
A Policy-aware Switching Layer for Data Centers

Dilip A. Joseph
dilip@cs.berkeley.edu

Arsalan Tavakoli
arsalan@cs.berkeley.edu

Ion Stoica
istoica@cs.berkeley.edu

University of California at Berkeley

ABSTRACT

Data centers deploy a variety of middleboxes (e.g., firewalls,
load balancers and SSL offloaders) to protect, manage and
improve the performance of applications and services they
run. Since existing networks provide limited support for
middleboxes, administrators typically overload path selec-
tion mechanisms to coerce traffic through the desired se-
quences of middleboxes placed on the network path. These
ad-hoc practices result in a data center network that is hard
to configure and maintain, wastes middlebox resources, and
cannot guarantee middlebox traversal under network churn.

To address these issues, we propose the policy-aware switch-
ing layer or PLayer, a new layer-2 for data centers consisting
of inter-connected policy-aware switches or pswitches. Un-
modified middleboxes are placed off the network path by
plugging them into pswitches. Based on policies specified by
administrators, pswitches explicitly forward different types
of traffic through different sequences of middleboxes. Ex-
periments using our prototype software pswitches suggest
that the PLayer is flexible, uses middleboxes efficiently, and
guarantees correct middlebox traversal under churn.

Categories and Subject Descriptors

C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.2.5 [Computer-Communication
Networks]: Local and Wide-Area Networks

General Terms

Design, Performance, Management

1. INTRODUCTION
In recent years, data centers have rapidly grown to become

an integral part of the Internet fabric [7]. These data centers
typically host tens or even thousands of different applica-
tions [16], ranging from simple web servers providing static
content to complex e-commerce applications. To protect,
manage and improve the performance of these applications,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

data centers deploy a large variety of middleboxes, includ-
ing firewalls, load balancers, SSL offloaders, web caches, and
intrusion prevention boxes.

Unfortunately, the process of deploying middleboxes in
today’s data center networks is inflexible and prone to mis-
configuration. While literature on the practical impact and
prevalence of middlebox deployment issues in current data
centers is scant, there is growing evidence of these problems.
According to [4], 78% of data center downtime is caused by
misconfiguration. The sheer number of misconfiguration is-
sues cited by industry manuals [15, 6], reports of large-scale
network misconfigurations [3], and anecdotal evidence from
network equipment vendors and data center architects com-
plete a gloomy picture.

As noted by others in the context of the Internet [32,
30], the key challenge in supporting middleboxes in today’s
networks is that there are no available protocols and mech-
anisms to explicitly insert these middleboxes on the path
between end-points. As a result, data center administrators
deploy middleboxes implicitly by placing them in series on
the physical network path [16]. To ensure that traffic tra-
verses the desired sequence of middleboxes, administrators
must rely on overloading existing path selection mechanisms,
such as layer-2 spanning tree construction (used to prevent
forwarding loops). As the complexity and scale of data cen-
ters increase, it is becoming harder and harder to rely on
these ad-hoc mechanisms to ensure the following highly de-
sirable properties:
(i) Correctness: Traffic should traverse middleboxes in the
sequence specified by the network administrator under all
network conditions. Configuring layer-2 switches and layer-
3 routers to enforce the correct sequence of middleboxes in-
volves tweaking hundreds of knobs, a highly complex and
error-prone process [4, 15, 28, 19]. Misconfiguration is ex-
acerbated by the abundance of redundant network paths
in a data center, and the unpredictability of network path
selection under network churn [21, 15]. For example, the
failure or addition of a network link may result in traffic be-
ing routed around the network path containing a mandatory
firewall, thus violating data center security policy.
(ii) Flexibility: The sequences of middleboxes should be
easily (re)configured as application requirements change. De-
ploying middleboxes on the physical network path constrains
the data center network. Adding, removing or changing the
order of middleboxes traversed by a particular application’s
traffic, i.e., modifying the logical network topology, requires
significant engineering and configuration changes [16]. For
example, adding an SSL offload box in front of web traffic

51

requires identifying or creating a choke point through which
all web traffic passes and manually inserting the SSL offload
box at that location.
(iii) Efficiency: Traffic should not traverse unnecessary
middleboxes. On-path deployment of middleboxes forces all
traffic flowing on a particular network path to traverse the
same sequence of middleboxes. However, different applica-
tions may have different requirements. A simple web ap-
plication may require its inbound traffic to pass through a
simple firewall followed by a load balancer, while an En-
terprise Resource Planning (ERP) application may require
that all its traffic be scrubbed by a dedicated custom firewall
and then by an intrusion prevention box. Since all traffic
traverses the same middleboxes, the web traffic will unnec-
essarily waste the resources of the intrusion prevention box
and the custom firewall.

In this paper, we present the policy-aware switching layer
(or PLayer), a proposal that aims to address the limita-
tions of today’s data center middlebox deployments. The
PLayer is built around two principles: (i) Separating policy
from reachability, and (ii) Taking middleboxes off the phys-
ical network path. It consists of policy-aware switches, or
pswitches, which maintain the middlebox traversal require-
ments of all applications in the form of policy specifications.
These pswitches classify incoming traffic and explicitly redi-
rect them to appropriate middleboxes, thus guaranteeing
middlebox traversal in the policy-mandated sequence. The
low-latency links in a typical data center network enable off-
path placement of middleboxes with minimal performance
sacrifice. Off-path middlebox placement simplifies topology
modifications and enables efficient usage of existing middle-
boxes. For example, adding an SSL offload box in front of
HTTPS traffic simply involves plugging in the SSL offload
box into a pswitch and configuring the appropriate HTTPS
traffic policy at a centralized policy controller. The system
automatically ensures that the SSL box is only traversed
by HTTPS traffic while the firewall and the load balancer
are shared with HTTP traffic. To ease deployment in exist-
ing data centers, the PLayer aims to support existing mid-
dleboxes and application servers without any modifications,
and to minimize changes required in other network entities
like switches.

Separating policy from reachability and centralized con-
trol of networks have been proposed in previous work [23,
20]. Explicitly redirecting network packets to pass through
off-path middleboxes is based on the well-known principle
of indirection [30, 32, 22]. This paper combines these two
general principles to revise the current ad-hoc manner in
which middleboxes are deployed in data centers. Keep-
ing existing middleboxes and servers unmodified, support-
ing middleboxes that modify frames, and guaranteeing mid-
dlebox traversal under all conditions of policy, middlebox
and network churn make the design and implementation
of the PLayer a challenging problem. We have prototyped
pswitches in software using Click [25] and evaluated its func-
tionality on a small testbed.

2. BACKGROUND
In this section, we describe our target environment and

the associated data center network architecture. We then
illustrate the limitations of current best practices in data
center middlebox deployment.

2.1 Data Center Network Architecture
Our target network environment is characterized as fol-

lows:
Scale: The network may consist of tens of thousands of
machines running thousands of applications and services.
Middlebox-based Policies: The traffic needs to traverse
various middleboxes, such as firewalls, intrusion prevention
boxes, and load balancers before being delivered to applica-
tions and services.
Low-Latency Links: The network is composed of low-
latency links which facilitate rapid information dissemina-
tion and allow for indirection-mechanisms with minimal per-
formance overhead.

While both data centers and enterprise networks fit the
above characterization, in this paper we focus on data cen-
ters, for brevity.

