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ABSTRACT

This paper describes MIXIT, a system that improves the throughput

of wireless mesh networks. MIXIT exploits a basic property of mesh

networks: even when no node receives a packet correctly, any given

bit is likely to be received by some node correctly. Instead of insisting

on forwarding only correct packets, MIXIT routers use physical

layer hints to make their best guess about which bits in a corrupted

packet are likely correct and forward them to the destination. Even

though this approach inevitably lets erroneous bits through, we show

that it achieves high throughput without compromising end-to-end

reliability.

The core component of MIXIT is a novel network code that op-

erates on small groups of bits, called symbols. It allows the nodes

to opportunistically route correctly-received bits to their destination

with low overhead. MIXIT’s network code also incorporates an end-

to-end error correction component that the destination uses to correct

any errors that might seep through. We have implemented MIXIT

on a software radio platform running the Zigbee radio protocol. Our

experiments on a 25-node indoor testbed show that MIXIT has a

throughput gain of 2.8× over MORE, a state-of-the-art opportunistic

routing scheme, and about 3.9× over traditional routing using the

ETX metric.

Categories and Subject Descriptors

C.2.2 [Computer Systems Organization]: Computer-

Communications Networks

General Terms

Algorithms, Design, Performance, Theory

1 Introduction

This paper presents MIXIT a system that significantly improves the

throughput of a wireless mesh network compared to the best current

approaches. In both traditional routing protocols as well as more

recent opportunistic approaches [1, 2], an intermediate node forwards

a packet only if it has no errors. In contrast, MIXIT takes a much

looser approach: a forwarding node does not attempt to recover from

any errors, or even bother to apply an error detection code (like a

CRC).

Somewhat surprisingly, relaxing the requirement that a node only

forward correct data improves throughput. The main reason for this

improvement is a unique property of wireless mesh networks: Even
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when no node receives a packet correctly, any given bit is likely to be

received correctly by some node.

In MIXIT, the network and the lower layers collaborate to improve

throughput by taking advantage of this observation. Rather than just

send up a sequence of bits, the PHY annotates each bit with SoftPHY

hints [8] that reflect the PHY’s confidence in its demodulation and

decoding. The link layer passes up frames to the network layer with

these annotations, but does not try to recover erroneous frames or

low-confidence bits using link-layer retransmissions. Instead, the

network layer uses the SoftPHY hints to filter out the bits with low

confidence in a packet, and then it performs opportunistic routing on

groups of high confidence bits.

The core component of MIXIT is a new network code that allows

each link to operate at a considerably high bit-error rate compared

to the status quo without compromising end-to-end reliability. Un-

like previous work, the network code operates at the granularity of

symbols 1 rather than packets: each router forwards (using radio

broadcast) random linear combinations of the high-confidence sym-

bols belonging to different packets. Thus, a MIXIT router forwards

symbols that are likely to be correct, tries to avoid forwarding sym-

bols that are likely to be corrupt, but inevitably makes a few incorrect

guesses and forwards corrupt symbols.

MIXIT’s network code addresses two challenges in performing

such symbol-level opportunistic routing over potentially erroneous

data. The first problem is scalable coordination: the effort required

for nodes to determine which symbols were received at each node

to prevent duplicate transmissions of the same symbol is significant.

MIXIT uses the randomness from the network code along with a novel

dynamic programming algorithm to solve this problem and scalably

“funnel” high-confidence symbols to the destination, compared to a

node co-ordination based approach like ExOR [1].

The second problem is error recovery: because erroneous sym-

bols do seep through, the destination needs to correct them. Rather

than the traditional approach of requesting explicit retransmissions,

MIXIT uses a rateless end-to-end error correcting component that

works in concert with the network code for this task. The routers them-

selves only forward random linear combinations of high-confidence

symbols, performing no error handling.

MIXIT incorporates two additional techniques to improve perfor-

mance:

• Increased concurrency: MIXIT takes advantage of two proper-

ties to design a channel access protocol that allows many more

concurrent transmissions than CSMA: first, entire packets need not

be delivered correctly to a downstream node, and second, symbols

need to be delivered correctly to some downstream node, not a

specific one.

• Congestion-aware forwarding: Unlike previous opportunistic

routing protocols which do not consider congestion information [2,

1], MIXIT forwards coded symbols via paths that have both high

delivery probabilities and small queues.

1A symbol is a small sequence of bits (typically a few bytes) that the code treats as a
single value.
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MIXIT synthesizes ideas from opportunistic routing (ExOR [1]

and MORE [2]) and partial packet recovery [8], noting the synergy

between these two concepts. Prior opportunistic schemes [2, 1] often

capitalize on sporadic receptions over long links, but these long links

are inherently less reliable and likely to exhibit symbol errors. By

insisting on forwarding only fully correct packets, prior opportunistic

protocols miss the bulk of their opportunities. Similarly, prior propos-

als for exploiting partially correct receptions, like PPR [8], SOFT [29],

and H-ARQ [16], limit themselves to a single wireless hop, incurring

significant overhead trying to make that hop reliable. In contrast, we

advocate eschewing reliable link-layer error detection and recovery

altogether, since it is sufficient to funnel opportunistically-received

correct symbols to their destination, where they will be assembled

into a complete packet.

