
Traffic Classification through Simple Statistical
Fingerprinting∗

Manuel Crotti, Maurizio Dusi, Francesco Gringoli, Luca Salgarelli
DEA, Università degli Studi di Brescia, Italy

Email: <first.last>@ing.unibs.it

ABSTRACT
The classification of IP flows according to the application
that generated them is at the basis of any modern network
management platform. However, classical techniques such
as the ones based on the analysis of transport layer or appli-
cation layer information are rapidly becoming ineffective.
In this paper we present a flow classification mechanism
based on three simple properties of the captured IP packets:
their size, inter-arrival time and arrival order. Even though
these quantities have already been used in the past to define
classification techniques, our contribution is based on new
structures called protocol fingerprints, which express such
quantities in a compact and efficient way, and on a simple
classification algorithm based on normalized thresholds. Al-
though at a very early stage of development, the proposed
technique is showing promising preliminary results from the
classification of a reduced set of protocols.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations

General Terms
Classification, algorithms

Keywords
Traffic classification, transport layer

1. INTRODUCTION
Traffic classification mechanisms belong to the wide set of

tools that help the allocation, control and management of
resources in TCP/IP networks, and improve the reliability of
Network Intrusion Detection Systems (NIDS). An effective
mechanism for the classification of traffic flows according
to the application layer protocols that generated them can
suggest suitable measures to prevent or ease network con-
gestion, to deploy QoS-aware mechanisms successfully, or to
counter network attacks.

Different techniques can be used to classify IP traffic. The
simplest method is to identify the application that gener-
ated each flow by its transport level source and destina-
tion ports [1]. However, standard services are frequently

∗This work was supported in part by a private grant from
Uniautomation SpA.

run on non-standard ports, for example to circumvent pol-
icy restrictions. Moreover, some increasingly popular appli-
cations, such as peer-to-peer services, do not even rely on
a predefined set of well-known ports. Other classification
techniques as the ones present in many NIDS such as Bro
and Snort [2, 3] rely on the detailed analysis of each packet
payload. The main drawback of this kind of approaches is
the computational power needed to classify the traffic, since
the finite state machines that drive the application layer pro-
tocols must be decoded. Therefore, these techniques scale
poorly to the capacity of current high-speed networks, lim-
iting their use to lower bandwidth links.

Our approach belongs to yet another class of techniques,
those which try to classify network traffic relying exclusively
on the statistical properties of the flows (see for example [4,
5]). The key idea behind our work is that the statistical
properties of basic elements of each network flow, i.e., the
size of the IP packets, their inter-arrival time and the order
in which they are seen at the classifier should be sufficient
to determine which application layer protocol generated the
traffic. In this paper we provide three research contribu-
tions. We first define the notion of protocol fingerprints,
which express the three traffic properties mentioned above
in a compact and efficient way. By means of the definition
of anomaly score, our protocol fingerprints allow the mea-
surement of “how far” an unknown flow is from the basic
characteristics of each protocol. We then introduce a rel-
atively simple classification algorithm, based on the use of
protocol fingerprints. The algorithm can classify flows dy-
namically as packets pass through the classifier, deciding if
a flow belongs to a given application layer protocol, or if
it was generated by an “unknown” (i.e., non-fingerprinted)
protocol. Finally, we provide some preliminary results that
show how our approach is effective at classifying a set of
protocols that represent the majority of the traffic flowing
from a large university campus to the Internet.

The key differences from existing approaches are the use
of normalized thresholds in the classification algorithm, the
application of a smoothing filter to Probability Density Func-
tions (PDF), so as to counter the effect of noisy factors, and
the use of the packet arrival order as one of the main ele-
ments in the definition of protocol fingerprint. The proposed
algorithm is computationally simple: the comparison of a
flow against a known fingerprint only requires the algebraic
sum of a few terms obtained by looking up values in PDF
tables. Moreover, the low false positive ratios achieved so
far in the detection of non-fingerprinted traffic indicate the
effectiveness of fingerprints for protocol characterization and

ACM SIGCOMM Computer Communication Review 7 Volume 37, Number 1, January 2007



consequentially, a certain degree of robustness of the classi-
fier against the emergence of new application layer protocols
can be reasonably expected.

This technique is at a very early stage of development, and
therefore the preliminary results presented in this paper are
not meant to be conclusive about the effectiveness of our
approach. On the contrary, this paper is meant to simply
present the idea, and to show how the results we obtained
so far are promising for this research direction, even if they
were derived working on a reduced set of protocols and under
relatively simplifying assumptions.

The rest of this paper is organized as follows. In Section 2
we discuss related work. The definitions of protocol finger-
print and anomaly score are introduced in Section 3. We
define the classification algorithm and discuss how it can
be used in practice in Section 4. Section 5 presents prelimi-
nary experimental results and their analysis. We discuss the
aspects related to the applicability of our technique in Sec-
tion 6. A summary about the work required to improve the
classification technique and to fully prove its general appli-
cability is presented in Section 7, while Section 8 concludes
the paper.

2. RELATED WORK
The idea of using the statistical properties of network traf-

fic to classify flows, or at least to describe their behavior, is
not new. Early, pioneering studies by Paxson et al. on
Internet traffic characterization [6, 7] focus on the relation-
ship between the observed statistical properties of flows and
the application protocols that generated them. These works
show that analytical models based on random variables such
as packet length, inter-arrival times and flow duration can
be suitable to express the behavior of a few protocols. These
papers do not make any attempt to classify flows according
to application layer protocols.

One of the first attempts to classify application-specific
traffic by Mena et al. [8] shows how Real Audio flows may
be identified among aggregates. With a simple analysis of
packet lengths and inter-arrival times, the technique de-
scribed in this work aims at allowing QoS deployment for
audio traffic. Dewes et al. [4] use a similar approach to an-
alyze chat traffic. To overcome one of the key issues with
statistically-trained classifiers, i.e., the lack of verifiable ref-
erence data, this work was based on the analysis of Internet
Relay Chat traces, since such traffic is easily identifiable
even by payload analysis. These works differ from ours in
that they focus exclusively on a single type of application.

