
DECOR: DEClarative network management and OpeRation

Xu Chen
Department of EECS
University of Michigan

Ann Arbor, MI
chenxu@umich.edu

Yun Mao
AT&T Labs - Research
Shannon Laboratory

Florham Park, NJ
maoy@research.att.com

Z. Morley Mao
Department of EECS
University of Michigan

Ann Arbor, MI
zmao@eecs.umich.edu

Jacobus Van der Merwe
AT&T Labs - Research
Shannon Laboratory

Florham Park, NJ
kobus@research.att.com

ABSTRACT
Network management operations are complicated, tedious and
error-prone, requiring significant human involvement and expert
knowledge. In this paper, we first examine the fundamental com-
ponents of management operations and argue that the lack of au-
tomation is due to a lack of programmability at the right level
of abstraction. To address this challenge, we present DECOR, a
database-oriented, declarative framework towards automated net-
work management. DECOR models router configuration and any
generic network status as relational data in a conceptually central-
ized database. As such, network management operations can be
represented as a series of transactional database queries, which pro-
vide the benefit of atomicity, consistency and isolation. The rule-
based language in DECOR provides the flexible programmability
to specify and enforce network-wide management constraints, and
achieve high-level task scheduling. We describe the design ratio-
nale and architecture of DECOR and present some preliminary ex-
amples applying our approach to common network management
tasks.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network Management

General Terms
Design, Languages, Management

Keywords
Network Management, Declarative Language

1. INTRODUCTION
Network management and operational tasks are performed on

a daily basis in all large operational networks. These operational

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
Copyright 2010 ACM This is a minor revision of the work published in
PRESTO’09 http://doi.acm.org/10.1145/1592631.1592647.

tasks span a wide range of activities including (i) planned main-
tenance, e.g., to upgrade or introduce new equipment, (ii) emer-
gency repair, e.g., when a natural or human induced event causes
failure or malfunction, (iii) fault management, e.g., to localize and
replace faulty equipment, (iv) configuration management, e.g., to
enable new functionality or customer features, (v) traffic/perfor-
mance management, e.g., to deal with traffic growth and dynamic
traffic events, (vi) security management, e.g., dealing with secu-
rity incidents like worm outbreaks and DDoS attacks, (vii) network
measurement and monitoring, e.g., to detect anomalies.

The scale of modern networks, the diversity of the equipment
used to realize their functionality, and the inherent complexity of
many of these operational tasks combined make network manage-
ment and operation one of the most significant challenges faced
by network operators. This state of affairs is exacerbated by the
fact that networks are always “live”, i.e., traffic associated with the
myriad of services enabled by the network is continuously being
carried by the network. The implication is that operational tasks
have to be performed with minimal impact on existing services.

To address these challenges, it is desirable to have as much au-
tomation as possible so that systems can be utilized to keep track
of dependencies and constraints as network operational tasks are
performed. However, the realization of a unifying framework to
enable fully automated network operations would be a challenging
task at best and in the worst case might not be feasible.

In this paper we take a modest step towards the realization of
such a unifying operational framework. Fundamental to our overall
approach is the recognition that automation can only be achieved in
a closed-loop fashion where the operational actions are informed
by the state of the network, which reflect the result of previous
operational actions as well as the dynamic behavior of the network.

A significant challenge in realizing any automated operations/-
management system is choosing the “right” level of abstraction:
abstractions are needed in all complicated systems in order to hide
unnecessary details; however, those exact same details to hide for
one task might be important to expose in another task. In this work
we explore the utility of a database-oriented declarative language
approach to facilitate both programmability as well as the ability to
realize different abstractions over the same data and thus to serve
as a unifying framework towards automated network operations.