We evaluate MIXIT using our software radio implementation on a

25-node testbed running the Zigbee (802.15.4) protocol. The main

experimental results are as follows:

• MIXIT achieves a 2.8× gain over MORE, a state-of-the-art packet-

based opportunistic routing protocol under moderate load. The

gain over traditional routing is even higher, 3.9× better aggregate

end-to-end throughput. At lighter loads the corresponding gains

are 2.1× and 2.9×.

• MIXIT’s gains stem from two composable capabilities: symbol-

level opportunistic routing, and higher concurrency, which we find

have a multiplicative effect. For example, separately, they improve

throughput by 1.5× and 1.4× over MORE; in concert, they lead to

the 2.1× gain.

• Congestion-aware forwarding accounts for 30% of the throughput

gain at high load.

MIXIT is the first system to show that routers need not forward

fully correct packets to achieve end-to-end reliability, and that loosen-

ing this constraint significantly increases throughput. MIXIT realizes

this vision using a layered architecture which demonstrates cross-

layer collaborations using clean interfaces: the network code can

run atop any radio and PHY that provides SoftPHY hints, the sys-

tem can run with any MAC protocol (though ones that aggressively

seek concurrency perform better), and the routers are oblivious to

the error-correcting code. This modular separation of concerns eases

implementation.

2 Related Work

Laneman et.al. [14] develop and analyze a series of information-

theoretic schemes to exploit wireless co-operative diversity. MIXIT

builds on the intuition, but with two important differences that admit

a practical design. First, intermediate nodes use SoftPHY hints to

“clean” the symbols before processing and forwarding them, rather

than just receiving, combining, and forwarding information at the

signal level. Second, nodes use intra-flow symbol-level network

coding, which allows them to coordinate and collaborate without

requiring finely synchronized transmissions that many “co-operative

diversity” approaches entail.

MIXIT builds on prior work on opportunistic routing [1, 2], spatial

diversity [18], and wireless network coding [11]. In particular, it

shares the idea of intra-flow network coding with MORE [2], but with

three key differences: first, MORE operates on packets and cannot

deal with packets with errors; second, MIXIT’s symbol-level network

code is an end-to-end rateless error correcting code while MORE’s

network code cannot correct errors; and third, MIXIT designs a

R1 R2 R3S D

P P P P

Figure 1: Example of opportunistic partial receptions: The source, S,
wants to deliver a packet to the destination, D. The figure shows the

receptions after S broadcasts its packet, where dark shades refer to erro-

neous symbols. The best path traverses all routers R1, R2 and R3. Tra-

ditional routing makes R1 transmit the packet ignoring any opportunis-

tic receptions. Packet-level opportunistic routing exploits the reception

at R2 but ignores that most of the symbols have made it to R3 and D.

MIXIT exploits correctly received symbols at R3 and D, benefiting from

the longest links.

MAC which exploits the looser constraints on packet delivery to

significantly increase concurrent transmissions, MORE uses carrier

sense and requires correct packet delivery which prevents it from

achieving high concurrency. MIXIT’s network code also builds on

recent advances in extending network coding to scenarios with errors

and adversaries [7, 12]. In contrast to all these schemes, MIXIT only

codes over symbols above a certain confidence threshold, while using

coding coefficients that reduce overhead.

MIXIT also builds on prior work on “soft information”, whose

benefits are well known [25, 4, 27]. Soft information refers to the

confidence values computed in some physical layers when it decodes

symbols. Recent work [8] has developed the SoftPHY interface to

expose this information to higher layers in a PHY-independent man-

ner by annotating bits with additional hints. Thus far, the use of these

hints at higher layers has been limited to improving link reliability

by developing better retransmission schemes [8] or to combine con-

fidence values over a wired network to reconstruct correct packets

from erroneous receptions [29]. In contrast, MIXIT uses SoftPHY

hints in a new way, eschewing link-layer reliability in favor of spatial

diversity to achieve high throughput and reliability.

MIXIT is philosophically similar to analog and physical layer net-

work coding [10, 22], but it operates on symbols (i.e., bits) rather than

signals; this difference is important because making a soft digital de-

cision at an intermediate node improves efficiency by preventing the

forwarding of grossly inaccurate information. And more importantly,

it is a simpler design that fits in well with a layered architecture, so

one can use the same network layer with a variety of physical layer

schemes and radio technologies. MIXIT uses SoftPHY to propagate

cross-layer information using a clean, PHY-independent interface.

