
Monitoring a virtual network infrastructure

An IaaS perspective

Augusto Ciuffoletti
∗

Department of Computer Science — University of Pisa — Italy
augusto@di.unipi.it

ABSTRACT
Infrastructure as a Service (IaaS) providers keep extending with
new features the computing infrastructures they offer on a pay per
use basis. In this paper we explore reasons and opportunities to
include networking within such features, meeting the demand of
users that need composite computing architectures similar to Grids.

The introduction of networking capabilities within IaaSs would
further increase the potential of this technology, and also foster an
evolution of Grids towards a confluence, thus incorporating the ex-
periences matured in this environment.

Network monitoring emerges as a relevant feature of such virtual
architectures, which must exhibit the distinguishing properties of
the IaaS paradigm: scalability, dynamic configuration, accounting.
Monitoring tools developed with the same purpose in Grids provide
useful insights on problems and solutions.

Categories and Subject Descriptors
C.2.1 [COMPUTER-COMMUNICATION NETWORKS]: Net-
work Architecture and Design; C.2.3 [COMPUTER-COMMUNI-
CATION NETWORKS]: Network operations—network monitor-
ing

General Terms
Design

Keywords
GRID applications, network-enabled IaaS

1. INTRODUCTION
The Cloud Computing paradigm is characterized by resource vir-

tualization, a feature that is appreciated both by the infrastructure
manager and by the end user. In fact, the provider of virtual re-
sources easily optimizes their management, while the user invests
on resources exactly tailored on its needs. These facts are firmly
established for computing and storage resources, so the number of
providers that make available such resources is growing.

Conversely, on the side of networking resources the user is given
little control over both the interconnection topology, and the param-
eters of networking resources. Yet, as we will show in this paper,
technology is ready to provide flexible networking infrastructures
on demand. So we envision an evolution of the providers of IaaS
towards an offer that integrates a composite networking: the trigger

∗Augusto Ciuffoletti is member of the ERCIM CoreGRID Working
Group

AWS Amazon Web Services

API Application Programming Interface

ESB Enterprise Service Bus

IaaS Infrastructure as a Service

MVRP Multiple VLAN Registration Protocol

NIC Network Interface Card

QoS Quality of Service

RTP Real Time Protocol

SIP Session Initiation Protocol

SNMP Simple Network Management Protocol

SQL Structured Query Language

VoIP Voice over IP

VLAN Virtual Local Area Network

VM Virtual Machine

Table 1: Acronyms used in the paper

for this evolution is the emergence of users interested in architec-
tures more complex than those required by a simple two tiers web
service.

A possible source for this trigger is a migration from computing
Grids towards more cost effective computing models. The emer-
gence of Grids has been fostered by the need of sharing resources in
the domain of scientific investigation. This push has not exhausted
its energy, but Grids are hindered by a functional model that fea-
tures them as computing islands dedicated to support projects au-
thorized by distinct scientific institutions: in such a framework, in-
teroperability, accounting and security may even be considered as
marginal, while they are fundamental in an industrial framework.

On the contrary Cloud computing, although originated from sim-
ilar resource sharing purposes, gives precedence to features ap-
preciated in the industrial milieu: accounting, security, and inter-
operability considered as marketing options. But Cloud products
lack the flexibility of the Grid, since Cloud developers targeted
the broadest demand, web servers and search engines, providing
a straightforward, yet rigid, interface for their implementation. In
present IaaS infrastructures there is little or no way to keep un-
der control data acquisition and displacement, distributed operation
and many other features that are typical of Grids.

In this paper we conjecture that a possible meeting point of Grid
and Cloud technologies, which are presently evolving independently
despite a lot of efforts to merge them, may depend on the introduc-
tion of an highly configurable network in the infrastructure pro-
vided as a pay-per-use service.

ACM SIGCOMM Computer Communication Review 47 Volume 40, Number 5, October 2010



Our conjecture is based on the observation that the complex work-
flows that characterize scientific applications are incompatible with
the rigid IaaS networking. Enabling a flexible networking within an
IaaS would probably motivate a migration of scientific applications,
and Grids would promptly turn into into IaaS hosting infrastruc-
tures taking advantage of the accumulated know-how. It is worth
noting that the technology that enables such step is already avail-
able, as discussed in the next section: so the process is just waiting
for a trigger.