Specifically, we present DECOR, a unifying network operation
management system, which models router configurations and any
generic network status as relational data in a conceptually central-
ized database. As such, network management operations can be
represented as a series of transactional database queries, which pro-

ACM SIGCOMM Computer Communication Review 61 Volume 40, Number 1, January 2010

vide the benefit of atomicity, consistency, and isolation. The rule-
based language in DECOR provides the flexible programmability
to specify and enforce network-wide management constraints, and
achieve high-level task scheduling. We describe the design ra-
tionale and architecture of DECOR and present some preliminary
examples from our experiences of applying the approach to some
common network management tasks.

2. APPROACH
In this section, we first examine the fundamental components

of management operations, then present the benefits and the archi-
tectural overview of our database-oriented declarative approach to
automated network management.

2.1 Mechanics of Network Operations
Network operations are fundamental to the well-being of today’s

networks. In operational networks, they are usually performed
manually, or in a semi-automated fashion, via so called method
of procedure (MOP) documents. MOPs describe the procedures
to follow in order to realize specific operational tasks, often via
manual command line interface (CLI) procedures.The procedures
usually serves as a template that stitches the following four compo-
nents together to achieve actual network management tasks:

Configuration management: The configuration of network ele-
ments collectively determines the very functionality provided by
the network in terms of protocols and mechanisms involved in
providing functionality such as basic packet forwarding. Config-
uration management, or more generically all commands executed
via the operational interface of network elements, are also the pri-
mary means through which most network operational tasks are per-
formed.

Status checking: Obtaining network running status is an essential
part of network management [1]. As a matter of fact, the result
of status-checking activities largely determines the actual progress
of network operational task. As a trivial example, a BGP session
configuration would only be carried out on a router after IP level
connectivity to the remote BGP peer has been verified.

External synchronization: Today’s networks are inherently man-
aged by multiple parties. While devices can be logically accessed
from a central location, field operators are essential in carrying out
operations on the physical infrastructure of the networks. There
are also external decision systems that can guide various types of
management tasks, such as router or link maintenance [2]. From
a network management system point of view, it is important to en-
code the capability of synchronizing with these external parties.

High-level constraints: While making changes to the networks,
there are usually certain constraints that should never be violated.
For a large ISP network with many routers and inter-links, link
maintenance is performed all the time. A bottom-line constraint
could be “never partition the network”. This constraint could ef-
fectively restrain two (only) cross-country links being maintained
at the same time.

Most of the existing work [3, 4] focus on the automation of gen-
erating configuration changes. Few, if any, effort has been made to
automate checking network status, synchronizing with external en-
tities, enforcing high-level constraints and carrying out operational
procedures. As a matter of fact, today, all these aspects are mostly
performed manually and thus prone to error. A unified framework
can bridge these aspects, for both automation and error-resilience.

2.2 Abstracting Networks as Databases
In this paper we explore the utility of a database abstraction for

network operations through a system called DECOR. We abstract
router state and network state into tables in a conceptually central-
ized relational database. Programmability is naturally provided by
a declarative language composed of a series of database queries. As
a result, the database automatically propagates state change from
database tables to routers to carry out network operations. We ar-
gue that the approach has the following advantages:

Flexible levels of abstractions: Managing routers as databases not
only raises the abstraction to a higher level than the MOP/CLI ap-
proach, but also provides the ability to realize different abstractions
over the same data by creating views on top of the base tables. For
example, one could derive a path view that describes all paths es-
tablished by a routing protocol based on a link table, which de-
scribes link relation between routers and is extracted from each
router. As a result, operations and policies based on path properties
can be directly specified against the derived view.

Configuration and status unification: Both router configurations
and network status are represented as relational tables in DECOR.
Therefore, it is straightforward to write queries that configure
routers based on different network conditions.

Transactional operation: Network operations are represented as a
series of transactional database queries, which provide the benefit
of atomicity, consistency and isolation. Should any failures or pol-
icy violations occur, DECOR rolls back to the previous consistent
state.

