
Wireless Innovation Through Software Radios

Dola Saha, Dirk Grunwald, Douglas Sicker
Department of Computer Science

University of Colorado
Boulder, CO 80309-0430 USA

{Dola.Saha, Dirk.Grunwald, Douglas.Sicker}@colorado.edu

This article is an editorial note submitted to CCR. It has NOT been peer reviewed. Authors take full responsibility for this
article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
Advances in networking have been accelerated by the use of ab-
stractions, such as “layering”, and the ability to apply those ab-
stractions across multiple communication media. Wireless commu-
nication provides the greatest challenge to these clean abstractions
because of the lossy communication media. For many network-
ing researchers, wireless communications hardware starts and ends
with WiFi, or 802.11 compliant hardware.

However, there has been a recent growth in software defined ra-
dio, which allows the basic radio medium to be manipulated by
programs. This mutable radio layer has allowed researchers to ex-
ploit the physical properties of radio communication to overcome
some of the challenges of the radio media; in certain cases, re-
searchers have been able to develop mechanisms that are difficult
to implement in electrical or optical media. In this paper, we de-
scribe the different design variants for software radios, their pro-
gramming methods and survey some of the more cutting edge uses
of those radios.

Categories and Subject Descriptors
C.2.1 [Communication/Networking and Information Technol-
ogy]: Network Architecture and Design; C.3 [Special-Purpose
and Application-Based Systems]: Reconfigurable hardware;
C.2.0 [Communication/Networking and Information Technol-
ogy]: General

General Terms
Design, Performance

Keywords
Software Defined Radio, Orthogonal Frequency Division Multi-
plexing

1. INTRODUCTION
The use of software defined radio [14] (SDR) and the evolu-

tion for use in cognitive radio [16] (CR) has been studied in detail
for many years. The systems are becoming common enough, and
the programming interfaces capable enough, that many different
groups are beginning to explore how software defined radios can
be exploited to improve performance or enhance user experience.

There are many underlying motivations behind the advance-
ments in Software Defined Radios (SDRs) [14]. One of the first,
and most ambitious, goals was to to solve a persistent problem for

the military. Military forces operate in many different regions, each
of which has regulatory oversight of spectrum allocation and dif-
ferent communication standards. Developing and deploying radios
that could operate across the different ranges of spectrum and im-
plement the different policies needed for deployment in different
regions was a difficult task. It would be much easier to have a
single radio into which software could be “poured” into the radio
to have its behavior conform to the specific locale. Similar mo-
tivations exist today - for example, two competing standards for
wide-area cellular technology, LTE and WiMAX, both use similar
frequencies, waveforms and technologies – although the main dif-
ference between the technologies occurs above the physical layer,
the physical interfaces are similar enough that it’s compelling de-
velop a single radio platform that could handle both standard, in-
cluding any future variants of the standards.

Standards are another motivation for the the mutable lower lay-
ers enabled by software radio. Standards take considerable time
to be finalized – a software or mutable platform lets vendors de-
velop and deploy products prior to a fixed standard, and then ad-
dress any changes once that standard is finalized. Software radios
also allow companies to innovate beyond the practice of current
standards, and use experimental deployments to assess the value
of those extensions. It’s also conceivable that a fully software ra-
dio might allow vendors to side-step standardization before deploy-
ment. For example, many Internet services and development mod-
els (e.g. REST [9]) are tried out by practical deployments before
broad acceptance. Due to the lack of programability, the barrier to
innovation in wireless networks is much higher.

All these research efforts constitute a substantial part of the cur-
rent trends in wireless networks, which require significant com-
munication between physical layer and upper layer protocols with
easy reconfigurability of the physical layer hardware platform. In
this paper, we describe different ways that researchers envision de-
veloping a flexible platform from both the perspectives of hardware
and software. We then illustrate the challenges faced by wireless
communication and the existing procedures to overcome the chal-
lenges Finally we explain how the wireless communication knowl-
edge has been applied in higher layers with reconfigurable radio
platforms.