In this new framework the ability to control network operation
is vital: the statement extends from the configuration of the virtual
network, to the administrative control over its operation, and to the
feedback provided to network-aware applications. In the paper, we
compare network monitoring designs for real and virtual networks,
with an eye to Grid legacy.

The next section concentrates on the ready technologies that en-
able a transition towards networking enabled IaaS. In section 3 we
study the problems related with the control of virtual networking
provided as a service. In section 3.1 we wrap up some conclusions
about relevant design issues concerning network monitoring.

2. ENABLING TECHNOLOGIES
Technology is ready to offer virtualization also for networking

resources: just like the hypervisor implements virtual workstations
over powerful computing architectures, a Virtual Local Area Network
(VLAN) synthesizes plain Ethernet networks over complex infras-
tructures.

IEEE802.1Q [8] is the standard that addresses the management
of VLANs, by regulating the operation of the device that enables
their implementation over a switched network. The history of IEEE802.1Q
begins in 1998, and a revision was released in 2005: there is an in-
tense activity around this standard, and several substandards are
being developed.

We observe that the IEEE802.1Q protocol splits the Data Link
layer into two tiers: the lower layer (that we call infrastructure
management) implements flat broadcast networks that provide con-
nectivity to the upper user applications layer. The relevant effect
is that infrastructure administration concerns — including logistic
issues and load balancing — are transparent to the end user, which
appreciates a flat network abstraction.

The infrastructure management layer makes use of traffic engi-
neering techniques to interconnect diverse networking technologies
— from long haul links to LANs. The devices interconnecting net-
work elements are called VLAN-aware bridges: they route MAC
frames using a VLAN identifier included in each frame. Each net-
work element is associated with one or more VLANs, and the cir-
culation of frames is confined within network elements that par-
ticipate in the indicated VLAN. Routing decisions that implement
certain aspects of traffic engineering move from layer 3 (network)
to level 2 (data link), with improved performance.

In figure 1 we show an example of a network split into three seg-
ments, each hosting three distinct Virtual LANs: we may imagine
this configuration motivated by office logistics.

Each VLAN is separately manageable, and VLAN-aware bridges
are informed about the quality of service associated with a given
VLAN: they can be instructed to differentiate expedited traffic,
like Voice over IP (VoIP), from other classes. The team working
around IEEE802.1 is deeply concerned with audio/video streaming
over bridged architectures, and such interest materializes in a spe-
cific task group, whose activity also covers the transport of timing
information [11], and end-to-end resource reservation.

If we aim to overlay a virtual network requested by a user over
the real networking fabric [3], we need to define a suitable mapping

from network elements to VLANs. This data structure is used by
bridges for frame level routing, and is defined as Filtering Database
in IEEE802.1Q terms.

In principle the Filtering Database is compiled by network ad-
ministrators; in practice this task is so delicate and difficult that a
specific protocol is designed to collect user requests, and to diffuse
appropriate Filtering Database updates to the concerned VLAN
switches.

The existence of this protocol is central in our discussion, since it
makes practically feasible the on demand management of a VLAN-
based network, that we consider as a basic building block for a
networking enabled IaaS.

Another relevant fact refers to the physical interface between the
servers and the networking fabric. According with IEEE802.1Q
the same physical interface device may be shared among different
VLANs, thus implementing several distinct virtual interfaces: al-
though they share the same hardware, they run in total isolation
among each other, in order to ensure privacy and security.

So we finally come to the abstract concept of a virtual host at-
tached through a virtual interface to a virtual LAN, which is config-
ured on demand: the basic building block of a networking enabled
IaaS.