Declarative policy enforcement: DECOR enables network oper-
ators and administrators to specify high-level policies (i.e., con-
straints). For example, one may specify that each router must have
a unique interface identifier, or at least one of the two important
links must be up. These policies are expressed independently from
the authors of operation transactions, and are considered declara-
tive in that they describe what should happen as opposed to how
to enforce them during each network operation. Such enforce-
ment mechanisms are automatically generated from the policies by
DECOR.

2.3 Architecture

Config
Tables

Views

R t 1 Router2

Execution Rules Constraint
Rules

Execution
Planner

Regular
Tables

Status
Tables

Adapters (optional)

View Rules
User

Frontend

Router1 Router2
events

Figure 1: DECOR architecture

The DECOR architecture is depicted in Figure 1. In a nutshell,
DECOR maintains tables and views that reflect router configura-
tions and network status. Network operations and constraints are

ACM SIGCOMM Computer Communication Review 62 Volume 40, Number 1, January 2010

expressed as rule-based database queries. They are fed into the ex-
ecution planner where automated execution programs are generated
to manipulate the tables and views. Relevant state changes in the
tables are committed to the corresponding routers. For commodity
routers that do not support the database abstraction, adapters are
used to bridge the gap. A user interface is provided for operators to
examine data and execute operations.

Data model: All state involved in operation tasks is modeled as
relational data, and stored in one of the following types of tables
in DECOR: i) regular tables are just like tables in a traditional
database. Their state is not associated with any router. Such tables
are typically used to store auxiliary execution state for an operation,
such as the stage of a multi-stage operation; ii) config tables store
router configuration information, such as IP addresses, protocol-
specific parameters, interfaces, etc. One can read these tables to
get current configuration, and also write to those tables to change
the configuration. DECOR is responsible for maintaining consis-
tency between config tables and router state. For example, an up-
date of the interface table entry interface(if id,"down")

effectively triggers CLI commands that shut down the according
interface; iii) status tables represent the current network state. For
example, a ping(Src,Dest,RTT) table represents the ping result
between two routers Src and Dest. These tables are read-only, and
maintained in an on-demand fashion: DECOR only fetches status
from the routers when relevant status table entries are referenced in
a query.

Language: DECOR adopts a rule-based query language Mo-
saic [5], a variant of Datalog [6], for operators and administra-
tors to program automated network operations. Datalog is known
to be more expressive in representing recursive queries than SQL,
which is desirable to describe network properties. DECOR utilizes
three types of rules for different purposes: i) execution rules are
used to define automated network operations. They are usually in
the form of event-condition-actions (ECA rules). For example, a
startOp(RouterID) event triggers the execution of an ECA rule,
and depending on current router configurations and network status
(i.e., conditions), different actions are taken to carry out the opera-
tion. In a complicated operation, an action may trigger other events,
which further lead to other actions that dictated by other execution
rules; ii) constraint rules specify the policies of a network as the
consistency conditions of the database. Any actions in execution
rules should not make the database inconsistent; iii) view rules are
used to create views that are derived from existing tables or views.
Views provide different levels of abstractions (recall the example
in Section 2.2).

3. EXAMPLES
In this section, we exemplify how to handle different types of

network operations in DECOR.

3.1 Link Maintenance
We use the example of link maintenance with increasing sophis-

tication to show how different aspects of network management can
be expressed as declarative rules. We also give some intuition on
how the execution engine picks up and executes rules to automate
management operations.