2. PRACTICALITIES OF SDR
Although the concept of software defined radios has been around

for a long time [4, 14], the evolving technology in digital signal
processing and architecture has made it more practical.

There are four elements needed to enable software radio for high-
bandwidth wireless communications: sufficient I/O throughput to

ACM SIGCOMM Computer Communication Review 62 Volume 39, Number 1, January 2009

transport data from the A/D-D/A devices and the CPU, sufficient
digital signal processing throughput, a suitable software develop-
ment environment and a flexible RF “front end”.

2.1 Hardware
The A/D-D/A devices and the radio “front end” translate be-

tween the analog RF signals and the digital world of samples. There
are many challenges to a purely software implementation of a mod-
ern high-speed wireless signal, similar to that of WiFi [10]. The
radio interface generates or consumes ≈ 160MB/s of data – for a
20Mhz waveform, 40 Msamples per second are needed, and each
sample is typically two 16-bit values (representing the phase and
the amplitude); until the last two years, this is beyond the ability of
most common I/O interfaces. Moreover, the computation needed
exceeded the processor throughput of most general-purpose com-
puters in 2007. The challenges for a “narrowband” wireless system
are much lower, and Vanu [21] describes such a system.

Many current systems are implemented using field pro-
grammable gate arrays. For example, Amiri [1] describes a mesh
network organization built using custom FPGA boards. Our own
group has developed a modular transceiver design using FPGA’s
and two different design flows - either a traditional “monolithic”
implementation [7] and a more modular “system on chip” orga-
nization [20]. This latter organization uses FPGA to implement
a “sea of components” that are interconnected by a dynamically
routed on-chip network, allowing flexibility while producing a spe-
cific radio configuration.

A similar approach has been advocated by researchers [15] using
the Intel Exoskeleton framework [6] to augment an existing CPU
with specific “signal processing components” interconnected by a
routable network. The benefit, and limitation, of that approach is
that the signal processing blocks are pre-configured, and although
the existing blocks can be used in different configurations, blocks
cannot be added or changed. This is a limitation because any new
signal processing algorithm would need to use the existing blocks;
it’s a benefit because the chip density and power for such a cus-
tom design is typically a 10-fold improvement over FPGA designs.
Current designs using FPGA’s for signal processing are probably
not realistic for low-cost handset designs because of power and cir-
cuit density.

An alternative step is to design a CPU that can handle different
software radio tasks using distinct instructions optimized for those
tasks. Woh. et. al. [23] illustrates the challenges a basic archi-
tecture of software defined radio will face when we move to 4G
networks. The authors considered the SODA architecture [17] as
the basis of their enhancement. This architecture has SIMD sup-
port for parallel multiple operations on the same data. The major
algorithms that a high-speed network like the WiMax, LTE, and
3GPP standards are comprised of are a) FFT/IFFT, b) STBC, c)
V-BLAST and d) LDPC. The FFT/IFFT routines are required for
any multicarrier communication, to change the time domain sig-
nal to frequency domain and vice versa. Since more subcarriers
are expected in higher data rate networks, the FFT size can go up
to a width of 2048 or more. Space-time coding, STBC, is an en-
coder/decoder, which is used in MIMO transmission, for encoding
two copies of the same data and transmitting it in two time slots.
The encoding requires conjugate and negation calculation. Both
the encoding and decoding process can be run in parallel and can
be computed in a SIMD machine with FFT. V-BLAST is another
encoder/decoder technique used for MIMO systems, where spatial
multiplexing is obtained by transmitting independent data streams
over multiple antennas. It also requires conjugating and negating a
block of data. It is an iterative process at the receiver, and consumes

computational cycles for implementation. 4G systems are expected
to use LDPC codes and also Turbo codes, which is already used
in 3G system. LDPC codes are channel encoders, meant for con-
verting the data into a meaningful codeword before transmission to
compensate for errors. LDPC also exhibits data level parallelism,
which can be implemented in SIMD processor.