Other trained approaches confirm the possibility of dis-
crimination between different application classes, e.g. bulk
FTP data versus low-jitter audio packets, with the objec-
tive of supporting service differentiation. Campos et al. [9]
and McGregor et al. [10] show that traffic pattern similar-
ity between different application layer protocols can be ex-
ploited to group observed flows into hierarchical clusters.
Even if only a few representative features are taken from
each flow, such as the number of exchanges between the
endpoints, the total number of bytes, connection duration
and so on, the clusters show the effectiveness of untrained
coarse statistical traffic classification aimed at the discrim-
ination among different application classes. The technique
presented by Roughan et al. [11] shows that a useful set of
features allowing discrimination between traffic classes can
be located at different levels (single packet, flow, connection

and so on) and they can be successfully exploited by Nearest
Neighbor and Linear Discriminant Analysis algorithms. An-
other trained approach for class discrimination has also been
demonstrated with a supervised machine learning technique
by Moore et al. [12]. Although based on full and determin-
istic payload analysis, Moore et al. [13] also try to identify
classes of traffic, instead of focusing on the classification of
specific application layer protocols. Even if these approaches
could lead to an effective deployment of QoS-based mecha-
nisms, probably they would not be precise enough to allow
fine-grained application layer protocol discrimination, such
as IMAP vs. SMTP.

A recent work of Bernaille et al. [14] proposes the use
of three clustering techniques to achieve fine-grained clas-
sification based on size and direction of packets. They try
to characterize the behavior of an application protocol by
means of a set of clusters in a n-dimensional space, where
n is fixed and indicates the number of packets considered
for each flow. According to clusterization, a flow is mapped
to the n-dimensional space and assigned to an application
by means of heuristics based on minimum distance criteria.
Conversely, our approach is based on the definition of statis-
tical fingerprints that take into account not only the size of
packets and their direction, but also inter-arrival times and
arrival order. We use Gaussian filtering to counter noise
and classify flows by means of normalized anomaly score
thresholds. The differences in the two methodologies seem
to lead to pros and cons of different nature: while our ap-
proach seems to be significantly more precise both with fin-
gerprinted and with non-fingerprinted protocols, it is clear
that the mechanism proposed in [14] leads to clusters that
should be more easily portable from one site to another. On
the other hand, their work is applied to a richer application
set than ours, due to the unavailability of a larger data set
on our network: at this point of our research it is not clear
whether the promising results described in this paper would
hold in the case of more heterogeneous data sets. In future
works it would be interesting to assess how much the use of
inter-arrival times and packet order has an impact on the
higher classification precision of our mechanism (but on this
point, and in general on the current difficulty in comparing
different classification techniques, please see Appendix A).

The approach shown by Nilsson et al. [15] focuses on the
statistical analysis of network traffic and shows promising re-
sults for fine-grained protocol classification. Although this
technique tries to express the statistical properties of each
application layer protocol with simple size/inter-arrival time
distributions, it is different than the one presented in this
paper. While their approach relies on a clustering technique
based on a low-resolution binning of the distribution planes,
ours is based on a definition of anomaly score that is depen-
dent on the order packets are exchanged in each flow, and
that is calculated using a high-resolution, Gaussian-filtered
vector of distribution planes. Finally, Karagiannis et al. [5]
introduced a classification method based on the analysis of
host behavior, with the same goals as ours: the classifica-
tion of flows according to the applications that generated
them without payload analysis. However, their approach
differs considerably from ours: in their case, the classifica-
tion is made by associating a host behavior pattern to one
or more applications and refining the association by means
of heuristics and behavior stratification.

ACM SIGCOMM Computer Communication Review 8 Volume 37, Number 1, January 2007



3. PROTOCOL FINGERPRINTS
In this paper, we focus on the classification of IP flows

produced by network applications exchanging data through
TCP connections such as HTTP, SMTP, SSH, etc.1 With
this kind of applications in mind, we define flow F as the uni-
directional, ordered sequence of IP packets produced either
by the client towards the server, or by the server towards
the client during an application layer session. A classifier on
the path between the client and the server will therefore see
two flows, the client-server flow, composed of (Nclient + 1)
IP packets, from Pkt0 to PktNclient , where Pktj represents
the j-th IP packet sent by the client to the server, and
the corresponding server-client flow Fserver, composed by
(Nserver + 1) IP packets.

At the IP layer, each flow F can be characterized as an
ordered sequence of N pairs Pi = {si, ∆ti}, with 1 ≤ i ≤ N ,
where si represents the size of Pkti and ∆ti represents the
inter-arrival time between Pkti−1 and Pkti. Our study is
based on the tenet that the statistical information contained
in an appropriate amount of flows generated according to
the same application layer protocol rules should be enough
to decide whether an unknown flow is in agreement with
such protocol or not. We name such statistical information
protocol fingerprint, and we define it in the remainder of this
section.

The rationale behind the use of packet size, inter-arrival
times and arrival order (of packets) for the classification of
network flows lies in the observation that at least during
the beginning stage of each layer-4 connection, the statistics
related to each of these quantities depend mostly on the
application-layer state machine that has generated the flow.
This proves to be true, for example, for the authentication
stage in a POP3 retrieval, for the SMTP helo-sender-receiver
agreements, the HTTP data request, and so on. We expect,
in fact, that the exchange of TCP segments resulting from
two applications talking to each other should break the data
flow into packets and time such packets in a way that is very
specific to protocol-dependent statistics.

3.1 Protocol fingerprint precursors: Proba-
bility Density Function vectors

The generation of a given application layer protocol’s fin-
gerprint starts from the evaluation of a set of L Probability
Density Functions PDFi, estimated from a set of flows (a
training set) generated by the same, known protocol, and
captured by a monitoring device. The i − th PDFi is built
on all the i−th pairs Pi belonging to those flows that are at-
least i+1 packets long. The objective of PDFi is to describe
the behavior of the i-th packets on the plane (packet-size s,
inter-arrival time ∆t) for a certain protocol. The rationale
behind using only the i−th pairs of each flow to build PDFi

is to take into account not only the statistics of packet size
and inter-arrival time, but also the order of each packet as
seen by the classifier.

Variable s is discrete and assumes values in a range dimen-
sioned according to the minimum and maximum size of an
IP packet on the network interface used to collect the traces.
For example, on an Ethernet link, s would range from 40 to
1500 (bytes). Variable ∆t is, instead, sampled with resolu-
tion coherent with the speed of the network interface used

1The extension of our work to other kinds of transport layer
protocols, such as UDP, is left as future work.