The physical network topology in a data center is typi-
cally organized as a three layer hierarchy [15], as shown in
Figure 1(a). The access layer provides physical connectiv-
ity to the servers in the data centers, while the aggregation
layer connects together access layer switches. Middleboxes
are usually deployed at the aggregation layer to ensure that
traffic traverses middleboxes before reaching data center ap-
plications and services. Multiple redundant links connect
together pairs of switches at all layers, enabling high avail-
ability at the risk of forwarding loops. The access layer is
implemented at the data link layer (i.e., layer-2), as cluster-
ing, failover and virtual server movement protocols deployed
in data centers require layer-2 adjacency [1, 16].

2.2 Limitations of Current Middlebox Deploy-
ment Mechanisms

In today’s data centers, there is a strong coupling between
the physical network topology and the logical topology. The
logical topology determines the sequences of middleboxes to
be traversed by different types of application traffic, as spec-
ified by data center policies. Current middlebox deployment
practices hard code these policies into the physical network
topology by placing middleboxes in sequence on the physical
network paths and by tweaking path selection mechanisms
like spanning tree construction to send traffic through these
paths. This coupling leads to middlebox deployments that
are hard to configure and fail to achieve the three proper-
ties – correctness, flexibility and efficiency – described in the
previous section. We illustrate these limitations using the
data center network topology in Figure 1.

2.2.1 Hard to Configure and Ensure Correctness

Reliance on overloading path selection mechanisms to send
traffic through middleboxes makes it hard to ensure that
traffic traverses the correct sequence of middleboxes under
all network conditions. Suppose we want traffic between
servers S1 and S2 in Figure 1(b) to always traverse a fire-
wall, so that S1 and S2 are protected from each other when
one of them gets compromised. Currently, there are three
ways to achieve this: (i) Use the existing aggregation layer
firewalls, (ii) Deploy new standalone firewalls, or (iii) Incor-
porate firewall functionality into the switches themselves.
All three options are hard to implement and configure, as
well as suffer from many limitations.

The first option of using the existing aggregation layer
firewalls requires all traffic between S1 and S2 to traverse
the path (S1, A1, G1, L1, F1, G3, G4, F2, L2, G2, A2,

52

Figure 1: (a) Prevalent 3-layer data center network topology. (b) Layer-2 path between servers S1 and S2

including a firewall.

S2), marked in Figure 1(b). An immediately obvious prob-
lem with this approach is that it wastes resources by caus-
ing frames to gratuitously traverse two firewalls instead of
one, and two load-balancers. An even more important prob-
lem is that there is no good mechanism to enforce this path
between S1 and S2. The following are three widely used
mechanisms:

• Remove physical connectivity: By removing links (A1, G2),
(A1, A2), (G1, G2) and (A2, G1), the network admin-
istrator can ensure that there is no physical layer-2
connectivity between S1 and S2 except via the desired
path. The link (A3, G1) must also be removed by the
administrator or blocked out by the spanning tree pro-
tocol in order to break forwarding loops. The main
drawback of this mechanism is that we lose the fault-
tolerance property of the original topology, where traf-
fic from/to S1 can fail over to path (G2, L2, F2, G4)
when a middlebox or a switch on the primary path
(e.g., L1 or F1 or G1) fails. Identifying the subset of
links to be removed from the large number of redun-
dant links in a data center, while simultaneously sat-
isfying different policies, fault-tolerance requirements,
spanning tree convergence and middlebox failover con-
figurations, is a very complex and possibly infeasible
problem.

• Manipulate link costs: Instead of physically removing
links, administrators can coerce the spanning tree con-
struction algorithm to avoid these links by assigning
them high link costs. This mechanism is hindered by
the difficulty in predicting the behavior of the span-
ning tree construction algorithm across different fail-
ure conditions in a complex highly redundant network
topology [21, 15]. Similar to identifying the subset of
links to be removed, tweaking distributed link costs
to simultaneously carve out the different layer-2 paths
needed by different policy, fault-tolerance and traffic
engineering requirements is hard, if not impossible.

• Separate VLANs: Placing S1 and S2 on separate VLANs
that are inter-connected only at the aggregation-layer
firewalls ensures that traffic between them always tra-
verses a firewall. One immediate drawback of this
mechanism is that it disallows applications, cluster-
ing protocols and virtual server mobility mechanisms
requiring layer-2 adjacency [1, 16]. It also forces all ap-
plications on a server to traverse the same middlebox
sequence, irrespective of policy. Guaranteeing middle-
box traversal requires all desired middleboxes to be
placed at all VLAN inter-connection points. Simi-
lar to the cases of removing links and manipulating
link costs, overloading VLAN configuration to simul-
taneously satisfy many different middlebox traversal
policies and traffic isolation (the original purpose of
VLANs) requirements is hard.

The second option of using a standalone firewall is also
implemented through the mechanisms described above, and
hence suffer the same limitations. Firewall traversal can be
guaranteed by placing firewalls on every possible network
path between S1 and S2. However, this incurs high hard-
ware, power, configuration and management costs, and also
increases the risk of traffic traversing undesired middleboxes.
Apart from wasting resources, packets traversing an unde-
sired middlebox can hinder application functionality. For
example, unforeseen routing changes in the Internet, exter-
nal to the data center, may shift traffic to a backup data
center ingress point with an on-path firewall that filters all
non-web traffic, thus crippling other applications.

The third option of incorporating firewall functionality
into switches is in line with the industry trend of consolidat-
ing more and more middlebox functionality into switches.
Currently, only high-end switches [5] incorporate middle-
box functionality and often replace the sequence of middle-
boxes and switches at the aggregation layer (for example,
F1,L1,G1 and G3). This option suffers the same limita-
tions as the first two, as it uses similar mechanisms to co-
erce S1-S2 traffic through the high-end aggregation switches

53

incorporating the required middlebox functionality. Send-
ing S1-S2 traffic through these switches even when a direct
path exists further strains their resources (already oversub-
scribed by multiple access layer switches). They also become
concentrated points of failure. This problem goes away if
all switches in the data center incorporate all the required
middlebox functionality. Though not impossible, this is im-
practical from a cost (both hardware and management) and
efficiency perspective.

2.2.2 Network Inflexibility

While data centers are typically well-planned, changes are
unavoidable. For example, to ensure compliance with fu-
ture regulation like Sarbanes Oxley, new accounting mid-
dleboxes may be needed for email traffic. The dFence [27]
DDOS attack mitigation middlebox is dynamically deployed
on the path of external network traffic during DDOS at-
tacks. New instances of middleboxes are also deployed to
handle increased loads, a possibly more frequent event with
the advent of on-demand instantiated virtual middleboxes.

Adding a new standalone middlebox, whether as part of a
logical topology update or to reduce load on existing middle-
boxes, currently requires significant re-engineering and con-
figuration changes, physical rewiring of the backup traffic
path(s), shifting of traffic to this path, and finally rewiring
the original path. Plugging in a new middlebox ‘service’
module into a single high-end switch is easier. However,
it still involves significant re-engineering and configuration,
especially if all middlebox expansion slots in the switch are
filled up.

Network inflexibility also manifests as fate-sharing be-
tween middleboxes and traffic flow. All traffic on a par-
ticular network path is forced to traverse the same middle-
box sequence, irrespective of policy requirements. Moreover,
the failure of any middlebox instance on the physical path
breaks the traffic flow on that path. This can be disastrous
for the data center if no backup paths exist, especially when
availability is more important than middlebox traversal.

2.2.3 Inefficient Resource Usage

Ideally, traffic should only traverse the required middle-
boxes, and be load balanced across multiple instances of
the same middlebox type, if available. However, configu-
ration inflexibility and on-path middlebox placement make
it difficult to achieve these goals using existing middlebox
deployment mechanisms. Suppose, spanning tree construc-
tion blocks out the (G4, F2, L2, G2) path in Figure 1(b). All
traffic entering the data center, irrespective of policy, flows
through the remaining path (G3, F1, L1, G1), forcing mid-
dleboxes F1 and L1 to process unnecessary traffic and waste
their resources. Moreover, middleboxes F2 and L2 on the
blocked out path remain unutilized even when F1 and L1
are struggling with overload.