The last design alternative used for some software radios is an
array of small general “tiled processors” connected by an on-chip
network, such as the picoArray [18]. Such designs have been used
to build an 802.16 base station.

Each of these design alternatives (general purpose CPU, recon-
figurable FPGA, reconfigurable SOC, SIMD processor or tiled ar-
ray) have advantages and disadvantages. A more fundamental
question is are these capabilities needed? We believe the answer
is “yes”. The current trends [13, 12, 19, 8] in software radio inno-
vation require extensive reconfigurability of the hardware and con-
tinuous communication from the MAC layer for decision making
in signal processing. In legacy hardware, the system would process
all the signals similarly and would generate a packet and hand it
over to MAC, which then determines what to do with the received
packet. At the transmitter side, carrier sensing [19] is done in some
subset of subcarriers based on the decision from a statistical model
maintained in MAC layer. The physical layer reconfiguration is re-
quired depending on the current environment of the network and
the received signal (whether it is a collision or not) and requires
constant feedback from the MAC layer for signal processing, which
cannot be pre-determined or predicted beforehand and programed
in an ASIC. This creates a demand for reconfigurable, higher layer
controlled physical layer to act to the environment and to the re-
ceived signal; this requires the capabilities of one of the platforms
described above.

2.2 Software
Many on-going projects [13, 12] use the GNURadio [3] frame-

work for signal processing at the receiver side. GNURadio provides
a platform of extreme reconfigurability as all the signal processing
is done in software code. The software stack is built on the USRP
(Universal Software Radio Platform), from Ettus Research, con-
nected to the computer with the USB port, but can be extended to
other platforms. The radio front-end up to A/D or D/A conversion
is done in hardware, and the rest of the signal processing blocks
for both transmitter and receiver are in software. Since a desktop
computer is used to compute the signal processing, the processing
is serial and takes more time than real demand of the network.

More elaborate (and complete) software environments exist; the
SCA (software communication architecture) is a complex frame-
work involving CORBA-based services to configure the radio. An
open source version of this software, OSSIE [22], is available, and
demonstration of this system also uses the GNU USRP and general
purpose CPU’s.

The GNURadio framework is mainly appropriate for “non-real
time” work because it uses a general-purpose computer. Authors
in [19] and [5] use their custom built flexible hardware platform,
both of which are FPGA based. One example is the Wireless Open-
Access Research (WARP) platform, built on Xilinx Virtex-II Pro
FPGA board, where the MAC protocol is written in C and runs on
PowerPC cores, and the PHY is implemented in FPGA.

This programming model, which combines C and hardware de-
sign languages like Verilog or VHDL, is very challenging for most
computer science network researchers. Software, and particularly
software accessible by standard networking researchers remains a
major challenge for software radio.

ACM SIGCOMM Computer Communication Review 63 Volume 39, Number 1, January 2009

Figure 1: Subcarrier Frequencies in OFDM (Pilots are inserted
at Subcarriers -21, -7, +7, +21; Rest are Data Subcarriers)

Figure 2: Orthogonal Frequency Division Multiplexed Data
Received with Signal Analyzer in 2.4GHz, containing 48 Data
Subcarriers and 4 Pilot Subcarriers

3. INNOVATION BY SOFTWARE RADIO
In the next section, we review some of the recent research that

requires software defined radio to implement protocols that have
shown improvement in the performance of higher layer protocols.
We (very briefly) describe the main challenges faced by wireless
networks – almost all of these are physical layer issues; understand-
ing how they can be solved by software radios requires a high-level
understanding of how radio communication works. We then de-
scribe two projects that seek to reduce interference through soft-
ware processing of the signal. A third project attempts to reduce
interference by avoiding frequencies being used by other devices.
The last project attempts to exploit interference to enable rapid
group communication and acknowledgements.