3. NETWORK MONITORING IN THE AGE
OF THE CLOUD

Currently, the limited role of network monitoring in IaaS offers
is justified by the simplicity of the provided infrastructure. How-
ever, if we envision the evolution of IaaS towards the provision
of complex networks, like those used in scientific experiments, we
need to consider the presence of an adequate monitoring of the net-
working infrastructure. In fact, network monitoring is not an option
for a production infrastructure: its administration must keep under
control the utilization and the performance of the network, and ap-
plications take advantage of input from traffic sensors. One of the
basic features of network monitoring in a networking-enabled IaaS
is that the output should be adherent to the VLAN abstraction, and
that the interface should allow access from the network administra-
tor as well as from network-aware applications.

To investigate the issues that are found in the design of a network
monitoring infrastructure offered as part of an IaaS, we need to
identify the activities that take advantage of its outcomes, starting
from the most popular: load balancing.

IaaS providers offer load balancing as a part of the service (a re-
cent survey is in [1], and Amazon Web Services (AWS) solution is
in [2]), but such preconfigured service is adapted to a limited num-
ber of use cases, and opaque to the user. Instead an effective load
balancing strategy needs to keep under control the performance of
all involved resources, included the network, in an application de-
pendent way. However the basic architecture currently offered to
the user — whose simplicity on the other hand is a reason of suc-
cess of the IaaS concept — is opaque to the user application (as in
the case of Amazon EC2 Web Service). It consists of a two-tiers
Web Service (as shown in figure 2): an array of virtual web servers
offers to the clients outside the cloud a service based on a repository
which is possibly hosted in a virtual storage. The primary interest
of the user application is that all web requests are serviced with a
uniform bandwidth, and that traffic latencies from web servers to
internal storage servers are also predictable: however this kind of
feedback is not available.

We observe that the maintenance of uniform network perfor-
mances would also improve the effectiveness of load balancing
techniques. In fact, when network performance is not homoge-

ACM SIGCOMM Computer Communication Review 48 Volume 40, Number 5, October 2010

http://standards.ieee.org/cgi-bin/status?802
http://www.ieee802.org/1/pages/avbridges.html


Figure 1: Two tiers view with and without LAN virtualization

Figure 2: Infrastructure and user application views of a basic
elastic web service infrastructure

neous, load balancing turns out to be ineffective, independently
from the available processing power: a query may be penalized
by the fact that the user — which sits outside the cloud — is poorly
connected with the virtual web server, or that this latter experiences
a high latency with the storage service.

The survey in [1] corroborates this conclusion with field exper-
iments, and the benefits coming from the availability of network
monitoring results at user application level become more evident
when the use case is more demanding than the simple one described
above.

For instance, consider the typical grid-like computational infras-
tructure for a scientific experiment (see figure 3). During its life-
time it will go through a sequence of phases: starting with the col-
lection of experimental data, next preserving and making accessible
these data, and occasionally supporting their processing.

Such a life cycle exhibits peaks of activity that are favorably man-
aged using a cloud infrastructure. During the acquisition period, the
storage infrastructure is stressed with a continuous stream of data:
to contain buffer size, the network is required to introduce a suffi-

Figure 3: User application view of the computational infras-
tructure for a scientific experiment

ciently small jitter. Afterward, the data remains safely stored for a
long period of time, available for successive processing sessions in
order to extract significant scientific results. The latter activity is
computationally intensive, and may use sophisticated paralleliza-
tion techniques. The secure and reliable transport of data is persis-
tently a key feature, since collected data, as well as the extracted
figures, are considered a sensitive resource.

So, each of these phases shows distinct requirements from the
point of view of the networking infrastructure. With a short digres-
sion, we note that the VLAN technology fits this framework, since
it allows the flexible networking of a complex virtual infrastructure,
preserving the differentiation of requests during the life cycle of a
long lived project.

In complex cloud architectures like the one described above (see
also a detailed description and discussion of a use case in [12]) it
is reasonable that the IaaS provider offers a pre-configured mon-
itoring service for better exploiting the provided service. But the
collection of monitoring data that falls outside the direct control
of the cloud provider, for instance for accounting third party users
of the virtual infrastructure, can be effectively implemented only
inside user applications.