3. DESIGN OVERVIEW
The policy-aware switching layer (PLayer) is a data cen-

ter middlebox deployment proposal that aims to address the
limitations of current approaches, described in the previous
section. The PLayer achieves its goals by adhering to the
following two design principles: (i) Separating policy from
reachability. The sequence of middleboxes traversed by ap-
plication traffic is explicitly dictated by data center policy
and not implicitly by network path selection mechanisms like

layer-2 spanning tree construction and layer-3 routing; (ii)
Taking middleboxes off the physical network path. Rather
than placing middleboxes on the physical network path at
choke points in the network, middleboxes are plugged in off
the physical network data path and traffic is explicitly for-
warded to them. Explicitly redirecting traffic through off-
path middleboxes is based on the well-known principle of
indirection [30, 32, 22]. A data center network is a more apt
environment for indirection than the wide area Internet due
to its very low inter-node latencies.

The PLayer consists of enhanced layer-2 switches called
policy-aware switches or pswitches. Unmodified middleboxes
are plugged into a pswitch just like servers are plugged into
a regular layer-2 switch. However, unlike regular layer-2
switches, pswitches forward frames according to the policies
specified by the network administrator.

Policies define the sequence of middleboxes to be traversed
by different traffic. A policy is of the form: [Start Location,
Traffic Selector]→Sequence. The left hand side defines the
applicable traffic – frames with 5-tuples (i.e., source and
destination IP addresses and port numbers, and protocol
type) matching the Traffic Selector arriving from the Start
Location. We use frame 5-tuple to refer to the 5-tuple of the
packet within the frame. The right hand side specifies the
sequence of middlebox types (not instances) to be traversed
by this traffic 1.

Policies are automatically translated by the PLayer into
rules that are stored at pswitches in rule tables. A rule
is of the form [Previous Hop, Traffic Selector] : Next Hop.
Each rule determines the middlebox or server to which traffic
of a particular type, arriving from the specified previous
hop, should be forwarded next. Upon receiving a frame, the
pswitch matches it to a rule in its table, if any, and then
forwards it to the next hop specified by the matching rule.

The PLayer relies on centralized policy and middlebox con-
trollers to set up and maintain the rule tables at the various
pswitches. Network administrators specify policies at the
policy controller, which then reliably disseminates them to
each pswitch. The centralized middlebox controller monitors
the liveness of middleboxes and informs pswitches about the
addition or failure of middleboxes.

Figure 2: A simple PLayer consisting of only one
pswitch.

To better understand how the PLayer works, we present
three examples of increasing complexity that demonstrate its
key functionality. In practice, the PLayer consists of mul-

1Middlebox interface information can also be incorporated
into a policy. For example, frames from an external client to
an internal server must enter a firewall via its red interface,
while frames in the reverse direction should enter through
the green interface.

54

tiple pswitches inter-connected together in complex topolo-
gies. For example, in the data center topology discussed
previously, pswitches would replace layer-2 switches. How-
ever, for ease of exposition, we start with a simple example
containing only a single pswitch.

Figure 3: A simplified snippet of the data center
topology in Figure 1, highlighting the on-path mid-
dlebox placement.

Figure 2 shows how the PLayer implements the policy in-
duced by the physical topology in Figure 3, where all frames
entering the data center are required to traverse a firewall
and then a load balancer before reaching the servers. When
the pswitch receives a frame, it performs the following three
operations: (i) Identify the previous hop traversed by the
frame, (ii) Determine the next hop to be traversed by the
frame, and (iii) Forward the frame to its next hop. The
pswitch identifies frames arriving from the core router and
the load balancer based on their source MAC addresses (R
and L, respectively). Since the firewall does not modify the
MAC addresses of frames passing through it, the pswitch
identifies frames coming from it based on the ingress inter-
face (IfaceF) they arrive on. The pswitch determines the
next hop for the frame by matching its previous hop infor-
mation and 5-tuple against the rules in the rule table. In this
example, the policy translates into the following three rules –
(i) [R, ∗] : F , (ii) [IfaceF, ∗] : L, and (iii) [L, ∗] : FinalDest.
The first rule specifies that every frame entering the data
center (i.e., every frame arriving from core router R) should
be forwarded to the firewall (F). The second rule specifies
that every frame arriving from the firewall should be for-
warded to the load balancer (L). The third rule specifies that
frames arriving from the load balancer should be sent to the
final destination, i.e., the server identified by the frame’s
destination MAC address. The pswitch forwards the frame
to the next hop determined by the matching rule, encapsu-
lated in a frame explicitly addressed to the next hop. It is
easy to see that the pswitch correctly implements the orig-
inal policy through these rules, i.e., every incoming frame
traverses the firewall followed by the load balancer.

Multiple equivalent instances of middleboxes are often de-
ployed for scalability and fault-tolerance. Figure 4 shows
how the PLayer can load balance incoming traffic across two
equivalent firewalls, F1 and F2. The first rule in the table
specifies that incoming frames can be sent either to firewall
F1 or to firewall F2. Since the firewall maintains per-flow
state, the pswitch uses a flow- direction-agnostic consistent
hash on a frame’s 5-tuple to select the same firewall instance
for all frames in both forward and reverse directions of a flow.

The more complex example in Figure 5 illustrates how the
PLayer supports different policies for different applications
and how forwarding load is spread across multiple pswitches.
Web traffic has the same policy as before, while Enterprise
Resource Planning (ERP) traffic is to be scrubbed by a ded-
icated custom firewall (W) followed by an Intrusion Preven-
tion Box (IPB). The middleboxes are distributed across the
two pswitches A and B. The rule table at each pswitch has
rules that match frames coming from the entities connected

Figure 4: Load balancing traffic across two equiva-
lent middlebox instances.

to it. For example, rules at pswitch A match frames coming
from middleboxes F1 and L, and the core router R. For
sake of simplicity, we assume that all frames with TCP port
80 are part of web traffic and all others are part of ERP
traffic. A frame (say, an ERP frame) entering the data cen-
ter first reaches pswitch A. Pswitch A looks up the most
specific rule for the frame ([R, ∗] : W) and forwards it to the
next hop (W). The PLayer uses existing layer-2 mechanisms
(e.g., spanning tree based Ethernet forwarding) to forward
the frame to its next hop, instead of inventing a new for-
warding mechanism. Pswitch B receives the frame after it is
processed by W . It looks up the most specific rule from its
rule table ([IfaceW, ∗] : IPB) and forwards the frame to the
next hop (IPB). An HTTP frame entering the data center
matches different rules and thus follows a different path.

Figure 5: Different policies for web and ERP appli-
cations.

The three examples discussed in this section provide a
high level illustration of how the PLayer achieves the three
desirable properties of correctness, flexibility and efficiency.
The explicit separation between policy and the physical net-
work topology simplifies configuration. The desired logical
topologies can be easily implemented by specifying appro-
priate policies at the centralized policy controller, without
tweaking spanning tree link costs and IP gateway settings
distributed across various switches and servers. By explic-
itly redirecting frames only through the middleboxes speci-
fied by policy, the PLayer guarantees that middleboxes are
neither skipped nor unnecessarily traversed. Placing mid-
dleboxes off the physical network path prevents large scale
traffic shifts on middlebox failures and ensures that middle-
box resources are not wasted serving unnecessary traffic or
get stuck on inactive network paths.