3.1 Radio Basics
There are a number of common problems faced by wireless net-

works, almost all of which are caused by interference of the shared
communication channel; others are caused by problems in media
access, such as “hidden terminal” problems. Some of the recent re-
search in using software radios to overcome problems focuses these
and other artifacts.

A radio signal is, fundamentally, a sine wave at a specific fre-
quency. That signal needs to be modulated to encode different val-
ues. Most people are familiar with amplitude modulation (AM) and
frequency modulation (FM). In AM, the amplitude of the signal is
changed; but the amplitude is also greatly affected by the environ-
ment, which is why AM radios are “noisy”. Again, most people
are familiar with FM, which modulates the underlying frequency -
other techniques such as “frequency shift keying” also use changes
in frequency. Less familiar for most people is phase modulation,
which changes the phase to encode information.

Interference: Fundamentally, two radios transmitting on the

(a) Unequalized QPSK Constel-
lation

(b) Equalized QPSK Constella-
tion

Figure 3: Equalization of QPSK

same frequency can be modeled by a sum of time-varying signals,
S1(t) and S2(t); depending on the strength of one signal vs. the
other, a receiver may be able to decode one signal or the other.
Normally, we separate signals by space, power, time or frequency
to insure that the two signals don’t interfere to a great extent. For
example, FM radio stations and cellular phone networks use fre-
quency and power limits to limit the interference between one ra-
dio station and another; 802.11 networks primarily use time (i.e. a
CSMA/CA MAC protocol) and frequency to limit interference.

Packet Detection: Radios are distributed in space, and the time
of reception or start of a packet to any given radio varies by dis-
tance. To receive data correctly, most protocols use some method
to detect the start of a packet, typically using a correlator, that
detects a pattern in the transmitted signal. Two common mecha-
nisms [11] are used; one is correlation with stored samples, and the
second one is correlation of previously received samples. Correla-
tion determines the degree of similarity between two signals. If the
signals are identical, then the correlation coefficient is 1 and if they
are completely different, the correlation coefficient is 0. The start
of the data symbols are preceded by a known sequence of repeti-
tive preamble symbols. The receiver performs an auto-correlation
with a delayed version of the signal. The repetitive nature of the
preamble and the delayed auto-correlation function provides us a
similarity factor which helps us to identify a valid packet.

Channel Estimation and Equalization: Channel fading dis-
torts the radio signal in both amplitude and phase. In multi-carrier
communication, “channel” is defined by as a set of subcarriers, and
fading is different across those subcarriers. But, there is a trend
in which the subcarriers fade - which can be linear or non-linear.
To cope up with this kind of fading in multi-carrier modulation,
researchers utilized some subcarriers as pilots to capture channel
state information. These pilot subcarriers are inserted at regular in-
tervals with a known amplitude and phase. Figure 1 shows four pi-
lot subcarriers inserted in a 52 subcarrier system used in 802.11a/g
technology at 2.4GHz. The receiver estimates the channel state
information from the pilots and calculates the inter-pilot channel
state by using linear or non-linear interpolation methods. These es-
timates are used to equalize the data carriers in order to reinstate
their modulation level required for successful decoding. Figure 2
shows the transmitted OFDM signal captured by a signal analyzer,
which contains the four pilot subcarriers and 48 data subcarriers,
as shown in figure 1. All the subcarriers overlap in the frequency
domain, although the orthogonality (reduced interference) of each
of the subcarriers is maintained.

Equalization is an important step in being able to decode the sig-
nal. Figure 3 shows the signal before and after equalization of a
Quadrature Phase Shift Keying (QPSK) modulated data signal. The

ACM SIGCOMM Computer Communication Review 64 Volume 39, Number 1, January 2009

Figure 4: Receiver Architecture for Successive Interference
Cancellation [13]

unequalized data, captured over the air, is distorted to such extent
that it is difficult to estimate the values being transmitted. How-
ever, a linear equalization results in a distinct “constellation” show-
ing the four different possible states for the QPSK signal. Hence,
equalization has to be done before the signal is passed to the de-
modulation block.