Figure 1: Summary of the procedure used to derive
the mask vector ~M for a certain protocol, starting
from flows generated by such protocol.

to capture the traffic traces and with the clock resolution of
the capture device, and binned accordingly. In case of Tcp-
dump [16] used on off-the-shelf hardware, the PDFi plane
can be realistically binned along the (log10) ∆t-axis from
10−7 to 103 (seconds), with step 0.012. Each resulting PDFi

matrix in our example above would be 1461x1001. Finally,
if L + 1 is the number of packets of the longer-lived flows
used to analyze a certain protocol, we order the resulting L
PDFi into the Probability Density Function vector ~PDF .

3.2 Anomaly scores and protocol masks
In order to classify an unknown traffic flow given a set

of different ~PDF s we need to check if the behavior of the
flow is statistically compatible with the description given by
at least one of the ~PDF s; furthermore, we need to choose
which ~PDF describes it better.

We are looking for a definition of an anomaly score S that
could describe “how statistically far” an unknown flow F
is from a given protocol ~PDF . A basic building block of
such anomaly score is the value that the i − th component
of ~PDF assumes in Pi, with Pi being the i − th pair of
the unknown flow. This value should give us the correlation
between the unknown flow’s i − th packet and the applica-
tion layer protocol described by the specific ~PDF used: the
higher the value, the higher the probability that the flow
was generated by such protocol.

However, the random variables that are used to build each
protocol’s ~PDF are affected by forms of “noise”, such as
variability in round trip times caused by network congestion,
changes in MTU values caused by alternate paths between
sender and receiver, and differences in the local implemen-
tation of each protocol’s state machine. A way we devised
to take into account noise effects on (s, ∆t) when calculating
the anomaly score of a given packet Pi against a PDFi, is
to also consider the values of PDFi in a region close to Pi.
To this end, we introduce the concept of protocol mask ~M as
the basic component of a protocol fingerprint. ~M is defined
as the vector of L matrices resulting from the application
of a Gaussian filter to each component of the ~PDF vector,
and rescaling every resulting matrix so that it still sums to
1, according to the properties of any PDF.

2Note that although the binning of the ∆t axis is done to
accept time-stamp differences of as little as 10−7 seconds,
in our case this is a value that is far too conservative, since
Tcpdump will not be able to reach this kind of accuracy on
off-the-shelf hardware. However, this fact does not impact
the correctness of our methodology, since the same inaccu-
racies imputable to Tcpdump are expected to affect homo-
geneously the generation of every protocol’s PDFi.

ACM SIGCOMM Computer Communication Review 9 Volume 37, Number 1, January 2007



Figure 1 shows a summary of the procedure to derive the
mask vector ~M for a certain protocol. The rationale behind
the idea that the filtering operation helps countering the ef-
fects of the forms of noise described above is simple, and it
is best explained with an example. Let us consider a packet
that would fall on the barycenter of a highly-populated part
of a given protocol’s PDFi in the absence of noise, therefore
contributing positively to the probability that the flow under
consideration was generated by such protocol. However, be-
cause of even slight variations on RTTs, such packet might
now fall outside the highly-populated part of the PDFi,
possibly even on a non-populated part. Since applying a
Gaussian filter to each PDFi plane smooths its values, the
operation should help the classifier recover from such errors
induced by noise3. Naturally, the tuning of the parameters
of the Gaussian filter will be one of the main design choice
of the classifier, as we will see in the following.

We can now proceed to the actual definition of anomaly
score S. We start by introducing an anomaly score vector ~A,
whose i−th component Ai is a function of the value Mi(Pi).

The i− th component of vector ~A is defined as follows:

Ai (Pi, Mi) =
1

max (ε, Mi (Pi))
, (1)

where Mi (Pi) is the value of Mi calculated in Pi, and ε
is a small positive quantity. We introduce the term ε to let
the score be always finite, even when Mi is zero in Pi

4. By
construction, the following will hold true for any value of Pi

on the plane (s, ∆t): 1 ≤ Ai (Pi, Mi) ≤ ε−1.

Starting from the definition of anomaly score vector ~A
we can now define the anomaly score S of F versus ~M as
follows:

Sn

“
F, ~M

”
=

[
Pn

i=1 Ai (Pi, Mi) /n]−Amin

Amax −Amin
, (2)

where 1 ≤ n ≤ N , N is the minimum between the number
of pairs composing F and L, and Amin,max are the allowed
extreme values of A as defined above, i.e., 1 and ε−1, re-

spectively. This implies that 0 ≤ Sn

“
F, ~M

”
≤ 1.

Sn is a function of n, the number of packets of the flow
we are considering. Using this definition, it is possible to
calculate the anomaly score of a given flow against a given
protocol mask as the classifier “sees” the flow: as more pack-
ets arrive at the classifier, the flow’s anomaly score from a
given protocol mask will be calculated including more ele-
ments from the mask vector.

3.3 Anomaly score thresholds
Protocol masks summarize one side of the statistical be-

havior of flows produced by the same protocol. Other sta-
tistical elements at the basis of our definition of protocol fin-
gerprint are the mean and standard deviation of the anom-
aly scores of the flows used to build a given protocol mask:

3Indeed, other forms of noise such as packet loss and packet
reordering would also have to be considered, in this case al-
lowing values from PDFi close to the one being considered
to have an impact on the anomaly score. We will study coun-
termeasures to these other types of noise in future works.
4ε can be arbitrarily small. Given its purpose, i.e., to let
the score be finite even when the value of Mi is zero, in this
paper we assume that ε is an order of magnitude smaller
than the smallest non-zero value of Mi. Values smaller than
this would not affect the results presented here.

1: for (j = 1; j ≤ K; j++):
2: compute Sn

`
F, M j

´
as in Eq.2

3: Xj
n = Sn

`
F, M j

´
/T j

n

4: if minj{Xj
n} ≤ 1:

5: F ∈ argminj{Xj
n}

6: else:
7: F ∈ unknown

Figure 2: Classification algorithm.

this is instrumental in the classification algorithm to help it
decide when an unknown flow is “far enough” from each fin-
gerprinted protocol to be considered “not classifiable”. For
this purpose we define protocol p’s anomaly score threshold
~T p as the vector composed by the sum of the mean µ and
standard deviation σ of the anomaly scores of the flows used
to build p’s mask vector. The ~T p vector is composed of as
many elements as the anomaly score vector ~A. Each element
of ~T p can be calculated as:

T p
n = µ{Sn

“
F, ~Mp

”
}+ σ{Sn

“
F, ~Mp

”
}, (3)

where ~Mp is protocol p’s mask vector and F represents
the set of flows used to build it. The threshold vector ~T p

represents the upper bound of the anomaly score that a flow
can reach to be considered generated by protocol p.

