
The Future in Your Pocket

Patrick Crowley
Applied Research Laboratory

Department of Computer Science & Engineering
Washington University
St. Louis, MO USA

pcrowley@wustl.edu

This article is an editorial note submitted to CCR. It has not been peer reviewed.
Authors take full responsibility for this article's technical content. Comments can be posted through CCR Online.

ABSTRACT
There is a growing sentiment among academics in computing that

a shift to multicore processors in commodity computers will

demand that all programmers become parallel programmers. This

is because future general-purpose processors are not likely to

improve the performance of a single thread of execution; instead,

the presence of multiple processor cores on a CPU will improve

the performance of groups of threads. In this article, I argue that

there is another trend underway, namely integration, which will

have a greater near-term impact on developers of system software

and applications. This integration, and its likely impact on

general-purpose computers, is clearly illustrated in the

architecture of modern mobile phones.

Categories and Subject Descriptors
C.1.4 [Processor Architectures]: Parallel Architectures – Mobile

processors, C.2.m [Computer-Communication Networks]:

Miscellaneous

General Terms
Performance, Design, Economics

Keywords
Mobile phones, multicore, CPU

1. INTRODUCTION
Suppose one wanted to be prepared to make good use of the next

generation of computers. What should one do? There has been

much talk over the past few years of the rise of multicore

processors and of the need for parallel, multi-threaded

programming in order to make use of them. So, to be prepared for

the future, one might choose to brush up on the latest in parallel

programming. In this article, however, I offer different advice. I

say: to be prepared for the future, start programming your mobile

phone.

2. MULTICORE TO THE MASSES?
Are we all destined to become parallel programmers? We have

been warned that CPU clock frequencies (i.e., the rate of

operation of basic machine instructions) will no longer increase

significantly between processor generations and will thus no

longer provide consistent performance gains for the software we

use today.

The technical motivations for multicore processors are sound.

Adding multiple cores to a CPU increases the peak instruction

bandwidth without requiring an increase in clock frequency. This

is important because dramatic increases in operating frequency

must be avoided in order to keep thermal design power reasonable

for general-purpose computing platforms. Indeed, merely

maintaining current processor frequencies has required substantial

semiconductor innovation [1]. As a simple example, two cores

operating at 2 GHz have a combined instruction completion

bandwidth equivalent to a single 4 GHz processor core. However,

two concurrent programs, or threads of execution, are needed to

realize the increased performance. If the program you care about

is a single thread, then you will see only indirect benefits when

moving to a CPU with more cores. These indirect benefits are due

to reduced sharing; your program will share its core with fewer

other programs, and hence might experience some speedup.

Today’s general-purpose processors feature 2 or 4 processor

cores. Will tomorrow’s CPUs feature tens or hundreds of cores?

The future is unclear, and will very much depend on how well

various application domains can leverage multiple processor

cores.

Some domains area already dominated by multicore-friendly,

thread-parallel software architectures. If your favorite software

runs on a cluster or compute cloud, then you are already in a

strong position to benefit from multicore processors (and, happily,

you do not really care about the details of a single computer).

Perhaps most extreme are those illegal, decentralized systems

such as botnets which manage to make efficient use of large-scale

parallel resources without the benefit of legal access to the

individual computers!

At a lower level of system abstraction, high-performance

embedded processors such as network processors have leveraged

multiple cores to meet I/O intensive real-time constraints. Cisco,

for example, has designed a 192-core processor for its high-end

router line-cards [2]; each line-card features two of these

processors and they have been shipping since 2004.

But what of other application domains? What about the software

that runs on PCs and is developed by the largest segment of the

software engineering community? It is less clear that general, PC-

ACM SIGCOMM Computer Communication Review 61 Volume 38, Number 2, April 2008

based applications can be structured to exploit increasing numbers

of processor cores.

There are good technical reasons to be skeptical of the arrival of

commodity CPUs with large numbers of cores. One might ask,

where is greater throughput needed? The rising use of platform

virtualization argues that many existing server platforms are

under-utilized rather than resource constrained. How will pin

bandwidth per core change over time? The performance of most

applications is memory-bound, so reducing off-chip bandwidth

per-core may not be a uniform advantage across applications.

