
Exploiting KAD: Possible Uses and Misuses

Moritz Steiner, Taoufik En-Najjary, and Ernst W. Biersack
Institut Eurecom

Sophia–Antipolis, France
{steiner,ennajjar,erbi}@eurecom.fr

This article is an editorial note submitted to CCR. It has NOT been peer reviewed. Authors take full responsibility for this article’s technical
content. Comments can be posted through CCR Online.

ABSTRACT
Peer-to-peer systems have seen a tremendous growth in the
last few years and peer-to-peer traffic makes a major frac-
tion of the total traffic seen in the Internet. The dominating
application for peer-to-peer is file sharing. Some of the most
popular peer-to-peer systems for file sharing have been Nap-
ster, FastTrack, BitTorrent, and eDonkey, each one counting
a million or more users at their peak time.

We got interested in kad, since it is the only DHT that
has been part of very popular peer-to-peer system with sev-
eral million simultaneous users. As we have been studying
kad over the course of the last 18 months we have been
both, fascinated and frightened by the possibilities kad of-
fers. Mounting a Sybil attack is very easy in kad and allows
to compromise the privacy of kad users, to compromise the
correct operation of the key lookup and to mount DDOS
with very little resources.

In this paper, we will relate some of our findings and point
out how kad can be used and misused.

Categories and Subject Descriptors
H.3 [INFORMATION STORAGE AND RETRIEVAL]:
Systems and Software – Distributed systems

General Terms
Algorithms, Security

Keywords
Distributed Hash Table, Sybil attack, peer-to-peer system.

1. INTRODUCTION TO KAD
kad is a Kademlia-based [15] peer-to-peerDHT routing

protocol implemented by several peer-to-peerapplications such
as Overnet [18], eMule [11], and aMule [1]. The two open–
source projects eMule and aMule have the largest number of
simultaneously connected users since these clients connect
to the eDonkey network, which is a very popular peer-to-
peersystem for file sharing. Recent versions of these clients
implement the kad protocol.

As in other DHTs, each kad node has a global identifier,
referred to as Kad ID, which is a 128 bit randomly generated
identifier. The Kad ID is generated when the client appli-
cation is started for the first time and is then permanently
stored with that client. The Kad ID stays unchanged on
subsequent join and leaves of the peer, until the user deletes
the application or its preferences file. However, as we show

[26] there are quite a few peers that do not follow this rule
and change their Kad ID very frequently.

1.1 Routing Lookup
Routing in kad is based on prefix matching: Node a for-

wards a query, destined to a node b, to the node in his rout-
ing table that has the smallest XOR-distance. The XOR-
distance d(a, b) between nodes a and b is d(a, b) = a ⊕ b.
It is calculated bitwise on the Kad IDs of the two nodes,
e.g. the distance between a = 1011 and b = 0111 is d(a, b) =
1011 ⊕ 0111 = 1100. For details of the implementation see
[27]. The entries in the routing table of a peer P point to
peers that are a various distances from P : A peer P stores
only a few contacts to peers that are far away in the ID space
and increasingly more contacts to peers as we get closer P .
For details of the implementation see [27].

Routing to a given Kad ID is done in an iterative way.
To improve robustness against node churn that can result in
stale routing table entries and to improve and look-up speed,
the requesting peer P runs three parallel routing lookups for
a given key at the same time: A peer P first consults his
routing table to determine the three peers closest to the Kad
ID. P sends route requests to these three peers, which
may or may not return to P route responses containing
new peers even closer to the Kad ID, which are queried by
P in the next step. The routing lookup terminates when the
returned peers are further away from the Kad ID than the
peer returning them.

While iterative routing experiences a slightly higher delay
than recursive routing, it offers increased robustness against
message loss and it greatly simplifies crawling the kad net-
work. In kad, a routing lookup will be performed in a first
step by both, the publish and the search module.

