracy than lossy counting, as it is more aggressive in
removing flows. From the different experiments performed
using the two datasets and parameters s = 0.01,0.001, and
0.0005, we illustrate in Figure 4 the experiment in which
PLC had the worst estimation accuracy compared with lossy
counting. The figure plots the Commutative Distribution
Function (CDF) of the average error of heavy hitters larger
than 0.05% (s = 0.0005) of the Datacenter trace. First, ob-
serve that lossy counting has a very low average error that
is always lower than 0.005%. Secondly, the distribution of
PLC is shifted to the right, which means that the average er-
ror of PLC is larger than that of lossy counting. For most of
the time, however, the average error of PLC is only slightly
larger than that of lossy counting: 70% of the average er-
ror samples are lower than 0.0008% for PLC and lower than
0.0006% for LC. In addition, the average error of PLC is
always lower than 0.09%, which is acceptable for most ap-
plications. Figure 4 highlights that 1) as expected lossy
counting has a very low estimation error, 2) PLC exhibits a
higher estimation error than lossy counting does, and 3) the
estimation error of PLC is also very low and acceptable for
most applications.

Finally, we compare the ratio of false positives of the two
algorithms. In Figure 5 we illustrate the Complimentary
CDF (CCDF) of the FPR of PLC and of lossy counting
for s = 0.001 and s = 0.0005 using the Datacenter trace. We
observe that PLC exhibits a lower FPR than lossy counting
does. For s = 0.001 and 0.0005, PLC has 40.5% and 37.9%,
respectively, fewer false positives than lossy counting. The
decrease in the number of false positives is because PLC uses
a less conservative A parameter than lossy counting. Recall
that false positives are flows with true size between (s —e) N
and sN that are returned in a heavy-hitter query. A heavy-

ACM SIGCOMM Computer Communication Review

13

CDF

mean error

Figure 4: CDF of average error of PLC and lossy
counting algorithms. The average error on the es-
timated sizes of heavy hitters corresponds to the
experiment using the Datacenter trace and parame-
ter s = 0.0005. This experiment resulted in the worst
performance of PLC of all the experiments made.
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Figure 5: CCDF of FPR metric measuring preva-
lence of false positive heavy hitters. The distribu-
tions compare the number of false positives of PLC
and lossy counting for s = 0.001 and s = 0.0005.

hitter query returns all flows for which ¢+ A > sN. As the
deterministic A of lossy counting is larger than the prob-
abilistic A of PLC, the last condition is satisfied for more
flows with lossy counting than with PLC. For this reason,
PLC has fewer false positives.

5.2 Comparison with multistage filters

A multistage filter (MF) [14] is an efficient and well-known
data structure for finding network traffic heavy hitters. It
uses a two-dimensional array of hash buckets to identify
flows with size above a threshold and inserts those into a
flow memory.

We implement a multistage filter along with the conservative-
update and shielding optimizations discussed in [14]. To
compare the performance of MF and PLC, we use the di-
mensioning heuristics in [15] and set the number of stages
and stage counters of MF to 4 and 16,011, respectively. We
set the threshold parameter of MF for inserting large flows
into the flow memory equal to the corresponding threshold
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Figure 6: Memory consumption of PLC and MF.

Table 2: Estimation error, false positive ratio, and
average number of returned heavy hitters of PLC
and MF.

Heavy average error / FPR / heavy hitters

hitter PLC MF with MF w/o
query shielding shielding

> 1% 0%/0%/10 0%/0%/10 0%/0%,/10
>01% | 0%/0.2%/75 | 0%/0%/78 0%/0% /78
> 0.01% | 0%/3.1%/577 | 0.6%/2.1%/530 | 0.6%/2.3%/531

of PLC for removing small flows from its table. We report re-
sults using the shorter Enterprise trace, as MFs are designed
for finding heavy hitters mainly on short data streams of few
minutes up to an hour [14].