A similar case exists for media streaming where, as a general
rule, the application itself collects statistics for buffer optimization,
or for other reasons related to the real time nature of the stream. In
this case the IaaS provider cannot anticipate what kind of data are
going to be helpful to the user.

So we identify many network sensitive activities: not only load
balancing, but also data streaming, accounting, and control of par-
allel computations. All these activities are mostly under control of

ACM SIGCOMM Computer Communication Review 49 Volume 40, Number 5, October 2010



the user, so we claim that, in addition to the results, also the config-
uration of network monitoring should be available to the user, and
not restricted to a few Quality of Service (QoS) options offered by
the IaaS provider.

3.1 Virtual devices for network monitoring
A number of Network Monitoring tools, for instance those that

use libpcap [6], demonstrate that network performance can be
effectively measured across network interface devices. In the IaaS
approach these interfaces are bundled with Virtual Machine (VM)
images: an apparently viable solution is to appoint the user with the
task of configuring them, so to extract traffic patterns and charac-
teristics. However this solution is of limited validity since, in order
to monitor the virtual network, packet filtering rules have to con-
tain data that are not available to the user. For instance this is the
case of the VLAN identifier, which should not be manipulated by
the user application for security reasons.

Monitoring the traffic across intermediate devices — like virtual
switches in VMware [13] — is hardly applicable, since these de-
vices are out of user’s scope: the user that wants to inspect their op-
eration and configuration, for instance using Simple Network Man-
agement Protocol (SNMP), has to rely on features implemented and
made accessible by the IaaS provider. But the provider is unwill-
ing to give user access to inter-networking devices, primarily for
security reasons.

In this perspective, it is conceivable that the infrastructure man-
agement cooperates with the user in the configuration of virtual net-
work interfaces, for instance providing network monitoring tools as
configurable plug-ins of the virtual host. In the case of a simple web
service, one such plug-in might measure the data transfer rate be-
tween the data servers and the web interface, the results being used
to account the web service user for the quantity of data transferred.

At the infrastructure management level, such plug-ins are imple-
mented using end-to-end monitoring between the physical network
interfaces of the servers where user virtual machines are running:
the data needed to implement packet filter rules are now accessed
by the infrastructure management, but following user requests.

The option of monitoring user traffic in generic intermediate points
has limits, since traffic among physical servers is trunked, and link
aggregation is used. To avoid such drawbacks, network monitor-
ing should be operated near or within the end-points, mainly using
passive techniques embedded in virtual interfaces or switches.

In a nutshell, one building block of a networking-enabled IaaS
is a virtual network device that provides traffic measurement on
demand: for instance, in the data server example above, when one
virtual server is added or removed to respond to load changes, the
network monitoring activity is upgraded accordingly. Which is also
consistent with cloud computing philosophy.

A suitable Application Programming Interface (API) has to be
provided to allow the user application to have access to network
monitoring. Through this gate the user interacts with network mon-
itoring plug-ins that are dynamically loaded in VM images.

The interface should be as much transparent as possible to events
that interfere with network monitoring consistency, so that the ap-
plication may undertake the appropriate exceptional measures. Oth-
erwise, such events may be a trigger for unstable behaviors. Con-
sider that network monitoring implements the feedback control for
resource management, as shown in figure 4: from control theory,
we know that a badly controlled feedback may drive the whole
system into instability. For an example of an event that perturbs
measurement consistency, consider that in VMwareTM the infras-
tructure administrator has the capability to displace a virtual host,
changing its location in the physical network. In this case the

Figure 4: Closed loop load balancing with user level network
monitoring (user application view)

network measurements collected before the displacement do not
match with the situation afterward.

One network monitoring aspect that is not very relevant at the
user application level is the liveness and the reachability of virtual
servers: the probability of host unreachability is drastically reduced
by the infrastructure administration, which manages the underlying
resources and may even relocate the virtual server in case of failure
of the infrastructure.

3.2 Looking inside
Summarizing, software modules that implement virtual network

interfaces play a significant role in the evolution of IaaS towards
the provision of network infrastructures; such modules integrate
knowledge accessible only within the infrastructure management
level, with that provided by the user application. We now translate
the conclusions of the above discussion in a series of guidelines for
the design of a virtual network interface.