1.2 Publishing and Searching
A key in a peer-to-peer system is an identifier used to

retrieve information. In many peer-to-peer systems a key
is typically published on a single peer that is numerically
closest to that key. In kad, to deal with node churn, a key
is published on ten different peers whose Kad ID agrees at
least in the first 8-bits with the key. This range of Kad
IDs around a key that agree in the first 8-bits with the key
is called the tolerance zone. Note that the key is not
published on the ten peers closest to the key, but simply on
peers whose Kad IDs are in the tolerance zone. To assure
persistence of the information stored, the owner periodically
republishes the information every 5 or 24 hours, depending
on the type of information.

As for the publishing, the search procedure uses the rout-

ACM SIGCOMM Computer Communication Review 65 Volume 37, Number 5, October 2007

ing lookup to find the peer(s) closest to the key searched
for. To increase the robustness of the search in case of stale
routing table entries, three searches are launched in parallel.
If the first arriving route response contains peers that are
closer to the destination, immediately new route requests

are sent. The four most important message types are:

• hello: to check if the other peer is still alive and to
inform the other peer about one’s existence and the
Kad ID and IP address.

• route request/response(kid): To find peers that are
closer to the Kad ID kid.

• publish request/response: to publish information.

• search request/response(key): to search for infor-
mation whose hash is key.

2. EXPLORING KAD
We have developed our own crawler for kad, with the

aim to crawl kad frequently and over a duration of several
months. Our crawler runs on a local machine and uses a
simple breadth first search issuing route requests to find
the peers currently participating in kad. The speed of our
crawler allows us to crawl the entire kad system (entire
Kad ID space) in about 8 minutes, which was never done
before. During a full crawl, we found between 3 and 4.3
million different peers. Between 1.5 and 2 million peers are
not located behind NATs or firewalls and can be directly
contacted by our crawler.

However, to limit the network load and the data volume,
we decided to crawl only a part of the Kad ID space by
carrying out a zone crawl on a 8-bit zone, where we try
to find all active peers whose Kad IDs have the same 8
high-order bits. A zone crawl explores one 256-th of the
entire Kad ID space and takes less than 2.5 seconds. For
slightly less than 6 months we crawled the same zone every
5 minutes. The detailed results of our crawl are reported in
[24, 26].

We made some surprising findings such as (i) several thou-
sand kad clients that all had the same Kad ID and (ii) sev-
eral hundred peers with the same sub-net IP addresses and
Kad IDs that all agreed in a large number of least signifi-
cant bits. The last case seems to indicate a Sybil attack,
which was first defined by J. Douceur [10] as “the forging of
multiple identities”. kad, as are all the other peer-to-peer
systems, is vulnerable to Sybil attacks. In the following, we
will discuss how Sybil attacks can be exploited in kad for
various purposes.

3. SYBIL ATTACKS IN KAD
The main idea of the Sybil attack [10] is to introduce

malicious peers, the sybils, which are all controlled by one
entity. Positioned in a strategic way, the sybils allow to
gain control over a fraction of the peer-to-peer network or
even over the whole network. The sybils can monitor the
traffic (behavior of the other peers) or abuse of the protocol
in other ways. Routing requests may be forwarded to the
wrong end-hosts or rerouted to other sybil entities.

3.1 Spying on Publish and Search Traffic
Assume that we want to find out in the least intrusive

way what type of content is published and searched for in a

zone Z of the kad network. For this, one needs to introduce
sybils in the zone Z and to make them known, so that their
presence is reflected in the routing tables of the regular, i.e.
non-sybil peers.

We have developed a light-weight implementation of such
a “spy” that is able to create thousands of sybils on one
single physical machine as they do not keep any state about
the interactions with the regular peers [25].

When we spy on a 8-bit zone, we introduce 216 sybils: the
first 8 bit are defined by the zone we spy on, the following
16 bits are different for each sybil. The spy works as follows:

• First, crawl a zone Z of the Kad ID space using our
crawler to to learn about the peers P currently online
whose Kad IDs are in Z.