Listing 1: Rules for Router Maintenance
R1 on insert Maintenance(L,”pending ”), EndPoint(L, int1 , int2),

=> insert interface (int1 ,” down”), insert interface (int2 ,” down”);
R2 on periodic (10), Maintenance(L,”pending ”), EndPoint(L, int1 , int2),

interface (int1 ,” down”), interface (int2 ,” down”);

=> messageToField(L,” start ”), insert Maintenance(L,” onfield ”);
R3 on messageFromField(L,”done”), Maintenance(L,” onfield ”)

=> insert Maintenance(L,”fdone ”);
R4 on periodic (10), Maintenance(L,”fdone ”), EndPoint(L, int1 , int2)

=> insert interface (int1 ,” up”), insert interface (int2 ,” up”),
delete Maintenance(L,”fdone ”);

Basic link maintenance procedure: From a network operator’s
perspective, the basic operational procedure of link maintenance
includes: 1) shut down the interfaces on both ends of the link; 2)
coordinate with field team so that they work on the physical part of
the link; 3) bring up the interfaces.

Listing 1 shows how to use 4 execution rules (R1-R4) to real-
ize a primitive maintenance procedure. Three tables are used in
the example: the Maintenance table contains a list of links that
are under-going maintenance procedures, associated with its up-to-
date procedure status; the EndPoint table records each link and the
interface IDs of its two ends; the interface table is a config table
to bring up or down router interfaces. Modifying the state of an in-
terface from “up” to “down” would result in configuration changes
automatically populated to the actual devices. There are two events
messageToField and messageFromField in the example. They
are sent and received respectively via the user front-end to interact
with operators.
R1-R4 are event-condition-action (ECA) rules. They are trig-

gered by events, including user-defined events, system events, or
database events. The actions of a rule are executed when all condi-
tions hold. Specifically, R1 fires when a new link maintenance task
on link L is scheduled, indicated by the insertion event of a tuple
(L,"pending") into the Maintenance table. Then the endpoint
interfaces int1 and int2 of the link L are identified. Finally, it
performs the actions of shutting down both interfaces by changing
the interface table. The details of how this change is done are
transparent to the rule writers.
R2 and R3 are used to carry out external synchronization.

periodic(10) represents a system event that is triggered every
10 seconds. So, R2 is periodically triggered to find a link L in
"pending" state and both of its interface endpoints are already
shut down, then performs the actions of notifying field team to start
working and changing the state of the link L to be "onfield".
messageToField and messageFromField are both events for
exchanging messages with the field team. R3 is fired if a mes-
sage is received from field team saying link L is done on their side,
resulting moving the state of link L to "fdone".
R4 is periodically triggered to pick up a link L that is done

with field work, identifies both of its endpoint interfaces, then per-
forms the action of bringing them up, and removing L from the
Maintenance table, indicating the completion of the task on link
L.

Given the above rules, maintaining a link is as simple as inserting
a tuple (L,"pending") into the Maintenance table, and then our
system would automatically fire the rules when appropriate to fin-
ish the task. As illustrated in this example, it is very straightforward
to express a procedural network operation using the declarative lan-
guage. Basically, the main management target is assigned with an
explicit state, which is updated as the operational stage progresses.
At each stage, a set of table modification or event generation are
done. A new stage is entered, if the previous stage is verified to
have achieved its effect.

Listing 2: Rules for Router Maintenance
% include rules from previous listing
#include (R1,R2,R3)

ACM SIGCOMM Computer Communication Review 63 Volume 40, Number 1, January 2010

// maintain a list of links that are down
V1 linkDown(L) :− EndPoint(L, intf ,), interface (intf , ”down”);
V2 linkDown(L) :− EndPoint(L, , intf), interface (intf , ”down”);
// Shortest path routing
BP1 path(S,D,P,C) :− link (L,S,D,C), !linkDown(L), P=[L];
BP2 path(S,D,P,C) :− link (L,S,Z,C1), !linkDown(L), path (Z,D,P2,C2),

C=C1+C2, P=[L]+P2;
BP3 bestPath (S,D,P, min<C>) :− path(S,D,P,C);
// maintain links that are used
V3 linksInUse(L) :− link (L, , ,), bestPath (, ,P,), P. contains (L);
// cost out the link , as the new first step
R5 on insert Maintenance(L,”pre−pending”), link (L,S,D,C) =>

insert link (L,S,D,inf), insert Maintenance(L,” costout ”),
insert costSave (L,C);