3.2 Interference Cancellation
We now examine how software radio can be used to overcome in-

terference in a signal. Halperin et. al. [13] have implemented an in-
terference cancellation algorithm for Zigbee networks, which uses
the 2.4GHz band and Direct Sequence Spread Spectrum (DSSS)
for its communication. Successive Interference Cancellation (SIC)
is a common technique in cellular networks [2], where the sce-
nario is more simple than in the distributed architecture of wireless
LANs. A cellular network is controlled by the Base Station(BS),
where it constantly communicates with all the mobile devices for
clock and frequency synchronization, transmit power, coding rate
and spreading codes. However, the chaotic nature of the unlicensed
band made it more difficult to address the problem of interference
cancellation. Hence, the authors developed a modified version of
SIC for unmanaged wireless networks.

SIC is a receiver functionality, that requires a) collision detec-
tion, b) decoding the strongest signal, c) modeling the captured
signal, d) canceling the strong interferer and e) iterate the process
to decode the packet with lower power. Collision detection is done
by detecting a sharp change in amplitude of the incoming signal.
The authors assume that the signal power of one of the interfer-
ers is strong enough that it can be decoded even in the presence of
the other signal. Hence, the packet detector module, or more pre-
cisely, the correlator block of the receiver resynchronizes with the
stronger signal and detects it. Although there are several aspects of
channel characteristics, the modeling of the captured signal is done
based on a channel model, which only considers frequency offset
and ignores others. The received collided signal is a combination
of two signals with noise. If R(t) is the received signal at time t,
then R(t) = S1(t) + S2(t) + N(t). S1(t) and S2(t) are the two
colliding signals at time t. If we consider that S1(t) is the stronger
signal, then it is decoded by the single packet receiver. After de-
coding, the original transmitted version of S1(t) can be regenerated
and then channel modeler is used to estimate S1(t), which results
in S′

1(t). This estimated signal is then subtracted from the received
signal to decode S2(t). The block diagram of the SIC receiver used
in this research is shown in figure 4.

3.3 ZigZag Decoding
An improvement to Successive Interference Cancellation has

been proposed in ZigZag Decoding [12], which also aims to decode
two packets when they collide at the receiver due to hidden termi-

Figure 5: ZigZag Decoding - when two packets collide repeat-
edly [12]

nals in an 802.11 network. In the chaotic unlicensed band, hidden
terminals are a common problem, causing packets to collide repeat-
edly at the receiver. When two packets collide more than once at
the receiver, ZigZag Decoding receives a partial uncollided packet
from one collision, decodes it and subtracts it from the signal of the
other collision, such that both the packets can be decoded. Figure 5
shows two successive collisions of packets Pa and Pb, which are
decoded using the proposed technique. First, the start of each of
the collided packets is detected, and ∆1 and ∆2 are computed. If
∆1 is greater than ∆2, then (∆1 − ∆2) is the uncollided part of
packet Pa in first collision, which is interfered in the second col-
lision. This part of the samples of packet Pa is called chunk 1, as
shown in the figure. Chunk 1 is then subtracted from the signal of
the second collision, which retrieves chunk 2 of packet Pb. This is
again used to subtract chunk 2 from the first collision, to retrieve
chunk 3 of packet Pa. This is done repeatedly till the end of the
packets or until both the packets are decoded. The size of each
chunk depends on the size of (∆1−∆2), which is called the boot-
strapping chunk. The authors also show that this procedure can be
theoretically extended to collisions of more than two packets.