• Then, send hello requests to the peers P in order to
“poison” their routing tables with entries that point
to our sybils. The peers that receive a hello request

will add the sybil to their routing table if the corre-
sponding bucket of the routing table is not filled.

• Later, when a route request(kid) initiated by regu-
lar peer P reaches a sybil that request will be answered
with a set of sybils whose Kad IDs are closer to the
target in case the kid falls into the zone Z and ignored
otherwise.

This way, P has the impression of approaching the tar-
get. Once P is “close enough” to the target Kad ID,
it will initiate a publish request or search request

also destined to one of our sybil peers. Therefore, for
any route request that reaches one of our sybil peers
we can be sure that the follow-up publish request or
search request will also end-up on the same sybil .

• Store the content of all the requests received in a database
for later evaluation.

As described in Section 1, a key is published ten times and
for a search three parallel search requests are issued. For
our spy scheme to work as intended, the optimum would
be to attract exactly one copy of every search or publish
request. This way, publish and search request would also
“terminate” on regular peers that would correctly execute
them, avoiding any disruption of kad due to our spy. There
are two parameters to control the level of intrusiveness: The
number of sybils placed in a zone and the rate at which sybils
are announced to regular peers.

The spy has already allowed us to make a number of in-
teresting observations concerning the frequency of the key-
words used in the publish and the search requests. Spying on
8-bit zone for one day, we see 1.4 million distinct files being
published, using 42,000 different keyword hashes, by 1.5 mil-
lion distinct users. Per minute, about 1000 search requests,
10,000 publish requests and 25,000 route requests hit our
sybils, which amounts to a load of approx. 400 KByte/sec
for the incoming and approx. 200 KByte/sec for the outgo-
ing traffic.

We also measured the total traffic due to the different
types of requests and were very surprised to see that the
“publish traffic” by far outweighs the “search traffic”. In
fact, the “publish traffic” is one order of magnitude larger
– in terms of the number of messages – and two orders of
magnitude larger – in terms of the total number of bytes

ACM SIGCOMM Computer Communication Review 66 Volume 37, Number 5, October 2007

transmitted than the “search traffic” [25]. This observation
lead us to design an improved publish scheme that maintains
the same degree of availability for the information published
while reducing the amount of traffic by one order of magni-
tude [4].

3.2 Eclipsing Content
A special form of sybil attack is the eclipse attack [22]

that aims to separate a part of the peer-to-peer network from
the rest. The way we perform an eclipse attack resembles
very much that of the sybil attack described above, except
that the Kad ID space covered is much smaller.

To eclipse a particular keyword K, we position a certain
number of sybils closely around K, i.e. the Kad IDs of the
sybils are closer to the hash value of K than the Kad IDs of
any real peer. We then need to announce these sybils to the
regular peers in order to “poison” the regular peers routing
tables and to attract all the route requests for keyword
K. Our experiments showed that as few as eight sybil peers
are sufficient to make sure that all search requests for K
will terminate on one of the sybils.

Note that even if the keyword K can not be found any-
more using the search algorithm employed in kad, it does
still exist on the regular peers where it was originally pub-
lished.

Depending on the popularity of the content to be eclipsed,
the resource consumption varies as we can see in table 1.
This data was collected using 32 sybils all running on the
same physical machine. We see that it is possible to eclipse
content using a very limited amount of resources.

message type keyword
(messages per min) the dreirad
route 41801 818
hello 1091 433
publish 12360 290
search 704 49

Total incom-
ing bandwidth
(KByte/sec)

186 32

Table 1: Traffic seen by the sybils that eclipse the
keywords the and dreirad.

3.3 DDOS Attacks
A sybil attack can also be used to launch a DDOS attack

that enlists a large number of peers that participate in kad.
As the previous two attacks, we need to place sybil peers.
However, in difference to the eclipse attack where incoming
search queries have been dropped by the sybil peer, the sybil
peer now replies to the request and includes in his response
the IP address of the “target” to be attacked.