Considering the network monitoring infrastructure as a whole,
we see that it consists of many software modules distributed through-
out the IaaS infrastructure; virtual network interfaces are included
in this number. The coordination of this complex infrastructure
should be distributed, not concentrated in one server or registry.
The rationale for a distributed management is primarily the re-
silience to network failures, but also better efficiency and an im-
proved security. Virtual network interfaces participate to the dis-
tributed operation, and they are granted a way to identify them-
selves, and to communicate with other components.

Inside a virtual network interface the knowledge coming from
the infrastructure management layer is used to map packet filtering
rules from the virtual down to the real network. This part of the
software component has privileged access to network management
data not disclosed to the user, and participates in the distributed
management of the network monitoring infrastructure.

On the user application side the network monitoring module is
accessible through a dedicated API: it is used to configure the
packet filtering rules and other details of the network monitoring
activity. About this last point, we stress that a by default network
monitoring is not viable: it is not realistic to assume that the IaaS
provider collects all the network monitoring information a user
might possibly ask.

The scope of a single network monitoring activity is bound to the
traffic trunk allocated to the given user, in accordance with security
and privacy requirements. This is the reason why monitoring is
end-to-end, where ending points are the virtual network interfaces
attached to the virtual hosts allocated to the user.

The virtual network monitoring infrastructure — the aggregation
of virtual sensors and virtual connections that gather and transport

ACM SIGCOMM Computer Communication Review 50 Volume 40, Number 5, October 2010



monitoring data — is instantiated on demand, not prepared in
advance. The reason is that network monitoring requests cannot be
flexibly anticipated. The IaaS provider allows the user application
to indicate the plug-in that implements network monitoring and to
describe traffic filters (including end-points, protocol etc.).

The user interface provided for this purpose should smoothly fit
within the interface used for infrastructure configuration: we cur-
rently have a mature experience concerning the instantiation of el-
ements that provide storage and processing capabilities. Standards
are being elaborated in order to accelerate the evolution of services
[10]. This experience should extend also to network elements, and
to the attached monitoring services.

Monitoring activity outcomes are to be delivered to the user,
not kept available to the infrastructure management: giving the user
the responsibility of data management also ensures privacy. The
results are returned to the user application either as a return value,
or as a stream of measurements. As a consequence the destination
of monitoring data is typically remote, and it is an option of the
user to either consume the information instantly, or to store it for
statistical purposes.

3.3 Grid legacy
Network monitoring infrastructures developed for Grids partially

meet the above guidelines, and anticipate many of the issues found
in IaaS infrastructures. In this section we focus on two of them and
explore similarities and differences.

Monalisa [9] is a very successful product for network moni-
toring, which is diffused worldwide in production Grids. It im-
plements a distributed infrastructure, and provides a sort of glue
for binding together network monitoring tools developed indepen-
dently. Instances of such tools are activated by administrators on
specific subsystems and network measurements are collected and
made available in an SQL database.

Monalisa addresses many of the issues introduced in this paper:
there is a dynamic control over monitoring resources which are dis-
tributed across an infrastructure with a geographic scope and can be
configured in a rather dynamic way.

However, the overall approach is that of a provider that config-
ures the collection of network monitoring data, with a user that
queries the infrastructure for available data: although the config-
uration and activation of network monitoring modules is dynami-
cally controlled through an ad-hoc protocol, the generic user is not
allowed to directly interact with them.

In a more dynamic environment, where networking changes fol-
lowing user requests, such a rigid management is a major draw-
back.

The Gd2 prototype [5] — at the stage of a proof of concept —
introduces features that are closer to those illustrated in this paper:
the User Application Layer of figure 5 shows the relevant compo-
nents of this architecture.