Figure 2 illustrates the memory consumption of PLC, of
MF without shielding, and of MF with shielding. The aver-
age memory consumption of PLC is 34.4% and 48.8% lower
than that of MF with and without shielding, respectively.
In addition, the memory consumption of PLC reaches its
maximum in the first few windows and then decreases with
time. On other other hand, the memory consumption of MF
strictly increases with time and reaches its maximum at the
end of the data stream. As a result, systems dynamically
managing the provisioned memory for a heavy hitter algo-
rithm can benefit substantially from using PLC over MF.

In Table 2 we compare the average error, the FPR, and
the average number of returned heavy hitters of the two
algorithms for different heavy hitter queries. PLC has a
slightly lower estimation error than MF, whereas MF has a
slightly lower number of false positives than PLC. Overall,
though, the differences are small and both algorithms ex-
hibit an equally good performance in finding (the size of)
heavy hitters.

5.3 Summary of evaluation results

In summary, our evaluation of PLC and comparison with
lossy counting and MFs resulted in the following main find-
ings:

1. PLC uses substantially fewer memory resources than
lossy counting and MFs. In the experiments, the mem-
ory savings in terms of average memory consumption
ranged between 37.3% and 74% over lossy counting
and between 34.4% and 48.8% over MFs.
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2. The memory savings of PLC increase as the data streams
get longer.

3. PLC returns fewer false-positive heavy hitters than
lossy counting does.

4. PLC and MF's exhibit similar performance in terms of
estimation error and number of false positives.

5. The accuracy of PLC in estimating the sizes of heavy
hitters is worse than that of lossy counting. Never-
theless, the estimation error is low enough, i.e., lower
than 0.09% in our experiments, to be acceptable for
most applications.

6. CONCLUSIONS

This work introduces PLC, a heavy-hitter algorithm for
finding large flows in streams of network traffic data. The
algorithm is tailored for data streams exhibiting power-law
size distributions, which is a property known to character-
ize flow sizes. In addition, PLC is based on and improves
upon the lossy counting algorithm. Compared with lossy
counting, PLC uses a probabilistic error bound instead of a
deterministic one. This change drastically reduces the mem-
ory resources needed for computing heavy hitters as well as
the number of false positives.

Our evaluation experiments show that PLC improves cer-
tain important aspects of state-of-the-art heavy hitter al-
gorithms. In particular, PLC exhibits substantially better
memory consumption than lossy counting and multistage fil-
ters, which was between 34.4% and 74% lower. In addition,
PLC exhibits better, similar, or only slightly worse perfor-
mance than lossy counting and multistage filters in terms of
estimation error and false positives.
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Appendix A

The following lemma and theorems apply to PLC.
Lemma 1. When an element is removed from the table,

then ¢ < i with probability greater than or equal to 1 — 0.
Proof: With probability at least 1—4 the true frequency ¢

of an element is smaller than ¢ + A. The condition for re-
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moving elements from the table is ¢ + A < i. It follows
that when an element is removed from the table ¢ < i with
probability at least 1 — 6.

Lemma 2. If an element is not in the table, then ¢ < i@
with probability greater than or equal to 1 — §.

Proof: If the element never entered the table, then ¢ =
0 < 4. If the element was removed from the table at win-
dow j < i, then from Lemma 1 follows that ¢ < j < ¢ with
probability at least 1 — 6.

Lemma 3. A < i with probability at least 1 — 9.

Proof: According to Lemma 2 the true frequency an
element that is not in the table has a bounded true fre-
quency ¢ < i with probability 1 — §. Consequently, A < ¢,
with probability at least 1 — 6.

Theorem 1. If an element is in the table, then ¢ < ¢ <
¢+ i with probability greater than or equal to 1 — 4.

Proof: The algorithm can only underestimate the fre-
quency of an element, which yields the left part of the in-
equality. Now, ¢ < ¢ + A with probability > 1 — 4, as A is
the probabilistic error bound on the frequency of an element.
From Lemma 3 and the last relation follows that ¢ < é+4
with probability > 1 — 4.

Theorem 2 PLC and lossy counting share the same mem-
ory bounds.