Depending on the number of sybils and their placement
in zones that receive more or less search traffic, the amount
of attack traffic can be controlled. We have tried such an
attack against some of our own machines that were hit by
an incoming traffic in the order of several Mbits/sec.

These kinds of attacks are already happening in the In-
ternet. A news release from earlier this year by Prolexic
reports [19] that DDOS attacks using peer-to-peersystems
that involve more than 300,000 peers have recently been ob-
served.

4 . K A D A S A N EX P ER I M EN TA L P LATF O R M
In the previous section, we have seen the vulnerabilities

of kad, which are also common to other DHTs. However,
we feel that kad also has quite some potential as an experi-
mental platform for research in distributed systems. Let us
just outline a few possible uses.

KAD as a Public DHT
Experimental platforms such as Planetlab find intensive use
in the research community and various services have been
implemented on top Planetlab such as CoDeeN, Coral, or
OpenDHT [7, 13, 17].

kad is one of the largest distributed peer-to-peer applica-
tions with several million active peers at any point of time.
Using the kad primitives for routing, publishing and search-
ing, one can utilize kad as a “public DHT”. In a such realis-
tic setting with high node churn, large geographical diversity
and many low bandwidth connections, one can investigate
alternative routing lookup policies (varying the degree of
parallelism), or different publishing strategies (varying the
replication factor or the content refresh intervals).

DDOS Defense Research
As we have seen, peers in kad can be easily tricked in par-
ticipating in a DDOS attack by making them connect to
any machine on the Internet that is the target of the attack.

Researchers that work on DDOS defense could use kad
to test the effectiveness of their defense system by subjecting
their system to an attack. These experiments, as we have
seen in Section 3.3, can be carried out in a very controlled
way and as soon we stop our sybils from returning the IP
address of the target, the attack will stop.

Another, more questionable use could be DDOS attack
retaliation. The victim of DDOS attack could use kad to
counterattack the machines that originate the attack.

5. HOW TO PREVENT SYBIL ATTACKS
Sybil attacks pose a serious threat to the security of peer-

to-peer systems. While there have been various attempts
to address this issue, we feel that the solutions proposed
are not practicable since they, for instance, impose heavy
constraints on the structure of the routing table or require
auditing procedures that are difficult to implement.

We feel that there is a great need for solutions that are
technically feasible and easy to put into place. Basically,
we need to prevent a peer (i) from choosing the Kad ID
he will use and (ii) from obtaining a large number of Kad
IDs. We will sketch out a centralized solution that makes
it impossible for an attacker to obtain arbitrary Kad IDs.
While centralized solutions have their obvious disadvantages
such as single point of failure, they have proven in practice
often to be quite satisfactory. Just take the example of Bit-
Torrent with the tracker as centralized component. At first
sight such a tracker seems to be an easy target for a denial
of service attack. More recent implementation have there-
fore started to replace the tracker by a DHT. However, when
we compare the vulnerabilities of DHTs as discussed in this
paper for the case of kad we may well conclude that using
a tracker-based approach is subject to fewer vulnerabilities
than a DHT.

ACM SIGCOMM Computer Communication Review 67 Volume 37, Number 5, October 2007

The central idea of our proposal is to tie the possibility
of obtaining a Kad ID to the possession of a cell phone
number. The protocol is as follows:

There is a central agent (CA) responsible for generating
Kad IDs. The CA needs to have a pair of public and private
keys Kpub and Kpriv.

A client R that needs a Kad ID sends a request containing
his cell phone number phone , the IP address IP@ of the peer
that will run kad, and a desired expiration time To to the
central agent.

When the CA receives the request, it will

• concatenate (IP@, To , pad) into a string ST, where
pad is a padding sequence that assures that ST has the
required length

• encrypt ST with the private key Kpriv to obtain the
requested Kad ID id.

• Send an SMS (short message) to the cell phone number
phone of the requester and either communicate id or
another shorter string (password) that then allows to
obtain the id via the Internet.

If the public key Kpub is known to all peers, any peer can
verify if a given Kad ID is valid by decrypting the Kad ID
using Kpub and comparing the IP address contained with
the one of the originator of the message.