In summary, a user application running on a Host has access to
the monitoring infrastructure through a network of Proxy nodes.
The overall system is partitioned into Network Monitoring Domains;
each proxy manages the requests coming from one of them, and
coordinates its own activity with other proxies. The primary role
of a proxy is of discovering an Agent that can implement the re-
quest. The agent is the component with network monitoring capa-
bilities; it is usually located close to networking devices (routers,
gateways), and its capabilities are registered in the local proxy. A
proxy extends its search for an appropriate agent across domains,
by forwarding the requests to neighbor proxies. The agent discov-
ery phase is managed using the SOAP protocol in a way that is
similar to the Session Initiation Protocol (SIP) [7] protocol, and ter-

Figure 5: A simple case of gd2 monitoring infrastructure

minates when an appropriate agent is found, and the user request is
delivered.

The request contains all the data that are needed to setup a traffic
monitoring filter, included the type of traffic, its endpoints, and the
format to be used to return the data. When the monitoring activity
starts, a data path is built across the network of Proxy components
between the network monitoring agent and the user. At this point
data start flowing as a unidirectional stream of Real Time Protocol
(RTP) packets.

The Gd2 framework, which has been designed to provide net-
work monitoring to complex workflows, matches many of the guide-
lines illustrated above. Its agents, like the infrastructure manage-
ment component of virtual network interfaces, participate in the
distributed management of the network monitoring infrastructure.
The requests they receive allow them to dynamically setup the net-
work monitoring activity, based on user application requests: au-
thorization checks are performed at each step during the propaga-
tion of the request from the user application to the final agent. The
networking monitoring data are returned to the requesting user ap-
plication, and they may be encrypted, if this option is indicated in
the network monitoring request.

Although Gd2 does not explicitly address virtualized resources,
we may envision a transition path towards an IaaS monitoring in-
frastructure, as outlined by the blue arrows in figure 5.

The virtual network interface of a new virtual host is associated
with a Gd2 agent: the measurement of traffic with an end on the
new host is allocated to that agent. The agent waits for SOAP re-
quests from the proxy; these requests are originated by possibly
remote agents and acceptance criteria may be applied. The new
virtual node will submit the requests from user applications to the
local proxy. The translation of traffic specifications from the virtual
infrastructure to the real infrastructure (using the VLAN mapping)
takes place on the agents, where this information is available.

The location of agents and proxies depends on the logistics of
the networking infrastructure: for instance, a virtual rack of hosts
located inside the same server might be associated to an agent lo-
cated in the same server, possibly corresponding to a virtual proxy
in VMware terminology.

A more advanced perspective envisions network monitoring as
embedded in the middleware that glues together the components of
the virtual infrastructure. Network monitoring would be therefore
considered as a part of the service provided to the user application,
together with other sophisticated options like process migration,
checkpointing and recovery. An essay in this direction has been
put forward in the course of the CoreGRID European Program [4].
The questions here are how such advanced features are made effec-
tively available, and how to design applications that take advantage
of their presence: the Enterprise System Bus (ESB) concept is a
suggestive paradigm in this direction.

ACM SIGCOMM Computer Communication Review 51 Volume 40, Number 5, October 2010



4. CONCLUSIONS
The IaaS concept has the potential of evolving towards complex

production infrastructures similar to Grids. Unlike a Grid, the de-
ployment of a networking-enabled IaaS would take advantage of
the basic pay per use axiom of cloud computing, with relevant fi-
nancial consequences.

The components of a networking-enabled IaaS communicate through
a virtual network, whose deployment is part of the provided ser-
vice. The VLAN concept, and the related technology based on the
IEEE803.1Q standard, is available for the synthesis on demand of
complex, yet secure, virtual networks.

The provision of an effective monitoring of network operation is
mandatory, since the user of a production infrastructure wants to
be granted control over resources. To suit the IaaS concept, net-
work monitoring must adapt to the changing needs of the user, be
flexibly interfaced with the applications it uses or develops, ensure
the desired degree of confidentiality: the design of an infrastructure
that provides monitoring for a networking-enabled IaaS is regarded
as a challenge that cannot be circumvented.

The components of this infrastructure coordinate among them-
selves to share the description of the real network, and of the virtual
overlay. Although we understand the presence of other components
that contribute to the implementation of the service, we concentrate
our attention on the design of the virtual network interface, which
is the software component in charge of giving a virtual host the
access to the virtual network.