The PLayer operates at layer-2 since data centers are pre-
dominantly layer-2 [16]. It re-uses existing tried and tested
layer-2 mechanisms to forward packets between two points
in the network rather than inventing a custom forwarding

55

mechanism. Furthermore, since middleboxes like firewalls
are often not explicitly addressable, the PLayer relies on sim-
ple layer-2 mechanisms described in Section 4.2.3 to forward
frames to these middleboxes, rather than more heavy-weight
layer-3 or higher mechanisms.

In the next three sections, we discuss how the PLayer
addresses the three main challenges listed below:
(i) Minimal Infrastructure Changes: Support exist-
ing middleboxes and servers without any modifications and
minimize changes to network infrastructure like switches.
(ii) Non-transparent Middleboxes : Handle middle-
boxes that modify frames while specifying policies and while
ensuring that all frames in both forward and reverse direc-
tions of a flow traverse the same middlebox instances.
(iii) Correct Traversal Under Churn : Guarantee cor-
rect middlebox traversal during middlebox churn and con-
flicting policy updates.

4. MINIMAL INFRASTRUCTURE CHANGES
Minimizing changes to existing network forwarding in-

frastructure and supporting unmodified middleboxes and
servers is crucial for PLayer adoption in current data cen-
ters. In addition to describing how we meet this challenge,
in this section, we also explain a pswitch’s internal structure
and operations, and thus set the stage for describing how we
solve other challenges in subsequent sections.

4.1 Forwarding Infrastructure
The modular design of pswitches, reliance on standard

data center path selection mechanisms to forward frames,
and encapsulation of forwarded frames in new Ethernet-II
frames help meet the challenge of minimizing changes to the
existing data center network forwarding infrastructure.

4.1.1 Pswitch Design & Standard Forwarding

Figure 6 shows the internal structure of a pswitch with
N interfaces. For ease of explanation, each physical inter-
face is shown as two separate logical interfaces – an input
interface and an output interface. A pswitch consists of two
independent parts – the Switch Core and the Policy Core:

Figure 6: Internal components of a pswitch.

(i) Switch Core : The Switch Core provides regular Ether-
net switch functionality – it forwards Ethernet frames based
on their destination MAC addresses, performs MAC address
learning and participates in the Spanning Tree Protocol to
construct a loop-free forwarding topology.
(ii) Policy Core : The Policy Core redirects frames 2 to
the middleboxes dictated by policy. It consists of multiple

2Only frames containing IP packets are considered. Non-IP

modules: The RuleTable stores the rules used for match-
ing and forwarding frames. Each pswitch interface has an
inP, an outP and a FailDetect module associated with
it. An inP module processes a frame as it enters a pswitch
interface – it identifies the frame’s previous hop, looks up the
matching rule and emits it out to the corresponding Switch
Core interface for regular forwarding to the next hop spec-
ified by the rule. An outP module processes a frame as
it exits a pswitch interface, decapsulating or dropping it as
explained later in the section. The FailDetect module of
a pswitch interface monitors the liveness of the connected
middlebox (if any) using standard mechanisms like ICMP
pings, layer-7 content snooping, SNMP polling, TCP health
checks, and reports to the middlebox controller.

The Switch Core appears like a regular Ethernet switch to
the Policy Core, while the Policy Core appears like a multi-
interface device to the Switch Core. This clean separation
allows us to re-use existing Ethernet switch functionality in
constructing a pswitch with minimal changes, thus simplify-
ing deployment. The Switch Core can also be easily replaced
with an existing non-Ethernet forwarding mechanism, if re-
quired by the existing data center network infrastructure.

A frame redirected by the Policy Core is encapsulated
in a new Ethernet-II frame identified by a new EtherType
code. The outer frame’s destination MAC address is set to
that of the next hop middlebox or server, and its source
MAC address is set to that of the original frame or the
last middlebox instance traversed, if any. We encapsulate
rather than overwrite as preserving the original MAC ad-
dresses is often required for correctness (e.g., firewalls may
filter on source MAC addresses; load-balancers may set the
destination MAC address to that of a dynamically chosen
server). Although encapsulation may increase frame size
beyond the 1500 byte MTU, it is below the limit accepted
by most switches. For example, Cisco switches allow 1600
byte ‘baby giants’.

4.1.2 Incremental Deployment

Incorporating the PLayer into an existing data center does
not require a fork-lift upgrade of the entire network. Only
switches which connect to the external network and those
into which servers requiring middlebox traversal guarantees
are plugged in, need to be converted to pswitches. Other
switches need not be converted if they can be configured or
modified to treat encapsulated frames with the new Ether-
Type as regular Ethernet frames. Middleboxes can also be
plugged into a regular switch. However, transparent middle-
boxes must be accompanied by the inline SrcMacRewriter

device (described in Section 4.2.2). If the data center con-
tains backup switches and redundant paths, pswitches can
be smoothly introduced without network downtime by first
converting the backup switches to pswitches.

4.2 Unmodified Middleboxes and Servers
Pswitches address the challenge of supporting unmodified

middleboxes and servers in three ways – (i) Ensure that only
relevant frames in standard Ethernet format reach middle-
boxes and servers, (ii) Use only non-intrusive techniques to
identify a frame’s previous hop, and (iii) Support varied mid-
dlebox addressing requirements.

frames like ARP requests are forwarded by the Switch Core
as in regular Ethernet switches.

56

4.2.1 Frames reaching Middleboxes and Servers

The outP module of a pswitch interface directly con-
nected to a middlebox or server emits out a unicast frame
only if it is MAC addressed to the connected middlebox or
server. Dropping other frames, which may have reached the
pswitch through standard Ethernet broadcast forwarding,
avoids undesirable middlebox behavior (e.g., a firewall can
terminate a flow by sending TCP RSTs if it receives an un-
expected frame). The outP module also decapsulates the
frames it emits and thus the middlebox or server receives
standard Ethernet frames it can understand.

4.2.2 Previous Hop Identification

A pswitch does not rely on explicit middlebox support or
modifications for identifying a frame’s previous hop. The
previous hop of a frame can be identified in three possible
ways: (i) source MAC address if the previous hop is a mid-
dlebox that changes the source MAC address, (ii) pswitch in-
terface on which the frame arrives if the middlebox is directly
attached to the pswitch, or (iii) VLAN tag if the data cen-
ter network has been divided into different functional zones
using VLANs (i.e., external web servers, firewalls, etc.). If
none of the above 3 conditions hold (for example, in a par-
tial pswitch deployment where middleboxes are plugged into
regular Ethernet switches), then we install a simple stateless
in-line device, SrcMacRewriter, in between the middle-
box and the regular Ethernet switch to which it is connected.
SrcMacRewriter inserts a special source MAC address
that can uniquely identify the middlebox into frames emit-
ted by the middlebox, as in option (i) above.

4.2.3 Middlebox Addressing

Many middleboxes like firewalls operate inline with traffic
and do not require traffic to be explicitly addressed to them
at layer-2 or layer-3. Moreover, for many such middleboxes,
traffic cannot be explicitly addressed to them, as they lack
a MAC address. We solve this problem by assigning a fake
MAC address to such a middlebox instance when it is regis-
tered with the middlebox controller. The fake MAC address
is used as the destination MAC of encapsulated frames for-
warded to it. If the middlebox is directly connected to a
pswitch, the pswitch also fills in this MAC address in the
source MAC field of encapsulated frames forwarded to the
next hop. If it is not directly attached to a pswitch, this
MAC address is used by the SrcMacRewriter device. In
all cases, the middlebox remains unmodified.