3.4 Protocol fingerprints
We define protocol p’s fingerprint Φp as the union of the

two statistical vectors defined above, i.e., protocol p’s mask
vector ~Mp and protocol p’s threshold vector ~T p. The tenet
of this paper is that Φp = { ~Mp, ~T p} represents, in a com-
pact and efficient way, the main statistical properties of the
flows produced by protocol p, and can therefore be used to
classify flows produced by it. Note that the fingerprints are
supposed to be site-dependent, i.e., they are not supposed
to be transportable from one network gateway to another.
Each site would have to build its own fingerprints. In gen-
eral, this technique assumes that the classifier is placed on
the same network segment used for the training phase.

4. CLASSIFICATION ALGORITHM
Building on the definition of protocol fingerprint and anom-

aly score, we can introduce the following classification algo-
rithm, outlined in Figure 2. In practice, given K protocol
fingerprints Φj = { ~M j , ~T j}, with 1 ≤ j ≤ K, and an un-
known flow F of which we have seen n packets, we start by
calculating F ’s anomaly score Sn against all known protocol
fingerprints (lines 1-2). This gives an indication of “how far”
the flow is from each fingerprint’s protocol mask. Thresh-
olds play a role in line 3, where the flow’s anomaly scores are
normalized with respect to each fingerprint’s threshold. The
protocol whose fingerprint yields the minimum of this nor-
malized anomaly score for F is considered the one which the
flow belongs to if the related anomaly score is less than or
equal to its threshold (lines 4-5). Otherwise F is considered
“unknown” (lines 6-7).

The fact that we consider anomaly scores normalized against
thresholds is key to the classification algorithm. The reason
for the normalization operation is intuitive and better ex-
plained with an example. Figure 3 shows the hypothetical
values of anomaly score of a given flow against the HTTP

ACM SIGCOMM Computer Communication Review 10 Volume 37, Number 1, January 2007



Figure 3: Example: use of thresholds in the classifi-
cation algorithm.

and POP3 protocol fingerprints, together with the respec-
tive threshold values. In the example, even though the flow’s
score against HTTP is higher than its score against POP3,
the former is farther than the latter, in relative terms, from
the respective threshold. Therefore, it makes sense to clas-
sify the flow as HTTP rather then POP3. As we will see,
experimental results support this intuition.

4.1 Using the technique in practice
The application of this technique to classify TCP flows on

a real network is relatively simple, and can be summarized
in the following steps:

a. Collect traffic traces on the edge gateway of the net-
work. This can involve using Tcpdump or any other
traffic-capture mechanism available. These traces will
serve as training set for our classification technique.

b. Pre-classify the traces by means of any effective mech-
anism, either payload or header based, statistical or
deterministic, such as Snort, Bro, the techniques pro-
posed in [5, 13, 12], or a combination of these mecha-
nisms. We will discuss how the accuracy of the finger-
printing phase is essential to this process later in the
paper.

c. Build protocol fingerprints based on the pre-classified
traces following the procedures described in Section 3.
Install the fingerprints on the classification engine.

d. Start the classification engine built on the algorithm
introduced in Section 4. This activity can be per-
formed on live traffic.

e. Periodically, if necessary, update the fingerprints by
running steps a through c again.

A few notes on the applicability of this technique are in
order.

4.1.1 Applicability of the classification algorithm
The way the algorithm is devised allows its application

to the dynamic classification of flows: as the classifier sees
more packets of each flow, it can increase the chances of
correctly classifying it. The way the performance of our
algorithm is linked in practice to the number of packets an-
alyzed for each flow will be discussed in the following of this
paper. The scenario we imagine for practical uses of our al-
gorithm should lead to a low computational load at the clas-
sifier: in fact, network administrators are usually interested
in actively managing only a fraction of the protocols run-
ning on their networks; hence only a few fingerprints should
be stored and examined to prioritize a limited number of
critical services or block others. Indeed the calculation of

an anomaly score for a flow of which we have seen n packets
is as fast as the algebraic sum of n ordered terms obtained
looking up values in PDF elements.

4.1.2 Building accurate protocol fingerprints
The accuracy of the tools used in step b is critical. Pre-

classification of the flows that will be used to build fin-
gerprints should introduce as little noise as possible: for
example, when building HTTP fingerprints, the inclusion
of HTTP flows tunneling peer-to-peer bulk data should be
avoided. However, the validation of training sets is widely
recognized as a very hard problem [5]. A combination of dif-
ferent payload-based classifiers could, in many cases, help:
even though computationally inefficient, this combination of
mechanisms would have to be seldom run, i.e., when the fin-
gerprints have to be created for the first time and when they
have to be updated as application layer protocols evolve.

In the preliminary experimental analysis reported in this
paper we use a simple technique: we derive our training sets
by applying a payload-based pattern-matching technique to
all traffic to select flows that were generated by each protocol
we need to fingerprint.

This approach has two drawbacks. Firstly, this mecha-
nism is as precise as the pattern-matching technique is. In
the case of a relatively controlled environment and with a
reduced set of protocols such as the one considered in the
experimental analysis described in the following, the pre-
cision of the pattern-matching technique is enough to pro-
duce accurate fingerprints. Secondly, this technique can be
inefficient in the sense that only a fraction of all traffic
to, say, port 110 is pre-classified successfully: this leads to
the need for more data than theoretically needed to train
the system. In general, the results presented in this paper
are based on the assumption that accurate fingerprints are
available, which, as said before, is a hard research problem
to solve. While a simple technique such as one based on
pattern-matching can be enough in specific cases like the
one considered in this paper, a more robust and generic ap-
proach at constructing accurate fingerprints will have to be
investigated in the future.