There are also sound non-technical reasons to be skeptical and to

consider alternatives. First, assume for a moment that you are a

multicore processor architect and that you are explaining yourself

to your Grandmother (grandparents may not all be technically

savvy, but they are a significant and growing percentage of the

consumer population in North America, Western Europe, and

elsewhere).

Dialogue with Grandmother

G: “Remind me, what do you do for a living?”

“I study multicore processors. They will allow your next

PC to have 2, 4, 8, or 16 computers inside.”

G: “I only need one. Can I buy one for 1/2, 1/4, 1/8, or

1/16 the price?”

“Well…”

This becomes a troublesome conversation, so my inclination is to

move on to someone who would not require so much explanation

of technical details. Let us now imagine a conversation with a

purchaser of IT infrastructure.

Dialogue with Director of IT

“The next generation of server chips will be 16-core

processors. They will allow your server box/blade to

have 16 computers inside.”

IT buyer: “16 cores? Great, I was going to buy 160

server machines next year. Instead, I’ll buy 10—or

perhaps 20 just in case.”

This feels a bit like a generic argument about buying faster

computers. However, the availability of multiple cores

complicates the purchasing decision, at least as compared to the

bygone days of increasing clock frequency. It prompts the buyer

to think: “how many cores do I need?” Which in turn begs the

question of how well utilized the current number of cores are.

These are new sorts of questions for buyers of computers.

It is reasonable, and useful, to ask if there is an alternative. To

motivate one particular alternative to the aggressive multicore

future envisioned by some, let us consider a fictional historical

analogy.

Consider an ALU chip vendor at the dawn of the VLSI era. Prior

to the age of VLSI, computer vendors assembled digital computer

systems with discrete components—register file chips, ALU

chips, controllers, etc.—which consisted of at most hundreds or a

few thousand transistors. With VLSI, however, greatly increased

numbers of transistors became available for use on single chips.

What should the ALU vendor do with 10s and 100s of thousands

of transistors? Two options seem clear.

Option 1: Multi-ALU to the masses! To make the

design challenge feasible, ALU chips could be scaled to

double the number of ALU cores per chip every two

years or so. Making good use of these cores may be a

challenge to computer designers, but there may be no

alternative. Unless we consider…

Option 2: Greater integration: move register files, data

paths, and controllers on-chip. Rather than designing

ALUs, the former ALU vendor can begin offering

processor chips, i.e., CPUs.

Of course, this is a fictional analogy because it is unlikely that

any firm seriously considered aggressively scaling the numbers of

ALUs per chip (and the definition of a digital computer wasn’t so

well understood prior to VLSI). However, viewed in this way,

aggressive platform integration can be seen as a viable alternative

to an aggressive multicore CPU roadmap. Not sure what to do

with your next doubling of transistors? Integrate the graphics

processing unit (GPU) or other performance-critical hardware

accelerators. After that, integrate a large chunk of main memory.

If this direction is taken, perhaps today’s CPU vendors will over

the next few years become “computer chip” or system-on-a-chip

vendors. Naturally, there would be strong impacts on the current

relationships between semiconductor and computer vendors, but

that is not necessarily a bad thing.

3. WHY INTEGRATE MORE

COMPONENTS?
Other than making use of abundant transistors, what benefit is

there in integrating system functionality onto one chip? There is

an obvious benefit for the size of computing devices, since a

smaller number of chips fit within smaller form factors. Also, for

tasks that use an integrated component, one can expect improved:

• performance,

• power efficiency, and

• area efficiency.

Each of these are due to shortened, more efficient interconnect

paths, and the resulting shorter latencies and greater bandwidths.

It takes far less time, die area, and power to drive an on-chip

channel than an off-chip one.

Additionally, users might find unexpected uses for integrated

components. At least within the academic community, there is no

shortage of people using GPUs for solving non-graphics

problems.

For current general-purpose CPU vendors, the term “multicore”

has merit for marketing purposes, but I feel that it obscures the

primary issue. The critical issue is to decide what to integrate:

general-purpose cores, special-purpose cores, or some

combination?

There is good evidence that CPU vendors are already thinking in

this way, despite their apparent preference for characterizing a

multicore future. AMD, which already provides CPUs with

integrated memory controllers and high-performance I/O paths,

ACM SIGCOMM Computer Communication Review 62 Volume 38, Number 2, April 2008

has announced plans to integrate a GPU on-die with a CPU [3].