This technique requires following the extra steps at the receiver:
a) detection of the start of each of the packets under collision, b)
detection of the end of packet, c) channel estimation, and d) detec-
tion of matching collisions. The detection of the start of packet is
done by cross-correlation with a known sample. Once a packet is
detected, a sliding window of correlation is used to detect the start
of next packet. When samples match, the correlation has a high
peak denoting the start of the packet. Although, if the first signal is
strong enough, there is a possibility of not getting a peak above the
threshold in the cross-correlator block for detection of the second
packet. If the preamble and signal symbol is detected and decoded
correctly, length of the packet is retrieved from the signal symbol
and is used to decode the packets in a loop until the end. Channel
estimation is part of any receiver design, where the equalization
block is required to regenerate the transmitted signal. In figure 5,
we notice that chunks are named as 1 in the first collision and 1′

in the second collision, which is due to the fact that channel con-
ditions vary and time-dependent signals are not identical. ZigZag
first decodes chunk 1 with the demodulator known from the sig-
nal symbol, and encodes chunk back, which generates the original
transmitted signal devoid of any channel distortion that modifies
the signal. This signal is then passed through the channel estima-
tor to generate a similar, but not necessarily identical copy of the
chunk 1 or 1′, which is then subtracted from the signal of second
collision. To detect a matching collision, correlation is done with
the samples of (∆1 −∆2) and the recently collided signals at the
receiver. The receiver stores signals of all recent collisions.

ACM SIGCOMM Computer Communication Review 65 Volume 39, Number 1, January 2009

3.4 SWIFT
The use and demand of unlicensed bands has been increasing to

satisfy the needs of narrowband users like 802.11b/g or Zigbee.
However, wideband technologies can be used to transmit media
rich applications at a higher data rate if they can successfully co-
exist with other narrowband technologies and form a network of
their own. Rahul et. al. [19] presents the design and implemen-
tation of such a narrowband-friendly wideband network that tries
to coexist with other narrowband technologies. The technology is
termed SWIFT, a Split Wideband Interferer Friendly Technology.
SWIFT introduces an Adaptive Sensing Algorithm, which inverts
the common use of sensing the power of the signal at each fre-
quency. Instead, the algorithm senses the channel for the reaction
of the narrowband user in the presence of the wideband transmis-
sion. The adaptive sensing performs power measurements in sub-
carriers to compute four metrics, to determine how the narrowband
network reacts to the wideband transmission. The four metrics are
a) Inter-transmission time, b) Transmission duration, c) Average
narrowband power and d) Probability of transmission immediately
after SWIFT. The first metric is to determine the backoff nature of
the 802.11 device. The second metric is to determine whether the
data rate falls back due to interference, which often does not hap-
pen if the data rate is fixed. The third metric is to determine the
presence of multiple narrowband devices. The fourth one consid-
ers that 802.11 will carrier-sense and then transmit after wideband
transmission, if it can sense. With these metrics, adaptive sensing
is done, based on the algorithm as shown in figure 6. Packet detec-
tion is done by filtering out the frequencies reported in the adap-
tive sensing mechanism. However, this requires a communication
between a transmitter and receiver pair to agree upon a common
subset of subcarriers for communication.

3.5 Concurrent Acknowledgement
In on-going work, we [8] have shown how to utilize orthogo-

nal subcarriers in OFDM as a mode of simultaneous transmission
by multiple nodes. This mechanism is aptly used for a reliable
broadcast or multicast protocol, where the acknowledgements are
transmitted simultaneously by the clients who received the packet
in a predefined subcarrier. This can also be extrapolated to include
some decision mechanism at the clients to “vote” on the transmit-
ted message. For the transmission of acknowledgements, each node
only transmits a short tone of duration 8µs in a pre-negotiated sub-
carrier. The received signal at the receiver is a cumulative signal
from all the nodes. As the subcarriers are mutually orthogonal to
each other, the frequencies in which tones are transmitted are dis-
tinctly visible after FFT. The tones just carry ‘yes/no’ information
based on either having the nodes transmit or not. Hence, these tones
do not need to be decoded; only checking the amplitude of each
subcarrier suffice the decision making process of which node has
transmitted the tone. The idea has been modeled in MATLAB and
then implemented in an FPGA-based reconfigurable hardware [10,
7]. Figure 7 illustrates how radios can simultaneously “vote” using
orthogonal (non-overlapping) communication frequencies. This
“waterfall plot” shows energy at different frequencies (horizontal
axis) over time (vertical axis). The wideband energy at the top of
the figure is a broadcast packet asking nodes to respond if some
condition is met; the two bands near the bottom of the plot are re-
sponses from two nodes.