5. EXPERIMENTAL ANALYSIS

5.1 Testbed setup, traffic traces and protocol
fingerprints

We tested the validity of the classification technique with
traffic traces collected at the edge gateway of our faculty’s
campus network. This networking infrastructure, which con-
sists of around one thousand workstations equipped with a
variety of operating systems, is composed of several 1000Base-
TX layer-2 segments routed through a Linux-based dual-
processor box. Connectivity is provided to end users by ei-
ther 100BaseT links or 802.11b/g Access Points. All the ex-
periments described in this section were run on the 24Mb/s
link that connects the edge router to the Internet.

We ran the experimental analysis by following pretty closely
what a network administrator would have to do to imple-
ment our classification technique. At first we analyzed the
traffic aggregate in order to determine how the bandwidth
to the Internet is shared among the most used application
protocols. We discovered that on average more than 60% of
the available bandwidth of our link to the Internet on any
given working day is occupied by flows whose source or des-

ACM SIGCOMM Computer Communication Review 11 Volume 37, Number 1, January 2007



tination TCP port is either 80 (registered for HTTP), 110
(POP3) or 25 (SMTP).

Therefore, we started by collecting a training set for the
purpose of fingerprinting these three protocols: to this end
we used Tcpdump for one week – daytime-only5 – to cap-
ture flows matching the HTTP, POP3 or SMTP standard
ports. The resulting 40+ GB traces were then run through
a payload-based, pattern-matching classifier that we built,
according to the patterns described in [5] and [17]. Among
the flows that passed the pattern-matching step twenty thou-
sand were randomly selected to generate HTTP, POP3 and
SMTP fingerprints by following the procedure outlined in
Section 3. In other words, flows that entered the training
set were randomly chosen, after the pre-classification phase,
to be uniformly distributed among all the flows collected
during the training week.

After a couple of weeks, we collected another week worth
of traffic, daytime-only, to create the evaluation set which
we then used to assess the validity of the classification algo-
rithm. Here we also randomly selected the evaluation set so
that flows used to build it were uniformly distributed along
all week. In order to certify the application layer protocols
that generated the evaluation set, we manually inspected the
payloads of the selected flows6. This activity put each flow
in one of four subsets of the evaluation set: one for HTTP,
one for POP3, one for SMTP, and one for flows not belong-
ing to any of the above classes, which we named OTHER.

Besides OTHER, which was built with five thousand flows,
every evaluation subset ended up being composed of ten
thousand flows. The knowledge of the application layer pro-
tocol that generated each flow in the evaluation set is at the
basis of the performance analysis of the classification engine
against the parameters defined in the following section.

5.2 Performance parameters
By running each flow of the evaluation set through our

classifier we can expect four types of answer: either the
classifier thinks the flow is HTTP, POP3, SMTP, or “none
of the above”, i.e., OTHER. Clearly, the classifier can be
mistaken, and we need to define performance parameters to
evaluate different types of errors.

The following quantities are the basis for such parameters.
For p varying in [POP3,HTTP,SMTP,OTHER] we define:

• Ep as the number of flows of protocol p in the evalua-
tion set, as certified by the pattern-matching/by-hand
pre-classification procedure. For example, with the
data presented in the previous section, the following
would hold: EHTTP = EPOP3 = ESMTP = 10000.

• ep as the total number of flows from the evaluation set
classified as protocol p by our classifier.

• ěp as the number of flows correctly classified as protocol
p. By definition, ěp ≤ Ep and ěp ≤ ep.

• êp as the number of flows incorrectly classified as pro-
tocol p.

5The amount of outgoing traffic generated during the night
by the three analyzed protocols was negligible compared to
what generated during working hours.
6Although this was a rather tedious operation, Manuel and
Maurizio knew that it was a necessary precondition to the
correctness of the results. The other authors thank them for
spending quite some time performing it.

Starting from these quantities, we can define the follow-
ing two performance parameters. The hit ratio Hr of our
classification engine for a given protocol p is defined as in
expression 4(a):

Hr =
ěp

Ep
(a), F+ =

êp

ep
(b). (4)

Hr measures the percentage of flows from the evaluation
subset p that were correctly classified. This gives an indica-
tion of how good the classifier is at using p’s fingerprint to
characterize p’s behavior. Note that Hr is calculated over
Ep rather than over ep because the hit ratio should express
how many of the actual flows of a given protocol (therefore
Ep) were correctly classified. Defining Hr over ep could be
misleading. For example, if Ep were 100, ep were 10 and
ěp were 10, only looking at the last two figures one might
assume the classifier was perfect, while it was in fact classi-
fying correctly only 10% of the traffic.

The hit-ratio alone is clearly not enough to describe the
validity of the algorithm. A network manager would be in-
terested in knowing how many of the flows classified as pro-
tocol p were actually belonging to a subset that was not p.
To evaluate this performance criteria we introduce a false-
positive ratio parameter F+, defined as in expression 4(b).
The false-positive ratio expresses, in some sense, the trust-
worthiness of the classifier: in other words, this parameter
answers the question “out of x number of flows classified as
protocol p, what’s the fraction that was not really produced
by p?”

5.3 Numerical results: optimal parameters
In Table 1 we present the hit ratio and the false-positive

ratio of the classification engine described in Sections 3 and 4
for all the four categories of traffic. The classifier performs
reasonably well, showing hit-ratios well above 90% for each
of the protocols considered and the false positive ratios around
6% in the worst case.

Protocol Hr F+

HTTP 91.76% 6.38%
SMTP 94.51% 3.06%
POP3 94.58% 3.08%
Other 90.64% N.A.

Table 1: Hit ratios and false positive ratios (optimal
parameters).

These results were obtained by tuning the classifier’s con-
figuration parameters with what seems to be the optimum
for the traffic traces we have considered. In particular, each
fingerprint was built with twenty thousands flows from the
training set, using a 45x45 window size for the Gaussian fil-
ter (see Section 3.2). Each fingerprint’s threshold (see Sec-
tion 3.3) was calculated as a simple sum of the standard
deviation and mean values of the anomaly scores. We used
Fclient fingerprints, because we found out that they gave
better results than Fserver ones (we will discuss this aspect
in detail in Section 6). Finally, the classifier was instructed
to take its decision after evaluating the 4th Fclient packet.
This is the most important configuration parameter of all,
because it impacts the ability of the classifier to work almost
in real time, i.e., as it sees the first packets of each flow.

ACM SIGCOMM Computer Communication Review 12 Volume 37, Number 1, January 2007



Figure 4: Hit ratio and false-positive ratio versus
packet number where the classifier took its decision.