// only schedule to shut down the link if it ’s cost out
R6 on periodic (10), Maintenance(L,” costout ”), ! linksInUse (L) =>

insert Maintenance(L,”pending ”);
R4’ on periodic (10), Maintenance(L,”fdone ”), EndPoint(L, int1 , int2),

costSave(L,C), link (L,S,D,)
=> insert interface (int1 ,” up”), insert interface (int2 ,” up”),
delete Maintenance(L,”fdone ”), insert link (L,S,D,C);

Routing protocols integration: The procedure defined in listing 1
is straightforward, yet problematic in that an interface can be shut
down, even if it is still being used actively for packet forwarding,
causing transient network packet loss until the routing protocol re-
converges. In listing 2, we show how to make the maintenance task
aware of network protocol running state.

First, we introduce several views (in rule V1-V3,BP1-3) to raise
the level of abstraction to special links and routing paths. V1 and
V2 are view rules that define links that are down—we consider a
link to be down if one of its interface endpoint is down. BP1-3
create a bestPath view that is generated by a shortest path routing
protocol [7]. Basically, BP1-2 computes the paths (P) with cost
(C) between a source (S) and destination (D), in a recursive fashion.
Note that we add additional dependency on linkDown to make sure
a down link is not used. BP3 selects the best path between any pair
of source and destination. We assume the routing table is set up
according to the bestPath view. Rule V3 is used to derive a list of
links that are currently used from the routing table.

Next, in rule R5, we introduce a new state of "pre-pending"
for a link in the Maintenance table. To maintain a link,
(L,"pre-pending") should be inserted to take advantage of
the additional sophistication. R5 states that for each link in
"pre-pending" state, we first change its link cost to infinity
(inf). This would effectively remove the link from the current
routing table. R6 states that only if the link L is confirmed not to be
used in the routing table, can we transit it to the "pending" state,
resulting a shut down by R1 (included from listing 1). We use R4’
to replace the original R4, adding the action to restore the link cost
of L.

Note that this program is meant to exemplify how the network
status observation can be integrated into the network operations.
Our system does not require the routing protocols to be imple-
mented declaratively. We can simply populate a status table with
up-to-date network routing state and write queries based on that.

Listing 3: Rules for Router Maintenance
#include (R1,R2,R3,R4’,BP1,BP2,BP3,V3,R5,R6)
// for every router S and D, there must be a path
C1 router (S), router (D) −> path(S,D, ,);

Constraint enforcement: While the rules in the above two pro-
grams can help the careful progression of a link maintenance
task, some operators may include some other rules to manipulate
interface table in other ways. The problem is that the combi-

nation of these programs may introduce bad state, such as network
partition. In this example, we introduce the usage of constraint
rules. C1 in Listing 3 is a simple way to express, for any two
routers C and D, there is always a path between them. Note that
constraint rules are assertions that do not change any state, unlike
ECA rules where the actions do make state changes. Constraints
can be used to expressed high-level policies over all the network
operations. The constraints can be “do not partition the network”,
“do not cause traffic oscillation more than X percent”, etc. When an
execution rule firing has the potential of violating these constraints,
that rule firing is canceled or delayed to retry at a later time.

3.2 Network Monitoring and Fault Diagnosis

Listing 4: VPN Monitoring and Fault Diagnosis
// periodically test the connectivity between R1 and R2
// pingResult would only store the recent N seconds of data
R7 on periodic (10), router (R1), router (R2), R1!=R2,

ping(R1,R2, result), T=PosixTime::now()
=> insert pingResult (R1,R2,T, result);