This purely physical layer communication mechanism can be
used to dramatically improve various MAC and network functions.
In unpublished work, we’ve shown how such concurrent acknowl-
edgments can be used to greatly improve the throughput of an
802.11-like protocol by reducing or eliminating contention while

Figure 7: Waterfall Plot of Concurrent Acknowledgement with
3 Radios showing the end of transmission of broadcast packet
using full spectrum and 2 Concurrent Acknowledgements from
2 Clients, each using one Subcarrier [8]

maintaining fair scheduling. It’s also possible to use aspects of the
physical layer information on “time of arrival” to estimate velocity
and distance in vehicular networks.

4. CONCLUSION
Each of the preceding innovating uses of wireless networks has

used a combination of physical layer characteristics, often in con-
junction with MAC layer capabilities, to improve some aspect of
wireless communication, such as reducing interference, enabling
better frequency utilization or reducing the time needed for signal-
ing and coordination. None of these innovations would be possible
without a fully software programmable radio, where the physical
layer and MAC layer are under direct programmer’s control.

The hidden cost of these projects is the complexity of the devel-
opment environment and the time needed to implement them. This
is in part because of the tension between the needed capabilities
of the hardware and the (rather arcane) programming tools needed
to fully exploit that hardware. Based on our work, we believe that
software radio needs a broader focus on the software to simplify
development and enhance innovation.

In this paper, we have seen that a reconfigurable physical layer,
which can efficiently and seamlessly interact with higher layers,
will be a preferred choice for researchers. We reviewed four inno-
vation that utilize flexible physical layer design in higher layers for
the overall improvement of system performance. Instead of treating
the MAC and physical layer as separate entities, software develop-
ers need to be able to treat these layers as the mutable components
in order to continue the evolution of wireless networks.

5. REFERENCES
[1] K. Amiri, Y. Sun, P. Murphy, C. Hunter, J. R. Cavallaro, and

A. Sabharwal. WARP, A Unified Wireless Network Testbed
for Education and Research. In Proceedings of IEEE MSE,
2007.

[2] J. Andrews. Interference cancellation for cellular systems: a
contemporary overview. Wireless Communications, IEEE,
12(2):19–29, April 2005.

[3] E. Blossom. GNU Radio as an Experimental Platform:
Current Capabilities and Future Directions. In WINTECH,
pages 1–2, 2007.

[4] V. G. Bose. The impact of software radio on wireless

ACM SIGCOMM Computer Communication Review 66 Volume 39, Number 1, January 2009

Figure 6: Adaptive Sensing Algorithm of SWIFT [19]

networking. SIGMOBILE Mob. Comput. Commun. Rev.,
3(1):30–37, 1999.

[5] J. Camp and E. Knightly. Modulation Rate Adaptation in
Urban and Vehicular Environments: Cross-layer
Implementation and Experimental Evaluation. In MOBICOM
’08: Proceedings of the ACM MOBICOM 2008 conference,
New York, NY, USA, 2008. ACM.

[6] G. Chinya, J. Collins, M. Girkar, H. Jiang, G. Lueh,
L. Pearce, X. Tian, H. Wang, P. Wang, and S. Yakoushkin.
Accelerator exoskeleton. Intel Technology Journal, Aug
2007. http://www.intel.com/technology/itj/
2007/v11i3/2-exoskeleton/1-abstract.htm.

[7] A. Dutta, J. Fifield, G. Schelle, D. Grunwald, and D. Sicker.
An intelligent physical layer for cognitive radio networks. In
WICON 2008: Proceedings of the Fourth International
Wireless Internet Conference (WICON 2008), New York,
NY, USA, 2008. ACM.