Proof: A probabilistic error bound is equal to or smaller
than a deterministic error bound. PLC uses a probabilistic
error bound instead of a deterministic error bound in the
condition for removing elements from the table. This condi-
tion is ¢+ A < 4. It follows that an element that is removed
from the table with lossy counting is also removed from the
table with PLC. Both algorithms use the same procedure
for inserting elements in the table. Consequently, PLC can-
not have more table entries than lossy counting and the two
algorithms share the same memory bounds.

Appendix B

A natural question to ask is how the performance of PLC
changes when the distribution of flow sizes is not exactly
Zipfian.

If the distribution of flow sizes is substantially different
from Zipfian, then the error bound of PLC does not hold.
This means that the error on the estimated sizes of heavy
hitters can in theory be large. In practice, heavy hitters are
substantially larger in size than the threshold of the algo-
rithm and, thus, have to be removed multiple times from
the table in order to accumulate significant error. In other
words, heavy hitters need to flip between being small flows
and large flows over time. This scenario is unlikely in prac-
tice and thus the empirical error of PLC can be acceptable
even for non-Zipfian distributions.

PLC exhibits a lower memory usage than lossy counting
because the probabilistic error bound computed with Equa-
tion 2 is smaller than the deterministic error bound of lossy
counting. If the distribution of flow sizes deviates from the
Zipfian model, then the memory improvements of PLC over
lossy counting will be affected. Recall that the memory im-
provements are the result of PLC being more aggressive in
removing small flows from the table. It follows that if the
size distribution has a larger proportion of small flows, then
the memory improvements of PLC will be higher, and oth-
erwise lower.

To evaluate the performance of PLC for different size dis-
tributions, we implemented a simple technique to change the
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Table 3: Memory usage and error of PLC and lossy
counting for synthetically altered traces that exhibit
different flow-size distributions.

D 0 0.2 04
PLC av. 7,009 | 10,126 | 12,475
memory usage
lossy counting i) g5 | 17483 | 21,944
av. memory usage
reduction in av. 37.3% 42.1% 43.2%
memory usage
PLC av. error 0.012 % | 0.019 % | 0.027 %

size distribution of our traffic traces. We selected p percent
of the elements in a window, taking an equal share from each
flow, and uniformly reallocated the selected elements to the
flows in the window. In effect, the technique reduces the size
of large flows and increases the size of small flows making
the size distribution less skewed. Then, we used the tech-
nique to change the size distribution in the Enterprise trace
and repeated our experiments with synthetically modified
versions of the trace.

Table 3 illustrates the average memory usage of PLC and
of lossy counting, the memory reduction of PLC over lossy
counting, and the average error on the computed heavy hit-
ters with PLC. As with the experiments in Section 5, we
periodically issued a heavy hitter query with s = 0.0005
and computed the average error on the sizes of the returned
heavy hitters. In the table we report the worst average er-
ror value encountered in each experiment. We first observe
that the average memory usage of PLC and lossy counting
increases as the size distribution becomes less skewed. This
happens because less skewed distributions have a higher pro-
portion of medium size flows that enter and stay in the ta-
ble of the algorithms and, thus, contribute to the memory
utilization. In addition, we observe that the memory im-
provements of PLC over lossy counting are higher for less
skewed distributions. As explained above, this is the result
of PLC being more aggressive in removing flows of small
size, which are more prevalent in distributions with higher
values of p. Finally, the average error increases with p but
remains substantially low, which confirms that in practical
scenarios heavy hitters do not accumulate significant error.

In summary, we explain and show that PLC exhibits a
good performance when the size distribution is not exactly
Zipfian. The most important negative implication on the
operation of the algorithm is that the error bound does not
hold for distributions that are not suitable approximated by
the Zipfian model. Nevertheless, in realistic scenarios that
involve heavy hitters of substantially large size, the error
on the heavy hitters remains low. Thus, with appropriate
care, e.g., empirical verification, the algorithm could also be
used with distributions that cannot be approximated by the
Zipfian model.
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