In contrast, some middleboxes like load balancers often
require traffic to be explicitly addressed to them at layer-
2, layer-3 or both. We support middleboxes that require
layer-3 addressing by using per-segment policies(Section 5).
Middleboxes that require layer-2 addressing are supported
by rewriting the destination MAC addresses of frames (if
necessary) before they are emitted out to such middleboxes.

5. NON-TRANSPARENT MIDDLEBOXES
Non-transparent middleboxes, i.e., middleboxes that mod-

ify frame headers or content (e.g., load balancers), make
end-to-end policy specification and consistent middlebox in-
stance selection challenging. By using per-segment policies,
we support non-transparent middleboxes in policy specifi-
cation. By enhancing policy specifications with hints that
indicate which frame header fields are left untouched by non-
transparent middleboxes, we enable the middlebox instance

selection mechanism at a pswitch to select the same mid-
dlebox instances for all packets in both forward and reverse
directions of a flow, as required by stateful middleboxes like
firewalls and load balancers.

Middleboxes may modify frames reaching them in differ-
ent ways. MAC-address modification aids previous hop iden-
tification but does not affect traffic classification or middle-
box instance selection since they are independent of layer-2
headers. Similarly, payload modification does not affect pol-
icy specification or middlebox instance selection, unless deep
packet inspection is used for traffic classification. Traffic
classification and flow identification mainly rely on a frame’s
5-tuple. Middleboxes that fragment frames do not affect
policy specification or middlebox instance selection as long
as the frame 5-tuple is the same for all fragments. In the
remainder of this section, we describe how we support mid-
dleboxes that modify frame 5-tuples. We also provide the
details of our basic middlebox instance selection mechanism
in order to provide the context for how non-transparent mid-
dleboxes and middlebox churn (Section 6.2) affect it.

5.1 Policy Specification
Middleboxes that modify frame 5-tuples are supported in

policy specification by using per-segment policies. We de-
fine the bi-directional end-to-end traffic between two nodes,
e.g., A and B, as a flow. Figure 7 depicts a flow passing
through a firewall unmodified, and then a load balancer that
rewrites the destination IP address IPB to the address IPW

of an available web server. Frame modifications by the load
balancer preclude the use of a single concise Selector. Per-
segment policies 1 and 2 shown in Figure 7, each matching
frames during a portion of their end-to-end flow, together
define the complete policy. Per-segment policies also enable
policy definitions that include middleboxes requiring traffic
to be explicitly addressed to them at the IP layer.

Figure 7: Policies for different segments of the logi-
cal middlebox sequence traversed by traffic between
A and B.

5.2 Middlebox Instance Selection
The PLayer uses consistent hashing to select the same

middlebox instance for all frames in both forward and re-
verse directions of a flow. A frame’s 5-tuple identifies the
flow to which it belongs. A flow-direction agnostic hash
value h is calculated over the frame’s 5-tuple. The ids of
all live instances of the desired middlebox type are arranged
in a ring , and the instance whose id is closest to h in the
counter-clockwise direction is selected [31]. Based on mid-
dlebox semantics and functionality, network administrators

57

indicate the frame 5-tuple fields to be used in middlebox in-
stance selection along with the policies. The entire 5-tuple
is used for middleboxes that do not modify frames.

When middleboxes modify the frame 5-tuple, instance se-
lection can no longer be based on the entire 5-tuple. For
example, in the A→B flow direction in Figure 7, the load
balancer instance is selected when the frame 5-tuple is (IPA,

IPB, P ortA, P ortB, tcp). In the B→A reverse direction, the
load balancer instance is to be selected when the frame 5-
tuple is (IPW , IPA, P ortB, P ortA, tcp). The policy hints
that a load balancer instance should be selected only based
on frame 5-tuple fields unmodified by the load balancer, viz.,
IPA, PortA, PortB and tcp (although source and destina-
tion fields are interchanged).

We assume that a middlebox modifying the entire 5-tuple
always changes the source IP address to its own IP address,
so that regular layer-3 routing can be used to ensure that re-
verse traffic reaches the same middlebox instance. Although
we are not aware of any middleboxes that violate this as-
sumption, we discuss how pswitches enhanced with per-flow
state can support such middleboxes in [24].

6. GUARANTEES UNDER CHURN
In this section, we argue that the PLayer guarantees cor-

rect middlebox traversal under churn. There are several
entities in the system that can experience churn, includ-
ing the network, policies, and middleboxes. Since pswitches
explicitly forward frames to middleboxes based on policy,
churn at the network layer alone (e.g., pswitch or link fail-
ures, new link activation, link rewiring) will not violate mid-
dlebox traversal guarantees. In this section, we discuss the
traversal guarantees under policy and middlebox churn. Our
technical report [24] presents additional details and a formal
analysis of PLayer operations and churn guarantees.

6.1 Policy Churn
Network administrators update policies at a centralized

policy controller when the logical topology of the data cen-
ter network needs to be changed. In this section, we first
briefly describe our policy dissemination mechanism. We
then discuss how we prevent incorrect middlebox traversal
during conflicting policy updates.

6.1.1 Policy Dissemination

The policy controller reliably disseminates policy informa-
tion over separate TCP connections to each pswitch. After
all pswitches receive the complete policy update, the pol-
icy controller signals each pswitch to adopt it. The signal,
which is conveyed in a single packet, has a better chance of
synchronously reaching the different pswitches than the mul-
tiple packets carrying the policy updates. Similar to network
map dissemination [26], the policy version number recorded
inside encapsulated frames is used to further improve syn-
chronization – a pswitch that has not yet adopted the latest
policy update will immediately adopt it upon receiving a
frame stamped with the latest policy version number.

Policy dissemination over separate TCP connections to
each pswitch scales well if the number of pswitches in the
data center is small (a few 100s), assuming infrequent pol-
icy updates (a few times a week). If the number of pswitches
is very large, then the distributed reliable broadcast mecha-
nism suggested by RCP [18] is used for policy dissemination.

6.1.2 Conflicting Policy Updates

Even a perfectly synchronized policy dissemination mech-
anism cannot prevent some frames from violating middlebox
traversal guarantees during a conflicting policy update. For
example, suppose that the current policy (version 1) man-
dates all traffic to traverse a load-balancer and then a fire-
wall, while the new policy (version 2) mandates all traffic to
traverse a firewall followed by a load-balancer. During the
brief policy transition period, suppose pswitch A (using pol-
icy version 1) redirects a frame to a load-balancer attached
to pswitch B (also using version 1). Before the frame arrives
back at B after processing by the load-balancer, B adopts
policy version 2. It subsequently sends the frame directly to
its final destination (thinking that the load-balancer is the
last hop in the sequence), bypassing the firewall and causing
a security vulnerability.

We prevent the violation of middlebox traversal guaran-
tees by specifying the middlebox sequence of a conflicting
policy update in terms of new intermediate middlebox types.
For the example above, the middlebox sequence in the new
policy is specified as (firewall’,load balancer’). Although
intermediate middlebox types are functionally identical to
the original types, they have separate instances. Frames
redirected under the new policy traverse these separate in-
stances. Hence, a pswitch will never confuse these frames
with those redirected under the original policy, and thus
avoids incorrect forwarding.

6.2 Middlebox Churn
A pswitch identifies flows based on the 5-tuple common to

all frames of the flow. A middlebox instance is selected for
a frame by using flow direction agnostic consistent hashing
on its 5-tuple (Section 5.2). This is sufficient for consis-
tent middlebox instance selection when no new middlebox
instances are added. When a running middlebox instance
fails, all flows served by it are automatically shifted to an
active standby, if available, or are shifted to some other in-
stance determined by consistent hashing. If flows are shifted
to a middlebox instance that does not have state about the
flow, it may be dropped, thus affecting availability. However,
this is unavoidable even in existing network infrastructures
and is not a limitation of the PLayer.