The virtual network interface is split into two subcomponents:
one participating in the network infrastructure implementation and
accessing the real network resources, the other providing a front
end abstraction of the virtual networking through an API.

Through this API the user has access to the configuration and to
the results of virtual network monitoring activities: sessions are dy-
namically created on request, and monitor end-to-end traffic among
virtual servers.

All this shares many points with Grid monitoring infrastructures,
especially when they are designed for the management of complex,
network-aware workflows. So the experience gained in designing
Grid monitoring infrastructures can help.

The relevance of the topic is explained considering that the IaaS
model is financially more efficient than the Grid model: if clouds
were able to host the complex infrastructures needed to host pro-
cess workflows, the transition of many production infrastructures,
included scientific projects, from Grids to Clouds might take place.
In addition, this would open IaaS providers to a new market, and
Grid infrastructures might be converted to networking-enabled IaaS
providers, with improved flexibility. This paper sheds some light
on concepts that may lead such step, and on technologies that may
support it.

5. REFERENCES
[1] Brian Adler. Load balancing in the cloud: Tools, tips, and

techniques. Technical report, RightScale, Inc., April 2010.
[2] Amazon Web Services LLC. Amazon Elastic Load

Balancing, 2010.
[3] CISCO Systems. Overview of Routing between Virtual LANs.
[4] Augusto Ciuffoletti, Antonio Congiusta, Gracjan Jankowski,

Michal Jankowski, Norbert Meyer, and Ondrej Krajicek.
Grid Infrastructure Architecture - a modular approach from
CoreGRID. In Joaquim Felipe and Jos Cordeiro, editors,
Third International Conference, WEBIST 2007, Barcelona,
Spain, March 3-6, 2007, Revised Selected Papers, volume 8
of Lecture Notes in Business Information Processes, pages
72–84. Springer, 2008. CoreGRID milestone M.IRWM.05.

[5] Augusto Ciuffoletti, Yari Marchetti, Antonis
Papadogiannakis, and Michalis Polychronakis. Prototype
implementation of a demand driven network monitoring
architecture. In Sergei Gorlatch, Paraskevi Fragopoulou, and
Thierry Priol, editors, Grid Computing - Achievements and
Prospects, volume 9, chapter 8, pages 85–97. Springer, 2008.

[6] Luis Martin Garcia. Programming with libpcap - sniffing the
network from our own application. Hakin9 - Computer
Security Magazine, 2-2008(2-2008):9, 2008.

[7] H. Handley, H. Schultzrinne, Schooler E., and J. Rosenberg.
SIP: Session initiation protocol. Request for Comment 2543,
Network Working Group, March 1999.

[8] IEEE Computer Society. IEEE Standard for Local and
metropolitan area networks - Virtual Bridged Local Area
Networks, 2005.

[9] I.C. Legrand, H.B. Newman, R. Voicu, C. Cirstoiu,
C. Grigoras, M. Toarta, and C. Dobre. Monalisa: An agent
based, dynamic service system to monitor, control and
optimize grid based applications. In Computing in High
Energy and Nuclear Physics (CHEP), Interlaken,
Switzerland, September 2004.

[10] Open Grid Forum. Open Cloud Computing Interface - Core
& Models, January 2010. Available from www.ogf.org.

[11] Michael D. Johas Teener and Geoffrey M. Garner. Overview
and timing performance of IEEE 802.1AS. In International
IEEE Symposium on Precision Clock Synchronization for
Measurement, Control and Communication (ISPCS), pages
22–26, Ann Arbor (MI), September 2008.

[12] Jinesh Varia. Cloud architectures. Technical report, Amazon
Web Services, 2008.

[13] VMware. VMware Virtual Networking Concepts.

ACM SIGCOMM Computer Communication Review 52 Volume 40, Number 5, October 2010


	Introduction
	Enabling technologies
	Network Monitoring in the age of the Cloud
	Virtual devices for network monitoring 
	Looking inside
	Grid legacy

	Conclusions
	References