Intel while historically eschewing integration—only recently has

Intel announced IA-based products with integrated memory

controllers—has announced two product lines which are unique

for their degree of platform integration. Intel’s Atom product

line, previously known as Silverthorne and its chipset Poulsbo, is

a low-power, highly-integrated processor meant for embedded

consumer electronic devices such as in-car entertainment systems

(as well as mobile Internet devices, which Intel has described but

do not yet exist as a distinct product market). Tolapai [5] is

another low-power chip with integrated I/O and cryptography

accelerators.

For now, the CPU vendors have plans for integrated chips, but the

chips are not yet available. Alternatively, mobile phones are a

computing platform that years ago compelled technology

suppliers to confront the integration question directly. If you have

not had a reason to learn about the organization of processing

resources in mobile phones, you may be in for a surprise.

4. WHAT CAN BE LEARNED WITH

MOBILE PHONES?
Modern mobile phones, particularly high-end devices sometimes

termed smart phones, are built around highly-integrated multicore

systems-on-a-chip. Figure 1 illustrates the types of units found in

a typical chip, such as the OMAP processor family from TI [6].

In addition to a primary CPU (often an ARM-based, superscalar

processor), these chips integrate a number of special-purpose

cores: 2D/3D graphics accelerators; DSPs for images, video, and

audio; cryptography units for bulk encryption and authentication;

digital display controllers for small integrated displays as well as

external TVs and monitors; controllers for a variety of radio

types, including mobile phone networks, WiFi, Bluetooth, GPS,

and digital television; controllers for still and video cameras;

controllers for microphones and speakers; codecs and controllers

for non-traditional user I/O such as speech recognition and

synthesis and touch panels; controllers for a variety of memory

types, including DRAM, NOR/NAND flash, and external non-

volatile memory cards; as well as controllers for traditional I/O

channels such as USB and Firewire. All of these components can

be found in single-chip solutions that cost less than $10 per unit in

large volumes.

In addition to a rich integration, many platform characteristics of

current mobile phones are highly relevant to future general

purpose computing devices. These characteristics include:

• Mobility and location awareness in physical space and

between networks.

• Ability to connect to several distinct network types.

• Integrated platform support for capturing and replaying

different media types, including audio and video.

• A large and growing installed base of systems.

The application development environments and platform APIs for

mobile phones are designed to enable access to integrated features

and ease the use of these functional characteristics in software and

services. As a result, they are quite a bit different, and perhaps

more forward-thinking, than the APIs provided by general-

purpose operating systems.

An additional qualitative property is that mobile phone

environments often require software developers to deal explicitly

with varying platform characteristics, such as battery life,

available network connections, available displays, available

hardware accelerators, and so forth. Providing sustainable

application-level support for these differing characteristics is

likely to be an important part of future general-purpose

programming environments, as software is developed with a

greater emphasis on power efficiency and platform independence.

5. WILL THERE BE ONE DOMINANT

PLATFORM?
For all their virtues, mobile phones feature user interfaces that are

dramatically constrained for many tasks as compared to PCs and

laptops. Whenever a keyboard and large display are useful, a

mobile phone is not likely to be an ideal platform. So no one is

suggesting that the mobile phone form factor will displace the

laptop or desktop form factor. But there are good reasons to

consider the possibility that mobile phone technology

components, such as processors, may displace PC components.

Historically, PCs due to their wide volumes and general-purpose

nature have been the foundation for IT economics. Recently,

however, mobile phone platforms have shown PC-like

capabilities, and four-fold greater sales volumes. In 2006, for

example, 230M computers were sold as compared to 960M

mobile phones (based on estimates found in the 2006 annual

reports from Intel, AMD, Nokia, and Motorola).

It is also natural to ask which platforms host more application

innovation today, and what the trend is over time. Certainly

mobile phones have experienced an explosion of platform features

over the past five or so years. For many users, the mobile phone

serves as a primary web browser, email client, instant messenger,

and digital camera. PCs are unquestionably the primary

development platform, but it is not clear that they will be the

primary application platform in the future.