// count how many failed pings and how many in total
V4 recentPingFail (R1,R2,count<∗>) :− pingResult(R1,R2, , result),

result =” failed ”, groupBy(R1,R2);
V5 recentPingTries (R1,R2,count<∗>) :− pingResult(R1,R2, ,),

groupBy(R1,R2);
V6 recentPingFailRatio (R1,R2,r) :− recentPingFail (R1,R2,f),

recentPingTries (R1,R2,t), r=f/ t ;
// if failed ping ratio is higher than a threshold trigger diagnosis
R8 on periodic (30), vpn(C1,P1,VPN), vpn(C2,P2,VPN), C1!=C2,

P1!=P2, recentPingFailRatio (C1,C2,R), R > alert pctg ,
! VpnDiag(C1,C2,), T=PosixTime::now()
=> insert VpnDiag(C1,C2,P1,P2,”diag ce pe”,T);

R9 on insert VpnDiag(C1,C2,P1,P2,”diag ce pe”,T),
recentPingFailRatio (C1,P1,R1), R>alert pctg

=> alarm(C1,C2,”down due to CE to PE link !”);
R10 on insert VpnDiag(C1,C2,P1,P2,”diag ce pe”,T),

recentPingFailRatio (C1,P1,R1), R<=alert pctg
=> insert VpnDiag(C1,C2,P1,P2,”diag pe route ”,T);

Listing 4 shows how to build a simple network connectivity mon-
itor and further automates VPN connectivity problem diagnosis in
DECOR.
R7 is a very straightforward rule used to get raw connec-

tivity data: it is triggered every 10 seconds for every pair of
routers, a ping table query is issued and the ping result stored in
pingResult table. As a status table, any query to the ping table
is translated to a ping command on the corresponding router. V4
and V5 are views that count the number of failed and total ping tri-
als between any pair of routers based on the pingResult table. V6
calculates the failure ratio between all pairs of routers within the re-
cent N seconds. This exemplified DECOR’s capability of building
high-level abstraction over relatively low-level data elements.
R8 monitors VPN connectivity by firing every 30 seconds and

finding two CE routers C1 and C2, that are within the same VPN
but connecting to different PEs (P1 and P2): if the ping failure
ratio is between the two CEs is higher than a pre-defined threshold,
an automatic diagnosis procedure on this pair of CEs is started.
Note that, !VpnDiag(C1,C2,) is used as a condition to prevent
launching a diagnosis procedure for the same pair of CEs twice.

VPN diagnosis is very complicated and involves in multiple
steps to narrow down the problem. For brevity, we only show one
step from an online tutorial [8] in the example. In this step, we
need to verify if the CE C1 can reach the PE P1 correctly. R9 and
R10 check the failure ratio between C1 and P1: 1) if the ratio is
higher than a threshold, R9 is fired, meaning that the problem is
confirmed to the connectivity loss between CE and PE and thus an

ACM SIGCOMM Computer Communication Review 64 Volume 40, Number 1, January 2010

alarm is generated; 2) otherwise, R10 is fired, moving on to next
stage diagnosis "diag pe route", which tries to determine if the
CE router’s loopback IP exists in the PE router’s VRF table.

A wide range of network monitoring and follow-up automated
response can be expressed similarly. For example, the following
rule can be used to monitor link usage and perform rate-limiting
automatically: on periodic(10), LinkUsage(L,R), R>0.8

=> RateLimit(L).

4. CHALLENGES
In the preceding sections, we have described an architecture that

leverages a database abstraction for network management, and il-
lustrated some of the benefits through examples. Building such a
system, however, has to deal with many challenges that do not exist
in traditional DBMS. We discuss them in this section.

Synchronization issues: While DECOR uses database tables as a
new layer of abstraction, there is the possibility that the database
tables and the actual network status are out-of-sync. This is partic-
ularly true when we use adapters to interact with non-declarative
systems or components.

On the one hand, network changes (e.g., configuration modifica-
tion) need to be populated to the network as fast as possible. The
synchronization process usually takes time, e.g., tens of seconds
to effect configuration changes. The challenge is how to handle the
access to those tables containing data entries that are “in transition”.