If the CA keeps lists of all (phone, To) and (IP@, To) pairs,
it can assure that it will not issue another Kad ID to the
same cell phone number and for the same IP address before
the previous one has expired.

The scheme just presented has two main drawbacks. When-
ever a peer changes his IP address, it needs to obtain a new
Kad ID. Many access providers change the IP address of
their end-users at a regular basis. However, if we do not
tie the IP address to the Kad ID there is no way to pre-
vent clients from either “giving away” their Kad ID or to
prevent fraudulent clients from “stealing” the Kad IDs of
other peers.

Another obstacle to the deployment of the scheme may be
the need for the CA to send a large number SMS per day.
However, companies like Google already do so, for instance
to inform users about the newly installed e-mail account or
about an appointment in their agenda that is due. Alterna-
tively, we may replace the use of SMS by a “Reverse Turing
Test” using e.g. a CAPTCHA [3]. However, in this case the
effort to obtain multiple Kad IDs will be reduced if we as-
sume that is it easier to solve multiple CAPTCHA than to
obtain an equivalent number of different cell phone numbers.

In any case, it will never possible to prevent an attacker
with a lot of resources from obtaining multiple (random)
Kad IDs. For this reason, it may be worthwhile to explore
techniques that make the routing lookup in peer-to-peer sys-
tems more robust against Sybil attacks as has been proposed
in [8, 9]. Nevertheless, in a peer-to-peer system of the size
of kad, which has several Million simultaneous peers, an
attacker will probably need to introduce thousands of sybils
in order to disturb the system.

6. RELATED WORK
There has been a small body of work that addresses the is-

sue of DDOS attacks using peer-to-peer systems. Naoumov
et al. [16] discuss attacks for the case of the now defunct

Overnet system. Since routing in Overnet resembles closely
routing in kad, their findings are very relevant to kad. Two
types of attacks are identified: Index poisoning attacks
where bogus records are inserted into the overlay in order
to direct peers searching for content to a target host that will
become the victim of the DDOS attack. Routing poison-
ing attacks where many peers are tricked into adding the
target host into their routing table. As a consequence the
target host will receive a lot of signaling (query, publish and
maintenance) traffic.

El-Defrawy et al. [12] have investigated index poisoning
attacks in BitTorrent and Athanasopoulos et al. [2] discuss
how to launch DDOS attacks in Guntella, an unstructured
peer-to-peer file sharing system.

There exist quite a few proposals in the literature to im-
prove the security of DHTs.

DHT-based overlay systems are susceptible to various at-
tacks launched by malicious peers that may corrupt data,
deny response to lookup queries, or impersonate other peers
so that data objects may be stored on rogue peers.

In DHTs-based systems, each node has a global identifier
ID, which is generated when the client application is started
for the first time. If an attacker controls a fraction, even
small, of nodes with smartly chosen IDs, it can ”eclipse”
correct nodes and prevent correct overly operation. The
malicious nodes may be different entities or the same entity
with many identities (IDs).

Sit et al. [23] provide a clear description of security con-
siderations that involve peers that do not follow the proto-
col correctly: routing deficiencies due to corrupted routing
lookup nd updates; vulnerability to partitioning when new
peer joins and contacts malicious peers; lookup and storage
attacks; inconsistent behaviors of peers; denial of service at-
tacks; and unsolicited responses to a lookup query. They
argue that the peer’s identifier assignment must be done in
a verifiable way, and that the identifier must not be chosen
by the node itself. However, they mention that a central
identification authority is not desirable in all situations.

Douceur [10] was the first to consider the problem of mul-
tiple identities in the context of DHT-based peer-to-peer
systems (The Sybil attack). He showed that without the
use of a centralized authority that certifies all nodes, it is
impossible to prevent this attack.