Adding a new middlebox instance changes the number
of instances (n) serving as targets for consistent hashing.
As a result, 1

2n
of the flows are shifted to the newly added

instance, on average. Stateful middlebox instances like fire-
walls may drop the reassigned flow and briefly impede net-
work availability. If n is large (say 5), only a small fraction
of flows (10%) are affected. If such relatively small and in-
frequent pre-planned disruptions are unacceptable for the
data center, flows can be pinned to middlebox instances by
enhancing pswitches with per-flow state [24].

7. IMPLEMENTATION AND EVALUATION
In this section we briefly describe our prototype imple-

mentation of the PLayer and subsequently demonstrate its
functionality and flexibility under different network scenar-
ios, as well as provide preliminary performance benchmarks.

7.1 Implementation
We have prototyped pswitches in software using Click [25].

An unmodified Click Etherswitch element formed the Switch
Core, while the Policy Core was implemented in 5500 lines of

58

C++. Each interface of the Policy Core plugs into the corre-
sponding interface of the Etherswitch element, maintaining
the modular pswitch design described in Section 4.

Due to our inability to procure expensive hardware mid-
dleboxes for testing, we used commercial quality software
middleboxes running on standard Linux PCs: (i) Netfil-
ter/iptables [13] based firewall, (ii) Bro [29] intrusion de-
tection system, and (iii) BalanceNG [2] load balancer. We
used the Net-SNMP [8] package for implementing SNMP-
based middlebox liveness monitoring. Instead of inventing a
custom policy language, we leveraged the flexibility of XML
to express policies in a simple human-readable format. The
middlebox controller, policy controller, and web-based con-
figuration GUI were implemented using Ruby-On-Rails [12].

P S w i t c h 1 P S w i t c h 4P S w i t c h 3P S w i t c h 2

F i r e w a l l 1 F i r e w a l l 2 L o a d B a l a n c e r

C l i e n t

W e b S e r v e r 1

W e b S e r v e r 2

Figure 8: Physical topology on the DETER testbed
used to demonstrate PLayer functionality.

7.2 Validation of Functionality
We validated the functionality and flexibility of the PLayer

using computers on the DETER [17] testbed, connected to-
gether as shown in Figure 8. The physical topology was
constrained by the maximum number of Ethernet interfaces
(4) available on individual testbed computers. Using simple
policy changes to the PLayer, we implemented the differ-
ent logical network topologies shown in Figure 9, without
rewiring the physical topology or taking the system offline.
Not all devices were used in every logical topology.
Topology A→B: Logical topology A represents our start-
ing point and the most basic topology – a client directly
communicates with a web server. By configuring the policy
[Client, (*,IPweb1,*,80,tcp)] → firewall at the policy con-
troller, we implemented logical topology B, in which a fire-
wall is inserted in between the client and the web server. We
validated that all client-web server traffic flowed through the
firewall by monitoring the links. We also observed that all
flows were dropped when the firewall failed (was turned off).
Topology B→C: Adding a second firewall, Firewall 2, in
parallel with Firewall 1, in order to split the processing load
resulted in logical topology C. Implementing logical topology
C required no policy changes. The new firewall instance was
simply registered at the middlebox controller, which then
immediately informed all four pswitches. Approximately
half of the existing flows shifted from Firewall 1 to Firewall 2
upon its introduction. However, no flows were dropped as
the filtering rules at Firewall 2 were configured to temporar-
ily allow the pre-existing flows. Configuring firewall filtering
behavior is orthogonal to PLayer configuration.
Topology C→B→C: To validate the correctness of PLayer
operations when middleboxes fail, we took down one of the
forwarding interfaces of Firewall 1, thus reverting to logi-
cal topology B. The SNMP daemon detected the failure on
Firewall 1 in under 3 seconds and immediately reported it to
all pswitches via the middlebox controller. All existing and
new flows shifted to Firewall 2 as soon as the failure report

was received. After Firewall 1 was brought back alive, the
pswitches restarted balancing traffic across the two firewall
instances in under 3 seconds.

Figure 9: Logical topologies used to demonstrate
PLayer functionality.

Topology C→D: We next inserted a load balancer in be-
tween the firewalls and web server 1, and added a second
web server, yielding logical topology D. Clients send HTTP
packets to the load balancer’s IP address IPLB, instead of
a web server IP address (as required by the load balancer
operation mode). The load balancer rewrites the destina-
tion IP address to that of one of the web servers, selected in
a round-robin fashion. To implement this logical topology,
we specified the policy [Client, (*,IPLB,*,80,tcp)] → fire-
wall and the corresponding reverse policy for the client-load
balancer segment of the path. The load balancer, which au-
tomatically forwards packets to a web server instance, is not
explicitly listed in the middlebox sequence because it is the
end point to which packets are addressed. We also specified

59

the policy [Web, (IPweb1/2,*,80,*,tcp)]→load balancer. This
policy enabled us to force the web servers’ response traffic to
pass through the load balancer without reconfiguring the de-
fault IP gateway on the web servers, as done in current best
practices. We verified that the client-web server traffic was
balanced across the two firewalls and the two web servers.
We also verified the correctness of PLayer operations under
firewall, load balancer and web server failure.
Topology D→E: In order to demonstrate the PLayer ’s
flexibility, we flipped the order of the firewalls and the load
balancer in logical topology D, yielding topology E. Im-
plementing this change simply involves updating the poli-
cies to [LB, (*,IPweb1/2,*,80,tcp)] → firewall and [Web,
(IPweb1/2,*,80,*,tcp)] → firewall, load balancer. We do not
specify a policy to include the load balancer on the client to
web server path, as the HTTP packets sent by the client are
addressed to the load balancer, as before.
Topology E→F: To further demonstrate the PLayer’s flex-
ibility, we updated the policies to implement logical topology
F, in which Firewall 1 solely serves web server 1 and Fire-
wall 2 solely serves web server 2. This topology is relevant
when the load balancer intelligently redirects different types
of content requests (for example, static versus dynamic) to
different web servers, thus requiring different types of pro-
tection from the firewalls. To implement this topology, we
changed the middlebox type of Firewall 2 to a new type
firewall2, at the middlebox controller. We then updated
the forward direction policies to [LB, (*,IPweb1,*,80,tcp)]
→ firewall and [LB, (*,IPweb2,*,80,tcp)] → firewall2, and
modified the reverse policies accordingly.

The logical topology modifications and failure scenarios
studied here are orthogonal to the complexity of the physical
topology. We also validated the PLayer on a more complex
topology [24] that emulates the popular data center topology
shown in Figure 1.

7.3 Benchmarks
In this section, we provide preliminary throughput and

latency benchmarks for our prototype pswitch implementa-
tion, relative to standard software Ethernet switches and
on-path middlebox deployment. Our initial implementation
focused on feasibility and functionality, rather than opti-
mized performance. While the performance of a software
pswitch may be improved by code optimization, achieving
line speeds is unlikely. Inspired by the 50x speedup obtained
when moving from a software to hardware switch prototype
in [20], we plan to prototype pswitches on the NetFPGA [9]
boards. We believe that the hardware pswitch implemen-
tation will have sufficient switching bandwidth to support
frames traversing the pswitch multiple times due to middle-
boxes and will be able to operate at line speeds.