On the other hand, network status should be reflected by the ta-
bles in a timely fashion. Instead of querying the network devices
at a fast rate to get a close-to-realtime view of the network, a more
scalable solution is to rely on router programmability such that no-
tifications can be sent out when relevant events occur on the de-
vices, e.g., routing table update, interface status change.

Failure handling support: There is already the notion of trans-
actional group commit, roll-back support, etc. in database litera-
ture. The roll-back support in traditional databases can be done
by reverting a set of changed table entries. In DECOR, however,
updating table entries has direct or indirect impact on the actual
networks, thus additional care must be taken to to prevent transient
bad network states.

We consider two types of failure handling in DECOR:

Implicit handling can be done by reversing the list of rules exe-
cuted, based on execution history information. For example, R1 in
listing 1 is the start of a sequence of operations. We can simply
modify the rule to add a marking, so that whenever the DECOR
system executes this rule, it takes a checkpoint of the related ta-
ble entries and start recording the rules fired afterward. If failure
occurs, we can undo the rules fired one by one in the reverse order.

Explicit handling makes use of an additional failure state. If failure
is detected (e.g., a failure detector rule fired), the management oper-
ation transit explicitly into the failure state, after which a sequence
of well-defined rules are fired to handle the failure like another net-
work operation. This might be desired if a special routine should
be carried out.

Constraint enforcement: Formally, a constraint is a predicate that
is based on network status and always should be evaluated to be
true. These predicates are usually associated with the basic well-
beings of the network, e.g., “network is not partitioned”, which if
violated could potentially have disastrous effects. The constraints
are usually written by network experts that are familiar with the
overall network design. DECOR can easily facilitate the support
of setting up rules to detect predicate violations and generate alarm

messages. However, at the time of the alarm, the network has al-
ready entered an undesirable running state. As such, we want to
design DECOR so that the execution planner can intelligently can-
cel or delay a rule to fire, if one of the predicates may no longer
hold if the rule fires at the current network state.

Prioritization in rule execution: In existing declarative systems,
rules fire whenever the conditions are met. DECOR, on the other
hand, takes priority into consideration when it schedules and exe-
cutes rules. The rationale here is that the computation capability
of the rule processing engine is always limited, and it is important
to prioritize more important rules. When comparing the impor-
tance of rule firings, both the rule body and the rule firing parame-
ters are considered. For example, routing protocol rules should be
processed with the highest priority, because the timeliness directly
translates to faster convergence time. On the other hand, for the
same maintenance rule fires with different parameters, it would be
better to prioritize the task for core routers than edge routers.

Function refactoring for distributed rule processing: In the first
instance we envision the DECOR system architecture as a central-
ized database which is populated with network states and interacts
with devices from the whole network. To deal with the scalabil-
ity issue when the networks become larger, DECOR can trade-off
the centralized processing overhead with distributed communica-
tion overhead by deciding to offload portion of the database tables
and rule processing to the distributed devices, taking advantage of
the increasingly more available programmability support.

5. RELATED WORK
Applying declarative approaches to system and networking prob-

lems has gained considerable attentions in recent years. The declar-
ative networking project proposes a distributed recursive query lan-
guage to concisely specify and implement traditional routing pro-
tocols at control plane [7]. Since then, the declarative approach
is taken by numerous projects, e.g., to implement overlay [9] and
sensor network protocols [10], data and control plane composi-
tion [11], and distributed storage policies [12]. Compared with
those work, DECOR focuses on a different application domain—
network management. DECOR is also unique in terms of ex-
ploiting database transaction semantics and global consistency con-
straints in network operation task executions.

In network management, NetDB [13] is probably the closest
work to our vision. However, it provides a read-only database ab-
straction for router configurations, where one can write queries to
audit and analyze existing configurations in offline fashion. In con-
trast, DECOR allows writes to the database to change the network
configurations, as well as queries of network status as part of the
operation specifications. Combining these two capabilities with
policy constraint enforcement, DECOR tries to detect and prevent
policy violations at the operation stage, as opposed to offline audit-
ing to find already-happened damages.