Figure 1. Organization of a typical mobile

phone processor.

DSPs Crypto
A/V

Codec
Display
Ctrls

Camera
Ctrls

Touch
Ctrl

Speech
Synth

Radio
Ctrls

ARM
CPU

2D/3D
GPU

DRAM
Ctrl

Flash
Ctrl

USB
Ctrl

Radio
Ctrls

ACM SIGCOMM Computer Communication Review 63 Volume 38, Number 2, April 2008

6. CONCLUSION
In my view, if you want to be prepared to program the computer

of the future, you can start today with your mobile phone. Based

on my own experience, owners of Nokia Series 60 phones can

very easily explore the landscape with the Python for Nokia [7]

open-source software package.

While this discussion has mostly focused on the positive aspects,

platform integration poses challenges, especially for open systems

software. Proprietary hardware blocks in embedded systems

typically ship with proprietary software and drivers, which are

licensed by the software or platform integrator. This poses a

challenge for software developers who hope to exploit the low-

level capabilities of such components, or who hope to develop

their own operating systems or other pieces of system software.

As general-purpose systems embrace greater levels of platform

integration, this issue may threaten the open nature of general-

purpose platforms.

Figure 2 illustrates the family of chips one might expect to see

from the major CPU vendors in the near future. Such a family

represents a spectrum of chips, suited for different classes of

computing devices, with those suitable for platforms like mobile

phones on the left and fully-general high-performance

supercomputer chips on the right. If you believe that the highest-

volume computing platforms are the most relevant ones, then you

might also feel that ‘supercomputer’ is a euphemism for a system

that only exists via government subsidy. Opinions differ as to

which end of the spectrum is most significant.

Of course, mobile phones are not the only high-volume

computing platform with relevance for the future. As

programmable digital TVs [8], programmable set-top boxes, and

mobile Internet devices arrive in volume, they may emerge as

dominant application platforms. In my view, programming these

systems will be more like programming highly-integrated mobile

phones than general-purpose multicore processors.

Finally, this article has presented my personal view. In the interest

of full disclosure, I must point out that it is a substantially

contrarian one! Fortunately, however right or wrong my opinion

may be, Moore’s Law promises that it will not be long before we

see how the significance of platform integration compares to that

of multiple cores in next-generation computers.

7. ACKNOWLEDGMENTS
I would like to thank Srinivasan Keshav for encouraging me to

put these thoughts down on paper. I first discussed this topic

publicly at a workshop organized in late 2006 by the Intel

Research Council, and I would like to thank Erik Johnson for

inviting me to speak at the workshop and for giving me a reason

to organize this perspective.

8. REFERENCES
[1] Bohr, M.T., Chau, R.S., Ghani, T., Mistry, K., "The High-k

Solution," Spectrum, IEEE, 44, 10 (Oct. 2007), pp.29-35.

[2] Cisco Systems. Silicon Packet Processor in CRS-1 Router.
http://www.cisco.com/en/US/products/ps5763/index.html

[3] AMD. AMD Completes ATI Acquisition and Creates
Processing Powerhouse. AMD press release, Oct 25, 2006.

[4] Intel. Intel Announces Intel® Atom™ Brand for New Family
of Low-Power Processors. Intel press release, Mar 2, 2008.

[5] Intel. Intel Introduces Future VPN Solution: Tolapai.
http://www.intel.com/design/intarch/demos/soc/demo.htm

[6] Texas Instruments. TI OMAP Technology.
http://focus.ti.com/omap/docs/omaphomepage.tsp

[7] Nokia. Python for S60.
http://opensource.nokia.com/projects/pythonfors60/

[8] Cable Television Laboratory. Tru2way, formerly OCAP.
http://www.tru2way.com

Figure 2. A family of chips along a spectrum of platform integration. In the figure, '$'

stands for on-chip cache memory.

CPU $ CPU $

$ CPU $ CPU

CPU $ CPU $

$ CPU $ CPU

CPU $ Codec $

$ PCIe $ Radio

GP $ RX TX

$ CPU $ Crypto

More G-P: cores, MIPS

…

More integration, higher volumes

Supercomputers!

Cellphones!

ACM SIGCOMM Computer Communication Review 64 Volume 38, Number 2, April 2008