5.4 Sensitivity to configuration parameters
In this section we explore what influence the configura-

tion parameters of the classifier have on its performance,
as defined in Section 5.2, starting with the optimal values
described above.

5.4.1 Sensitivity to the packet number
Figure 4 shows the classification results as a function of

the packet number n where the classifier takes its decision.
For the Fclient flows we are considering, n = 3 is the first
packet sent by the client after the three-way-handshake, and
thus it is the first one that could be used for a meaningful
statistical classification.

The figure shows that the combination of hit ratio and
false-positive ratio reaches an optimum on a given packet
number n after which the performance of the classifier de-
creases, and that n is different for different protocols. It
seems that the classifier should decide whether a flow is
HTTP at the 3rd Fclient packet, but should wait the 4th
packet to make the decision for SMTP, and the 4th or 5th
packet for POP3. Even if this behavior can seem counter-
intuitive at first, it can be explained by looking at the way
the training set for each protocol was built. Figure 5 shows,
for the training set of each protocol, the fraction of flows
that have at least n packets. While almost all of the twenty
thousand flows used to build the SMTP fingerprint have at
least five packets, only around 50 to 60% of the ones used to
build the HTTP fingerprint are 5-packets long. There is a
clear correspondence between the packet number where the
performance of the algorithm peaks and the packet n where
the number of flows in the training set at least n-packets
long starts decreasing. In summary, as it could be expected,
the number of flows used to build a protocol fingerprint is
correlated to the performance of the algorithm. We will see
more about this topic later in this section.

5.4.2 Sensitivity to threshold’s parameters
The threshold vector is an integral part of the definition

of protocol fingerprints (see Section 3.3). It can be expected

Figure 5: Fraction of flows in the training sets with
a least n packets.

that the wider the threshold for a given protocol, the higher
the hit ratio will be for that protocol. On the other hand, in-
creasing the threshold should also increase the false-positive
ratio, therefore one should try to find an optimal value for
this parameter, so that both the false-positive and hit ratio
are optimized.

Figure 6: Hit ratio and false-positive ratio versus
threshold’s width parameter x.

We have studied how the performance of the algorithm
changes as the definition of threshold changes as well. First,
let us redefine each component of the anomaly score thresh-
old by adding a multiplier to the second term of Equation 3
as follows:

T p
n = µ{Sn

“
F, ~Mp

”
}+ x · σ{Sn

“
F, ~Mp

”
}. (5)

Figure 6 shows that the optimal value for x, i.e., the
value that yields the best compromise between hit and false-
positive ratios is “1”. In other words, with the types of
protocols analyzed in this paper, a small threshold value
seems to be appropriate for obtaining the best compromise
between hit ratios and false positive ratios. We expect this

ACM SIGCOMM Computer Communication Review 13 Volume 37, Number 1, January 2007



to change when we will analyze the performance of this tech-
nique applied to other protocols, more similar to one another
than the ones considered in these experiments.

5.4.3 Sensitivity to the window size of the Gaussian
filter

The window size of the Gaussian filter used to build pro-
tocol fingerprints (see Section 3) affects the precision with
which the classifier compares a flow with the statistical char-
acteristics of a protocol’s training set. The larger the win-
dow size, the higher the possibility of the classifier to “spot”
a certain protocol p flow, and therefore the higher the hit ra-
tio for that protocol. However, higher values for the window
size also increase the false-positive ratio, similarly to what
happens for the anomaly score threshold. Since changes to
the window size affect differently the behavior of the classi-
fier with different protocols, we define its optimal value as
the one that minimizes the following expression:

minx,y

 
KX

i=1

“
1−Hi

r + F i
+

”!
, (6)

where K is the number of protocols of the evaluation set
and (x, y) represent the window size of the Gaussian filter.
The sum in Equation 6 takes into account the distance be-
tween the hit-ratio of a set of given protocols and the max-
imum hit-ratio (100%) and the false positive ratio of each
protocol. During our experiments, we tested different values
for (x, y): starting from a conservative, and minimum valid
value of (3,3) and going up to (45,45), hit ratios went from
11.77% to 91.76% for HTTP, from 86.49% to 94.51% for
SMTP and from 68.11% to 94.58% for POP3, while false-
positive ratios increased from very close to 0% to around
3% for SMTP and POP3, although they did not change
significantly for HTTP. This supports the intuition that a
smoothing filter applied on the ~PDF helps countering the
noisy factors described in Section 3.2.

We probably have not found the optimum yet, since the
best results were obtained with the Gaussian filter set at the
maximum value we analyzed. We will continue analyzing
this parameter in the future7.

5.4.4 Sensitivity to the size of the training sets
Figure 7 shows Hr as a function of the number of Fclient

flows used to build protocol fingerprints: while POP3 and
SMTP are well characterized with just a thousand flows,
HTTP requires a larger training set to be correctly classified.
False-positive ratios seem to be less dependent on the size of
the training sets. At any rate, the total number of flows per
protocol required to effectively train the system is perfectly
reasonable: a few days of network traces can be enough to
create fingerprints for the protocols we have considered.

6. DISCUSSION
A rough comparison with a payload-based classi-

fier. Table 2 shows the classification results of the pattern-
matching pre-classifier applied to the same evaluation set we
described in the previous section. These results highlight

7The analysis of how the performance of the algorithm is
affected by the parameters of the Gaussian filter is very
computationally intensive. With the time and computing
resources at hand we were able to test the parameters in the
limited range described above.

Figure 7: Hit ratio and false-positive ratio versus
size of training sets (in number of flows).

that even though the patterns available today are pretty
good at spotting HTTP traffic, the statistical classifier per-
forms better for both SMTP and POP3 flows in our sce-
nario. On the other hand however, the pattern-matching
pre-classifier presents virtually no false-positives, which, again
in our scenario, allowed its use as a pre-classification device
for the generation of accurate protocol fingerprints.

Accuracy of training sets: an open problem. The
pre-classification of the flows that are used to build finger-
prints is still an open issue: as an example, at this stage
of development, the pattern-matching pre-classifier that we
built, based on [5] and [17], drops more than 20% of any
given set of POP3 flows. Even more problematic is the fact
that pre-classifying other types of traffic such as peer-to-peer
would be much more difficult, even with advanced forms of
pattern-matching techniques.