Much work has been done for automating network configuration
changes [4, 3]. DECOR takes a step further trying to automate the
holistic network management operations. Other management au-
tomation frameworks feature different abstractions. For example,
CONMan [14] takes the approach in which devices and network
functionality is captured by modules. Many management tasks,
tunneling connectivity in particular, can be accomplished via ma-
nipulation of the abstracted modules.

6. CONCLUSION
In this paper, we introduce DECOR, a new paradigm for net-

work management and operations. The fundamental idea is that

ACM SIGCOMM Computer Communication Review 65 Volume 40, Number 1, January 2010

by abstracting a network as a database, we have the potential of
providing the different levels of abstraction for carrying out differ-
ent network management tasks. The declarative feature of DECOR
enables a unified framework to allow both management operations
and network-wide constraints be expressed and carried out. The
future work includes a complete design, implementation, and eval-
uation of DECOR’s capability of automating network management
and operations.

7. REFERENCES
[1] X. Chen, Z. M. Mao, and J. Van der Merwe, “Towards

Automated Network Management: Network Operations
using Dynamic Views,” in Proceedings of ACM SIGCOMM
Workshop on Internet Network Management (INM), 2007.

[2] A. Feldmann, A. Greenberg, C. Lund, N. Reingold, and
J. Rexford, “NetScope: Traffic engineering for IP networks.”
IEEE Network Magazine, March/April 2000, pp. 11-19.

[3] W. Enck, P. McDaniel, S. Sen, P. Sebos, S. Spoerel,
A. Greenberg, S. Rao, and W. Aiello, “Configuration
management at massive scale: system design and
experience,” in Proceedings of the USENIX’07.

[4] J. Gottlieb, A. Greenberg, J. Rexford, and J. Wang,
“Automated Provisioning of BGP Customers,” IEEE
Network, vol. 17, 2003.

[5] “The Mosaic Project.” https://mosaic.maoy.net.
[6] R. Ramakrishnan and J. D. Ullman, “A Survey of Research

on Deductive Database Systems,” Journal of Logic
Programming, vol. 23, no. 2, pp. 125–149, 1993.

[7] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan,
“Declarative Routing: Extensible Routing with Declarative
Queries,” in Proc. of SIGCOMM, (Philadelphia, PA), 2005.

[8] “Juniper Networks: Troubleshooting Layer 3 VPNs.”
http://www.juniper.net/.

[9] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica, “Implementing Declarative
Overlays,” in Proc. of SOSP, 2005.

[10] D. Chu, L. Popa, A. Tavakoli, J. Hellerstein, P. Levis,
S. Shenker, and I. Stoica, “The design and implementation of
a declarative sensor network system,” in Proc. of SenSys,
(Sydney, Australia), November 2007.

[11] Y. Mao, B. T. Loo, Z. G. Ives, and J. M. Smith, “MOSAIC:
Unified Declarative Platform for Dynamic Overlay
Composition,” in Proc. of CoNEXT, (Madrid, Spain), Dec
2008.

[12] N. Belaramani, J. Zheng, A. Nayte, M. Dahlin, and
R. Grimm, “PADS: A Policy Architecture for building
Distributed Storage systems,” in Proc. of NSDI, April 2009.

[13] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg,
G. Hjalmtysson, and J. Rexford, “The cutting EDGE of IP
router configuration,” in Proceedings of ACM SIGCOMM
HotNets Workshop, November 2003.

[14] H. Ballani and P. Francis, “CONMan: A Step Towards
Network Manageability,” in Proc. of SIGCOMM, 2007.

ACM SIGCOMM Computer Communication Review 66 Volume 40, Number 1, January 2010

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