[8] A. Dutta, D. Saha, D. Grunwald, and D. Sicker. A concurrent
acknowledgement scheme for broadcast messages in
wireless networks. Technical report, University of Colorado
at Boulder, September 2008.

[9] R. T. Fielding. Architectural Styles and the Design of
Network-based Software Architectures. PhD thesis,
Department of Information and Computer Science,
University of California Irvine, 2000.

[10] J. Fifield, P. Kasemir, D. Grunwald, and D. Sicker.
Experiences with a Platform for Frequency-Agile
Techniques. In DYSPAN 2007, 2007.

[11] A. Fort, J.-W. Weijers, V. Derudder, W. Eberle, and
A. Bourdoux. A performance and complexity comparison of
auto-correlation and cross-correlation for ofdm burst
synchronization. Acoustics, Speech, and Signal Processing,
2003. Proceedings. (ICASSP ’03). 2003 IEEE International
Conference on, 2:II–341–4 vol.2, April 2003.

[12] S. Gollakota and D. Katabi. Zigzag Decoding: Combating
Hidden Terminals in Wireless Networks. In SIGCOMM ’08:
Proceedings of the ACM SIGCOMM 2008 conference on
Data communication, pages 159–170, New York, NY, USA,
2008. ACM.

[13] D. Halperin, T. Anderson, and D. Wetherall. Taking the Sting
out of Carrier Sense: Interference Cancellation for Wireless
LANs. In MOBICOM ’08: Proceedings of the ACM
MOBICOM 2008 conference, New York, NY, USA, 2008.
ACM.

[14] J. M. III. Cognitive Radio - An Integrated Agent Architecture

for Software Defined Radio. PhD thesis, Royal Institute of
Technology (KTH), 2000.

[15] D. A. Ilitzky, J. D. Hoffman, A. Chun, and B. P. Esparza.
Architecture of the scalable communications core’s network
on chip. IEEE Micro, 27(5):62–74, 2007.

[16] F. K. Jondral. Software-defined radiobasics and evolution to
cognitive radio. EURASIP Journal on Wireless
Communications and Networking, 2005(3):275–283, 2005.

[17] Y. Lin, H. Lee, M. Woh, Y. Harel, S. Mahlke, T. Mudge,
C. Chakrabarti, and K. Flautner. Soda: A low-power
architecture for software radio. In ISCA ’06: Proceedings of
the 33rd annual international symposium on Computer
Architecture, pages 89–101, Washington, DC, USA, 2006.
IEEE Computer Society.

[18] G. Panesar, D. Towner, A. Duller, A. Gray, and W. Robbins.
Deterministic parallel processing. Int. J. Parallel Program.,
34(4):323–341, 2006.

[19] H. Rahul, N. Kushman, D. Katabi, C. Sodini, and F. Edalat.
Learning to Share: Narrowband-Friendly Wideband
Networks. In SIGCOMM ’08: Proceedings of the ACM
SIGCOMM 2008 conference on Data communication, pages
147–158, New York, NY, USA, 2008. ACM.

[20] G. Schelle, J. Fifield, and D. Griinwald. A software defined
radio application utilizing modern fpgas and noc
interconnects. Field Programmable Logic and Applications,
2007. FPL 2007. International Conference on, pages
177–182, Aug. 2007.

[21] D. L. Tennenhouse and V. G. Bose. The spectrumware
approach to wireless signal processing. Wirel. Netw.,
2(1):1–12, 1996.

[22] Wireless@VirginiaTech.edu. Ossie: Open source
sca implementation.
http://ossie.wireless.vt.edu/, 2008.

[23] M. Woh, S. Seo, H. Lee, Y. Lin, S. Mahlke, C. Chakrabarti,
and K. Flautner. The Next Generation Challenge for
Software Defined Radio. In SAMOS, 2007.

ACM SIGCOMM Computer Communication Review 67 Volume 39, Number 1, January 2009