Note that without a fingerprint our technique is com-
pletely ineffective: at this time we do not know if a fin-
gerprint derived at site X could be made usable at site Y.
Both of these problems, i.e., the “transportability” of finger-
prints, and the availability and accuracy of pre-classification
techniques will be the subject of future work.

A few notes on the complexity of the technique.
Aside from the issue of fingerprinting, the way the classifi-
cation algorithm works indicates that the engine could be
straightforwardly implemented in hardware based on any
of the current integrated-circuit technologies. Such device
should only have as much memory as needed to record the
desired number of fingerprints a network administrator would
need, and the computation of the anomaly score of a flow

Protocol Hr Pkt.#

HTTP 99.10% 3/4 (Fserver)
SMTP 85.94% 2/3 (Fserver)
POP3 79.67% 2 (Fserver)
Other 99+% N.A.

Table 2: Hit ratios and packet where the match oc-
curred for the pattern-matching pre-classifier.

ACM SIGCOMM Computer Communication Review 14 Volume 37, Number 1, January 2007



should be as simple as an adder. In fact, the classification
operation can be as simple as the algebraic sum of n values
obtained from an ordered set of PDFs, multiplied by the
number of fingerprinted protocols.

Using Fclient and Fserver data, and where the clas-
sifier should be placed. As we have seen, in the scenario
we considered the technique performs better when applied
to Fclient flows than to Fserver ones: in general, we found
that hit ratios when using Fserver flows were from 10 to 30%
lower than the ones obtained using Fclient ones. This can be
justified by the fact that the characteristics of the parame-
ters we are observing are more deterministic for Fclient than
for Fserver flows, since the classifier is closer to clients than
to servers. This affects in particular the statistics of the ∆t
parameter. We see at least two issues in this respect that
will require further analysis in the future: an issue of appli-
cability of the technique to environments where the classifier
is not close to clients nor to servers, and an issue of combin-
ing Fclient and Fserver data in the classification algorithm.

As to the first issue, the experimental analysis described
in this paper was performed on network traces captured at
the edge router of our faculty’s network. Our choice is per-
fectly suited to a modern network scenario where the ac-
tions of packet classification and marking are delegated to
edge gateways. In case this technique should be applied to
core networks, this assumption would not hold. However,
the preliminary results we obtained using Fserver data, al-
though not conclusive, indicate that the performance of the
algorithm should decline gracefully when moving the classi-
fier away from the edge of the network.

Clearly, and this is related to the second issue, a better
classification algorithm should take into account both Fclient

and Fserver data. We have tried simple combinations of the
Anomaly Score series obtained from the two data directions
(e.g., linear combination, quadratic sums, etc.), but none of
these simple combination techniques fare better than looking
at only one direction of the flow. Without doubt there is
much space for improvement in this area.

On the precision of the measuring devices. The fin-
gerprinting device and the classifying device are the same in
our experiments. We know pcap is not precise, but even with
its current level of precision on standard hardware it seems
to be able to cope with the requirements of the classification
algorithm we are proposing, at least in our environment. In
networks with higher-speed interfaces it will be necessary
that both the fingerprinting device and the classifier have
dedicated hardware for precise network measurements. We
will analyze the impact of the imprecision introduced by
the measuring device on the performance of the classifier in
future works.

7. FUTURE WORK
The experimental environment described in this paper al-

lowed us to analyze the performance of this classification
technique on a reduced set of protocols. Furthermore, such
protocols are in some ways “easy” to classify, since their
characteristics are different enough so that a statistical clas-
sifier might have an easy job in picking up their specific
behavior. The biggest contribution to the analysis of the
general applicability of this technique will come from its
application to a larger data set, in particular one that com-
prises what constitutes a very significant portion of traffic
on the Internet, i.e., Voice over IP and Peer-to-Peer. Fur-

thermore, in this paper we have considered HTTP as a ho-
mogeneous application protocol: it would be interesting to
analyze whether the classification algorithm can be tuned to
discriminate among the different application types HTTP
can be used for, such as images, text, etc.

By means of the Gaussian filtering operation on PDFs we
have introduced what seems to be an effective way for the
classifier to take into account some of the noisy factors that
affect RTTs and packet size. Clearly, these are not the only
noise factors that a classifier should take into account. What
remains to be investigated is how packet loss and packet re-
ordering affect the performance of this classifier, and how
to best cope with them. One approach could be to consider
consecutive elements of the PDF vector when evaluating the
contribution of a given packet to the Anomaly Score. Fur-
thermore, the way the algorithm responds to attacks against
the classification engine, such as deliberate packet reorder-
ing or active modification of packet jitter and packet size,
needs to be investigated.

In this paper we have assumed that protocol fingerprints
are site-dependent and must be seldom updated. In future
works we plan to mitigate (or validate) these assumptions
collecting the data from different networks in different time
intervals and therefore, obtaining several training sets. We
will then analyze the differences between the fingerprints of
the same protocol built with different training sets, and ex-
plore the possibility, if any, to modify one site’s fingerprints
to adapt them to the use on a different site.

The protocol fingerprints derived during our preliminary
experimental analysis were built with a training set that is
fully reliable. However, the validation of training sets is
widely recognized as a hard research problem: the ability
to generate accurate fingerprints could become one of the
major showstopper to any trained statistical approach to
traffic classification. In view of this problem, we plan to
start analyzing how the accuracy of the classifier is affected
by fingerprints that are not 100% precise, i.e., that have
been derived by a set of traffic flows that contains both the
protocol under consideration and other protocols. The way
the classifier responds to inaccurate fingerprints will give us
an indication of how precise the pre-classification phase will
have to be for our technique to behave acceptably.

By examination of the classification algorithm, it is simple
to derive that its computational complexity is as low as the
algebraic sum of a few terms obtained by looking up values
in PDF tables, multiplied by the number of fingerprints un-
der consideration. Further, more rigorous analysis will be
required to ascertain the other aspects related to the (sup-
posedly low) complexity of the algorithm, both in terms of
its memory occupation, its amenability to hardware-assisted
implementation, and the computational costs of the train-
ing phase. Finally, the simple, preliminary definitions of
protocol fingerprint and classification algorithm presented
in this paper offer significant other directions of improve-
ment, including for example the use of second-order statis-
tical parameters, combining the Fclient and Fserver metrics
and assigning different weights to each component of the
protocol mask vectors.