Our prototype pswitch achieved 82% of the TCP through-
put of a regular software Ethernet switch, with a 16% in-
crease in latency. Figure 10(a) shows the simple topol-
ogy used in this comparison experiment, with each com-
ponent instantiated on a separate 3GHz Linux PC. We used
nuttcp [10] and ping for measuring TCP throughput and la-
tency, respectively. The pswitch and the standalone Click
Etherswitch, devoid of any pswitch functionality, saturated
their PC CPUs at throughputs of 750 Mbps and 912 Mbps,
respectively, incurring latencies of 0.3 ms and 0.25 ms.

Compared to an on-path middlebox deployment, off-path
deployment using our prototype pswitch achieved 40% of the

throughput at double the latency (Figure 10(b)). The on-
path firewall deployment achieved an end-to-end through-
put of 932 Mbps and a latency of 0.3 ms, while the pswitch-
based firewall deployment achieved 350 Mbps with a latency
of 0.6 ms. Although latency doubled as a result of multi-
ple pswitch traversals, the sub-millisecond latency increase
is in general much smaller than wide-area Internet latencies.
The throughput decrease is a result of frames that arrived on
different pswitch interfaces traversing the same already sat-
urated CPU. Hardware-based pswitches with multi-gigabit
switching fabrics should not suffer this throughput drop.

Figure 10: Topologies used in benchmarking pswitch
performance.

Microbenchmarking showed that a pswitch takes between
1300 and 7000 CPU ticks (1 tick ≈

1

3000
microsecond on a

3GHz CPU) to process a frame. A frame entering a pswitch
input interface from a middlebox or server is processed and
emitted out of the appropriate pswitch output interfaces in
6997 CPU ticks. Approximately 50% of the time is spent
in rule lookup (from a 25 policy database) and middlebox
instance selection, and 44% on frame encapsulation. Over-
heads of frame classification and frame handoff between dif-
ferent Click elements consumed the remaining inP process-
ing time. An encapsulated frame reaching the pswitch di-
rectly attached to its destination server/middlebox was de-
capsulated and emitted out to the server/middlebox in 1312
CPU ticks.

8. LIMITATIONS
The following are the main limitations of the PLayer:

(i) Indirect Paths : Similar to some existing VLAN-
based middlebox deployment mechanisms, redirecting frames
to off-path middleboxes causes them to follow paths that are
less efficient than direct paths formed by middleboxes phys-
ically placed in sequence. We believe that the bandwidth
overhead and slight latency increase are insignificant in a
bandwidth-rich low latency data center network.
(ii) Policy Specification : Traffic classification and pol-
icy specification using frame 5-tuples is not trivial. However,
it is simpler than the current ad-hoc middlebox deployment
best practices. Network administrators specify policies us-
ing a configuration GUI at the centralized policy controller.
Static policy analysis flags policy inconsistencies and mis-
configuration (e.g., policy loops), and policy holes (e.g., ab-
sence of policy for SSH traffic). Since every pswitch has the
same policy set, policy specification is also less complex than
configuring a distributed firewall system.
(iii) Incorrect Packet Classification : 5-tuples alone
may be insufficient to distinguish different types of traffic
if it is obfuscated or uses unexpected transport ports. For
example, a pswitch cannot identify HTTPS traffic unexpect-
edly sent to port 80 instead of 443, and forward it to an SSL
offload box. Since such unexpected traffic is likely to be

60

dropped by the destinations themselves, classification inac-
curacy is not a show-stopper. However, it implies that if
deep packet inspection capable firewalls are available, then
policies must be defined to forward all traffic to them, rather
than allowing traffic to skip firewalls based on their 5-tuples.
(iv) Incorrectly Wired Middleboxes : The PLayer
requires middleboxes to be correctly wired for accurate pre-
vious hop identification and next hop forwarding. For exam-
ple, if a firewall is plugged into pswitch interface 5 while the
pswitch thinks that an intrusion prevention box is plugged in
there, then frames emitted to the intrusion prevention box
will reach the firewall. Even existing middlebox deployment
mechanisms critically rely on middleboxes being correctly
wired. Since middleboxes are few in number compared to
servers, we expect them to be carefully wired.
(v) Unsupported Policies : The PLayer does not sup-
port policies that require traffic to traverse the same type of
middlebox multiple times (e.g., [Core Router, (*,*,*,80,tcp)]
→ firewall, load balancer, firewall). The previous hop deter-
mination mechanism used by pswitches cannot distinguish
the two firewalls. We believe that such policies are rare, and
hence tradeoff complete policy expressivity for simplicity of
design. Note that policies involving different firewall types
(e.g., [Core Router, (*,*,*,80,tcp)] → external firewall, load-
balancer, internal firewall) are supported.

9. RELATED WORK
Indirection is a well-known principle in computer network-

ing. The Internet Indirection Infrastructure [30] and the
Delegation Oriented Architecture [32] provide layer-3 and
above mechanisms that enable packets to be explicitly redi-
rected through middleboxes located anywhere on the Inter-
net. Due to pre-dominantly layer-2 topologies within data
centers, the PLayer is optimized to use indirection at layer-
2. SelNet [22] is a general-purpose network architecture
that provides indirection support at layer ‘2.5’. In SelNet,
endhosts implement a multi-hop address resolution proto-
col that establishes per flow next-hop forwarding state at
middleboxes. The endhost and middlebox modifications re-
quired make SelNet impractical for current data centers.
Using per-flow multi-hop address resolution to determine
the middleboxes to be imposed is slow and inefficient, espe-
cially in a data center environment where policies are apriori
known. The PLayer does not require endhost or middlebox
modifications. A pswitch can quickly determine the mid-
dleboxes to be traversed by the packets in a flow without
performing multi-hop address resolution.

Separating policy from reachability and centralized man-
agement of networks are goals our work shares with many
existing proposals like 4D [23] and Ethane [20]. 4D concen-
trates on general network management and does not provide
mechanisms to guarantee middlebox traversal. Instantia-
tions of 4D like the Routing Control Platform (RCP) [18]
focus on reducing the complexity of iBGP inside an AS and
not on Data Centers. Unlike 4D, the PLayer does not man-
date centralized computation of the forwarding table – it
works with existing network path selection protocols running
at switches and routers, whether centralized or distributed.

Ethane [20] is a proposal for centralized management and
security of enterprise networks. An Ethane switch forwards
the first packet of a flow to a centralized domain controller.
This controller calculates the path to be taken by the flow,
installs per-flow forwarding state at the Ethane switches on

the calculated path and then responds with an encrypted
source route that is enforced at each switch. Although not
a focus for Ethane, off-path middleboxes can be imposed by
including them in the source routes. In the PLayer, each
pswitch individually determines the next hop of a packet
without contacting a centralized controller, and immediately
forwards packets without waiting for flow state to be in-
stalled at pswitches on the packet path. Ethane has been
shown to scale well for large enterprise networks (20000 hosts
and 10000 new flows/second). However, even if client au-
thentication and encryption are disabled, centrally handing
out and installing source routes in multiple switches at the
start of each flow may not scale to large data centers with
hundreds of switches, serving 100s of thousands of simulta-
neous flows3. The distributed approach taken by the PLayer
makes it better suited for scaling to a large number of flows.
For short flows (like single packet heartbeat messages or 2-
packet DNS query/response pairs), Ethane’s signaling and
flow setup overhead can be longer than the flow itself. The
prevalence of short flows [33] and single packet DoS attacks
hinder the scalability of the flow tables in Ethane switches.
Although Ethane’s centralized controller can be replicated
for fault-tolerance, it constitutes one more component on the
critical path of all new flows, thereby increasing complexity
and chances of failure. The PLayer operates unhindered
under the current policies even if the policy controller fails.