Castro et al. [5] presented a design and analysis of tech-
niques for secure peer joining. They propose to certify the
node IDs by a set of trusted certification authorities (CAs).
Node ID certificates are signed by the CAs, which use a
public key that must be known by all network nodes. To
prevent an attacker from obtaining certificates, they pro-
pose to bind the ID to peer’s IP address, or require paying
money for certificate.

Rowaihy et al. [20] propose an admission control system
that mitigates Sybil attacks by adaptively constructing a
hierarchy of cooperative admission control nodes. This cre-
ates a tree structure with static root. A node wishing to
join the network is serially challenged using a hash puzzle
by the nodes from the leaf to the root. Each challenger node
creates a cryptographic puzzle based on a hash function and
the solver has to invert the hash. As hash-functions are non-
invertible, the solver must use brute force to find the solu-
tion, which will require a large number of attempts. This
solution relies on the limitation of computational power of
the joining node, however, it may still allow a resourceful

ACM SIGCOMM Computer Communication Review 68 Volume 37, Number 5, October 2007

attacker to launch a substantial attack, especially if the po-
tential for damage is disproportionate to the fraction of the
system that is compromised.

Yu et al. [28] propose SybilGuard, a protocol for limiting
the corruptive influence of the Sybil attack. SybilGuard is
based on social network among user identities, when an edge
between two identities indicates a human-establish trust re-
lationship. Malicious users can create many identities but
will have only few trust relationships. The deployment of
SybilGuard requires the existence of a well-connected social
network, which not the case of todays DHT-based peer-to-
peer systems.

While a successful Sybil attack can be used to mount an
Eclipse attack, Eclipse attacks are possible even in the pres-
ence of an effective defense against Sybil attacks. To defend
against eclipse attacks, Castro et al. [5] proposed the use of
Constrained Routing Tables (CRT), where a node’s neigh-
bor set contains nodes with identifiers closest to well-defined
points in the identifier space, which leaves no flexibility in
neighbor selection and therefore prevents optimizations like
proximity neighbor selection, an important and widely used
technique to improve overlay efficiency [6, 14]. In addition
to CRT, Singh et al. [21, 22] propose to bound the in- and
out-degree of overlay nodes, and present a defense strategy
based on anonymous auditing of nodes’ neighbor sets. If a
node has significantly more links than the average, it might
be a malicious node, and then it can be removed from the
neighbor sets of the correct nodes.

7. CONCLUSION
Distributed systems for content sharing are presumably

believed to be more robust against attacks as centralized
systems that have a single point of failure. However, in
practice this may not be the case as long as the Sybil at-
tack is possible. We have discussed the implications of the
Sybil attack in the case of kad, which is the largest DHT
currently deployed:
The privacy of the end-users can easily be compromised,
kad itself can be arbitrary disrupted, and the peers that
participate in kad can be enlisted against their will to par-
ticipate in a DDOS attack. Any of these attacks can be
launched from a single PC connected to the Internet via a
broadband connection. For all these reasons, it is urgent to
implement practical solutions that prevent sybil attacks.

On the positive side, we have also seen that kad can be
used as an Open DHT providing a realistic test-bed for re-
search in peer-to-peer systems.

8. REFERENCES
[1] A-Mule. http://www.amule.org/ .
[2] E. Athanasopoulos, K. G. Anagnostakis, and E. P.

Markatos. Misusing unstructured p2p systems to perform
dos attacks: The network that never forgets. In Proc. of
ACNS 2006, June 2006.

[3] CAPTCHA. http://en.wikipedia.org/wiki/CAPTCHA .
[4] D. Carra and E. Biersack. Building a reliable p2p system

out of unreliable p2p clients: The case of kad. Technical
report, Institut Eurecom, July 2007. Submitted to Conext
2007.

[5] M. Castro, P. Druschel, A. Ganesh, A. Rowstron, and
D. Wallach. Secure routing for structured peer-to-peer
overlay networks. In Proceedings of OSDI’02, Boston, USA,
Dec. 2002.

[6] M. Castro, P. D. Y. C. Hu, and A. Rowstron. Exploiting
network proximity in peer-to-peer overlay networks.
Technical Report MSR-TR-2002-82, Microsoft Research,
2002.