8. CONCLUSIONS
In this paper we have proposed a statistical classification

technique based on the analysis of simple properties of net-
work traffic. We introduced what we call protocol finger-

ACM SIGCOMM Computer Communication Review 15 Volume 37, Number 1, January 2007



prints, i.e., quantities that are at the basis of the training
phase, and that express, in a compact and efficient way, the
main statistical properties used to characterize each proto-
col: inter-arrival times, size of the IP packets, and the order
in which they are seen by the classifier. Preliminary experi-
mental analysis has shown promising results: the technique
can determine with a relatively small error ratio the appli-
cation protocol behind network flows, at least with a re-
duced set of protocols, when the classifier has been properly
trained.

The analysis has also shown that the Gaussian filtering
operation used to derive protocol fingerprints seems instru-
mental in the ability of the classifier to deal with noise such
as jitter and unexpected changes in packet size. Further-
more, the normalized thresholds used by the classification
algorithm can be an effective tool in discriminating when
traffic does not belong to any of the fingerprinted categories:
this improves the effectiveness of the technique in dealing
with non-fingerprinted traffic, which in turn is fundamental
given the well known problems related to the accuracy, or
lack of thereof, of generally-applicable training mechanisms.

Our algorithm and definition of fingerprint are still at an
early stage of development: the magnitude of work needed
to prove its general applicability and the issues that still
need to be analyzed have been discussed in Sections 6 and 7.
However, we believe that the preliminary results presented
in this paper are promising enough to warrant further work
on this technique.

9. REFERENCES
[1] D. Moore, K. Keys, R. Koga, E. Lagache, and K. C.

Claffy. The CoralReef Software Suite as a Tool for
System and Network Administrators. In LISA ’01:
Proceedings of the 15th USENIX conference on
Systems Administration, pages 133–144, San Diego,
CA, USA, December 2001.

[2] V. Paxson. Bro: a system for detecting network
intruders in real-time. Computer Networks,
31(23–24):2435–2463, 1999.

[3] M. Roesch. SNORT: Lightweight Intrusion Detection
for Networks. In LISA ’99: Proceedings of the 13th
USENIX Conference on Systems Administration,
pages 229–238, Seattle, WA, USA, November 1999.

[4] C. Dewes, A. Wichmann, and A. Feldmann. An
analysis of Internet chat systems. In IMC ’03:
Proceedings of the 3rd ACM SIGCOMM conference on
Internet measurement, pages 51–64, Miami Beach, FL,
USA, October 2003.

[5] T. Karagiannis, K. Papagiannaki, and M. Faloutsos.
BLINC: multilevel traffic classification in the dark. In
SIGCOMM’05: Proceedings of the 2005 conference on
Applications, technologies, architectures, and protocols
for computer communications, pages 229–240,
Philadelphia, PA, USA, August 2005.

[6] V. Paxson. Empirically derived analytic models of
wide-area TCP connections. IEEE/ACM Trans.
Netw., 2(4):316–336, 1994.

[7] V. Paxson and S. Floyd. Wide area traffic: the failure
of Poisson modeling. IEEE/ACM Trans. Netw.,
3(3):226–244, 1995.

[8] A. Mena and J. Heidemann. An Empirical Study of
Real Audio Traffic. In Proceedings of the IEEE
Infocom, pages 101–110, Tel-Aviv, Israel, March 2000.

[9] F. Hernández-Campos, F. Donelson Smith, K. Jeffay,
and A. B. Nobel. Statistical Clustering of Internet
Communications Patterns. In Computing Science and
Statistics, volume 35, July 2003.

[10] A. McGregor, M. Hall, P. Lorier, and J. Brunskill.
Flow Clustering Using Machine Learning Techniques.
In Proceedings of the 5th Passive and Active
Measurement Workshop (PAM 2004), pages 205–214,
Antibes Juan-les-Pins, France, March 2004.

[11] M. Roughan, S. Sen, O. Spatscheck, and N. Duffield.
Class-of-service mapping for QoS: a statistical
signature-based approach to IP traffic classification. In
IMC ’04: Proceedings of the 4th ACM SIGCOMM
conference on Internet measurement, pages 135–148,
Taormina, Sicily, Italy, October 2004.

[12] A. W. Moore and D. Zuev. Internet traffic
classification using bayesian analysis techniques. In
SIGMETRICS ’05: Proceedings of the 2005 ACM
SIGMETRICS International Conference on
Measurement and Modeling of Computer Systems,
pages 50–60, Banff, Alberta, Canada, June 2005.

[13] A. W. Moore and K. Papagiannaki. Toward the
Accurate Identification of Network Applications. In
Proceedings of the 6th Passive and Active
Measurement Workshop (PAM 2005), pages 41–54,
October 2005.

[14] L. Bernaille, R. Teixeira, and K. Salamatian. Early
Application Identification. In The 2nd
ADETTI/ISCTE CoNEXT Conference, Lisboa,
Portugal, December 2006.

[15] C. Trivedi, H. J. Trussel, A. Nilsson, and M-Y. Chow.
Implicit Traffic Classification for Service
Differentiation. Technical report, ITC Specialist
Seminar, Wurzburg, Germany, July 2002.

[16] Tcpdump/Libpcap. http://www.tcpdump.org.

[17] L7 Filter. http://l7-filter.sourceforge.net.

APPENDIX
A. PUBLICLY AVAILABLE TRACES AND

TRAFFIC CLASSIFICATION
We have been asked why we are not using publicly-available

packet traces to validate our classification technique. In fact,
several organizations routinely release anonymized packet
traces from backbone networks. Two of them are CAIDA
and NLANR. The problem with these traces is that they
do not contain, for understandable privacy and security rea-
sons, any useful information at the application level, mak-
ing their use impractical (or even impossible) for research in
traffic classification. It would be useful if researchers in this
area would start sharing anonymized packet traces with full
classification meta-data. Before anonymizing traces these
organizations could classify each flow, and add such classi-
fication information as meta-data to the released traces.

As soon as we obtain the necessary clearance, we intend
to release anonymized versions of the traces used to pro-
duce this work, together with full meta-data classification
information. This will provide other researchers with the
possibility of testing other algorithms on the same data we
used and, hopefully, will serve as a first, small incentive to
other larger organizations to do the same.

ACM SIGCOMM Computer Communication Review 16 Volume 37, Number 1, January 2007