Some high-end switches like the Cisco Catalyst 6500 [5] al-
low various middleboxes to be plugged into the switch chas-
sis. Through appropriate VLAN configurations on switches
and IP gateway settings on end servers, these switches of-
fer limited and indirect control over the middlebox sequence
traversed by traffic. Middlebox traversal in the PLayer is
explicitly controlled by policies configured at a central loca-
tion, rather than implicitly dictated by complex configura-
tion settings spread across different switches and end servers.
Crucial middleboxes like firewalls plugged into a high-end
switch may be bypassed if traffic is routed around it during
failures. Unlike the PLayer, only specially designed middle-
boxes can be plugged into the switch chassis. Concentrating
all middleboxes in a single (or redundant) switch chassis
creates a central point of failure. Increasing the number of
middleboxes once all chassis slots are filled up is difficult.

MPLS traffic engineering capabilities can be overloaded
to force packets through network paths with middleboxes.
This approach not only suffers from the drawbacks of on-
path middlebox placement discussed earlier, but also re-
quires middleboxes to be modified to relay MPLS labels.

Policy Based Routing (PBR) [11], a feature present in
some routers, enables packets matching pre-specified policies
to be assigned different QoS treatment or to be forwarded
out through specified interfaces. Although PBR provides
no direct mechanism to impose middleboxes, it can be used
along with standard BGP/IGP routing and tunneling to im-
pose middleboxes. dFence [27], a DoS mitigation system
which on-demand imposes DoS mitigation middleboxes on
the data path to servers under DOS attack, uses this ap-
proach. The PLayer does not rely on configurations spread

3We estimate that Google receives over 400k search queries
per second, assuming 80% of search traffic is concentrated in
50 peak hours a week [14]. Multiple flows from each search
query and from other services like GMail are likely to result
in each Google data center serving 100s of thousands of new
flows/second.

61

across different routing and tunneling mechanisms. It in-
stead provides a simple and direct layer-2 mechanism to im-
pose middleboxes on the data path. A layer-2 mechanism is
more suitable for imposing middleboxes in a data center, as
data centers are pre-dominantly layer-2 and many middle-
boxes cannot even be addressed at the IP layer.

10. CONCLUSION
The recent rapid growth in the number, importance, scale

and complexity of data centers and their very low latency,
high bandwidth network infrastructures open up challeng-
ing avenues of research. In this paper, we proposed the
policy-aware switching layer (PLayer), a new way to de-
ploy middleboxes in data centers. The PLayer leverages the
data center network’s conduciveness for indirection to ex-
plicitly redirect traffic to unmodified off-path middleboxes
specified by policy. Unlike current practices, our approach
guarantees correct middlebox traversal under all network
conditions, and enables more efficient and flexible network
topologies. We demonstrated the functionality and feasibil-
ity of our proposal through a software prototype deployed
on a small testbed.

11. REFERENCES

[1] Architecture Brief: Using Cisco Catalyst 6500 and
Cisco Nexus 7000 Series Switching Technology in Data
Center Networks. http://www.cisco.com/en/US/
prod/collateral/switches/ps9441/ps9402/ps9512/

White_Paper_C17-449427.pdf.

[2] BalanceNG: The Software Load Balancer.
http://www.inlab.de/balanceng.

[3] Beth Israel Deaconess Medical Center. Network
Outage Information. http://home.caregroup.org/
templatesnew/departments/BID/network_outage/.

[4] BladeLogic Sets Standard for Data Center Automation
and Provides Foundation for Utility Computing with
Operations Manager Version 5. Business Wire, Sept
15, 2003, http://findarticles.com/p/articles/mi_
m0EIN/is_2003_Sept_15/ai_107753392/pg_2.

[5] Cisco Catalyst 6500 Series Switches Solution.
http://www.cisco.com/en/US/products/sw/

iosswrel/ps1830/products_feature_

guide09186a008008790d.html.

[6] Cisco Systems, Inc. Spanning Tree Protocol Problems
and Related Design Considerations.
http://www.cisco.com/warp/public/473/16.html.

[7] Microsoft: Datacenter Growth Defies Moore’s Law.
InfoWorld, April 18, 2007, http://www.pcworld.com/
article/id,130921/article.html.

[8] Net-SNMP. http://net-snmp.sourceforge.net.

[9] NetFPGA. http://netfpga.org.

[10] nuttcp. http://linux.die.net/man/8/nuttcp.

[11] Policy based routing. http://www.cisco.com/warp/
public/732/Tech/plicy_wp.htm.

[12] Ruby on Rails. http://www.rubyonrails.org.

[13] The netfilter.org project. http://netfilter.org.

[14] US Search Engine Rankings, September 2007.
http://searchenginewatch.com/showPage.html?

page=3627654.

[15] Cisco Data Center Infrastructure 2.1 Design Guide,
2006.

[16] M. Arregoces and M. Portolani. Data Center
Fundamentals. Cisco Press, 2003.

[17] R. Bajcsy,et. al. Cyber defense technology networking
and evaluation. Commun. ACM, 47(3):58–61, 2004
http://deterlab.net.

[18] M. Caesar, D. Caldwell, N. Feamster, J. Rexford,
A. Shaikh, and J. van der Merwe. Design and
Implementation of a Routing Control Platform. In
NSDI 2005.

[19] D. Caldwell, A. Gilbert, J. Gottlieb, A. Greenberg,
G. Hjalmtysson, and J. Rexford. The Cutting EDGE
of IP Router Configuration. In HotNets 2003.

[20] M. Casado, M. J. Freedman, J. Pettit, J. Luo,
N. McKeown, and S. Shenker. Ethane: Taking Control
of the Enterprise. In SIGCOMM 2007.

[21] K. Elmeleegy, A. Cox, and T. Ng. On
Count-to-Infinity Induced Forwarding Loops in
Ethernet Networks. In Infocom 2006.

[22] R. Gold, P. Gunningberg, and C. Tschudin. A
Virtualized Link Layer with Support for Indirection.
In FDNA 2004.

[23] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang. A
Clean Slate 4D Approach to Network Control and
Management. In ACM SIGCOMM Computer
Communication Review. 35(5). October, 2005.

[24] D. Joseph, A. Tavakoli, and I. Stoica. A Policy-aware
Switching Layer for Data Centers. Technical report,
EECS Dept., University of California at Berkeley,
June 2008.

[25] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek. The Click modular router. ACM
Transactions on Computer Systems, 18(3):263–297,
August 2000.

[26] K. Lakshminarayanan. Design of a Resilient and
Customizable Routing Architecture. PhD thesis, EECS
Dept., University of California, Berkeley, 2007.

[27] A. Mahimkar, J. Dange, V. Shmatikov, H. Vin, and
Y. Zhang. dFence: Transparent Network-based Denial
of Service Mitigation. In NSDI 2007.

[28] D. Oppenheimer, A. Ganapathi, and D. Patterson.
Why do Internet services fail, and what can be done
about it. In USENIX Symposium on Internet
Technologies and Systems, 2003.

[29] V. Paxson. Bro: A system for detecting network
intruders in real-time. Computer Networks,
31(23–24):2435–2463, 1999.

[30] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet Indirection Infrastructure. In
SIGCOMM 2002.

[31] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H. Balakrishnan. Chord: A Scalable Peer-to-peer
Lookup Service for Internet Applications. In
SIGCOMM 2001.

[32] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan,
R. Morris, and S. Shenker. Middleboxes No Longer
Considered Harmful. In OSDI 2004.

[33] Y. Zhang, L. Breslau, V. Paxson, and S. Shenker. On
the Characteristics and Origins of Internet Flow
Rates. In SIGCOMM 2002.

62