[7] CoDeeN. http://codeen.cs.princeton.edu/ .
[8] T. Condie, V. Kacholia, S. Sankararaman, J. Hellerstein,

and P. Maniatis. Induced churn as shelter from
routingtable poisoning. In Proc. 13th Annual Network and
Distributed System Security Symposium (NDSS), 2006.

[9] G. Danezis, C. L. Laas, F. M. Kaashoek, and R. Anderson.
Sybil-Resistant DHT Routing. In ESORICS, pages
305–318, Sept. 2005.

[10] J. R. Douceur. The Sybil attack. In Proceedings of the 1st

International Workshop on Peer-to-Peer Systems
(IPTPS), LNCS, pages 251–260, March 2002.

[11] E-Mule. http://www.emule-project.net/ .
[12] K. El-Defrawy, M. Gjoka, and A. Markopoulou.

BotTorrent: Misusing BitTorrent to Launch DDoS Attack.
In Proc. USENIX SRUTI, June 2007.

[13] M. J. Freedman, E. Freudenthal, and D. Mazieres.
Democratizing content publication with coral. In Proc. 1st
USENIX/ACM Symposium on Networked Systems Design
and Implementation (NSDI ’04), Mar. 2004.

[14] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The impact of dht routing
geometry on resilience and proximity. In SIGCOMM ’03,
2003.

[15] P. Maymounkov and D. Mazieres. Kademlia: A
Peer-to-peer informatiion system based on the XOR metric.
In Proceedings of the 1st International Workshop on
Peer-to-Peer Systems (IPTPS), pages 53–65, Mar. 2002.

[16] N. Naoumov and K. Ross. Exploiting p2p systems for ddos
attacks. In International Workshop on Peer-to-Peer
Information Management, May 2006.

[17] OpenDHT. http://opendht.org/.
[18] Overnet. http://www.overnet.org/ .
[19] Prolexic. Prolexic Distributed Denial of Service Attack

Alert, May 2007.
http://www.prolexic.com/news/20070514-alert.php .

[20] H. Rowaihy, W. Enck, P. McDaniel, and T. La Porta.
Limiting sybil attacks in structured p2p networks. In 26th
IEEE International Conference on Computer
Communications (INFOCOM), pages 2596–2600, 2007.

[21] A. Singh, M. Castro, P. Druschel, and A. Rowstron.
Defending against eclipse attacks on overlay networks. In
ACM SIGOPS 2004, 2004.

[22] A. Singh et al. Eclipse attacks on overlay networks:
Threats and defenses. In Proc. Infocom 06, Apr. 2006.

[23] E. Sit and R. Morris. Security considerations for
peer-to-peer distributed hash tables. In Proceedings of
IPTPS’02, Cambridge, MA, Mar. 2002.

[24] M. Steiner, E. W. Biersack, and T. En-Najjary. Actively
Monitoring Peers in Kad. In Proceedings of the 6th

International Workshop on Peer-to-Peer Systems
(IPTPS’07), 2007.

[25] M. Steiner, W. Effelsberg, T. En-Najjary, and E. W.
Biersack. Load reduction in the kad peer-to-peer system. In
Fifth International Workshop on Databases, Information
Systems and Peer-to-Peer Computing (DBISP2P 2007),
2007.

[26] M. Steiner, T. En-Najjary, and E. W. Biersack. A Global
View of KAD. In Proceedings of the Internet Measurement
Conference (IMC), 2007.

[27] D. Stutzbach and R. Rejaie. Improving lookup performance
over a widely-deployed DHT. In Proc. Infocom 06, Apr.
2006.

[28] H. Yu, M. Kaminsky, P. B. Gibbons, and A. Flaxman.
Sybilguard: Defending against sybil attacks via social
networks. In SIGCOMM, 2006.

ACM SIGCOMM Computer Communication Review 69 Volume 37, Number 5, October 2007

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