3 Motivating Examples

This section discusses two examples to motivate the need for mech-

anisms that can operate on symbols that are likely to have been

received correctly (i.e., on partial packets). These examples show two

significant new opportunities to improve throughput: far-reaching

links with high bit-error rates that allow quick jumps towards a desti-

nation even when they might never receive entire packets correctly,

and increased concurrency using a more aggressive MAC protocol

that induces higher bit-error rates than CSMA. The underlying theme

in these examples is that one can improve throughput by allowing,

and coping with, higher link-layer error rates.

First, consider Fig. 1, where a source, S, tries to deliver a packet

to a destination, D, using the chain of routers R1, R2, and R3. It

is possible that when the source broadcasts its packet, R1 and R2

hear the packet correctly, while R3 and D hear the packet with some

bit errors. Traditional routing ignores the “lucky” reception at R2

and insists on delivering the packet on the predetermined path, i.e.,

it makes R1 forward the packet to R2 again. In contrast, recent
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Figure 2: Concurrency example: The figure shows the receptions when

the two sources transmit concurrently. Without MIXIT, the two sources

Sa and Sb cannot transmit concurrently. MIXIT tolerates more bit errors

at individual nodes, and hence is more resilient to interference, increas-

ing the number of useful concurrent transmissions.

opportunistic routing protocols (such as ExOR) capitalize on such

lucky receptions (at R2) to make long jumps towards the destination,

saving transmissions.

By insisting on forwarding fully correct packets, however, current

opportunistic protocols miss a large number of opportunities to save

transmissions and increase throughput; in particular, they do not take

advantage of all the correct bits that already made it to R3 and even

to the destination, D. Moreover, because of spatial diversity [18, 25],

the corrupted bits at R3 and D are likely in different positions. Thus,

R3 has to transmit only the bits that D did not receive correctly for

the destination to get the complete packet. A scheme that can identify

correct symbols and forward them has the potential to significantly

reduce the number of transmissions required to deliver a packet.

Next, consider an example with potential concurrency as in Fig. 2,

where two senders, Sa and Sb, want to deliver a packet to their respec-

tive destinations, Da and Db. If both senders transmit concurrently,

the BER will be high, and no router will receive either packet cor-

rectly. Because current opportunistic routing protocols insist on

correct and complete packets, the best any MAC can do is to make

these senders transmit one after the other, consuming two time slots.

But interference is not a binary variable. In practice, different

routers will experience different levels of interference; it is likely the

routers close to Sa will receive packet, Pa, with only a few errors,

while those close to Sb will receive packet Pb, with only some errors.

A scheme that can identify which symbols are correct and forward

only those groups of bits can exploit this phenomenon to allow the

two senders to transmit concurrently and increase throughput. It can

then “funnel” the correct symbols from the routers to the destination.

MIXIT aims to realize these potential benefits in practice. It faces

the following challenges:

• How does a router classify which symbols in each received packet

are likely correct?

• Given the overlap in the correct symbols at various routers, how

do we ensure that routers do not forward the same information,

wasting bandwidth?

• How do we avoid creating hotspots?

• When is it safe for nodes to transmit concurrently?

• How do we ensure that the destination recovers a correct and

complete version of the source’s data?

The rest of this paper presents our solutions to these problems in

the context of the MIXIT architecture, which we describe next.

4 MIXIT Architecture

MIXIT is a layered architecture for bulk transfer over static mesh

networks. The layers are similar to the traditional PHY, link and net-

work layers, but the interfaces between them, as well as the functions

carried out by the network layer, are quite different. The physical and

link layers deliver all received data to the network layer, whether or

not bits are corrupted. Each packet has a MIXIT header that must be

received correctly because it contains information about the destina-

tion and other meta-data; MIXIT protects the header with a separate

forward error correction (FEC) code that has negligible overhead.

Rather than describe each layer separately, we describe the func-

tions carried out at the source, the forwarders, and the destination for

any stream of packets.

4.1 The Source

The transport layer streams data to the network layer, which pre-

processes it using an error-correcting code as described in §9. The

network layer then divides the resulting stream into batches of K pack-

ets and sends these batches to the destination sequentially. Whenever

the MAC permits, the network layer creates a different random linear

combination of the K packets in the current batch and broadcasts it.

MIXIT’s network code operates at the granularity of symbols,

which we define as a group of consecutive bits of a packet. The group

could be the same collection of bits which are transmitted as a single

physical layer symbol (PHY symbol) by the modulation scheme (e.g.,

groups of 4 bits in a 16-QAM scheme), or it could be larger in extent,

covering a small number of distinct PHY symbols. The jth symbol

in a coded packet, s′j, is a linear combinations of the jth symbols in

the K packets, i.e., s′j = ∑i visji, where sji is the jth symbol in the ith

packet in the batch and vi is a per-packet random multiplier. We call

~v = (v1, . . . ,vK) the code vector of the coded packet. Note that every

symbol in the packet created by the source has the same code vector.

The source adds a MIXIT header to the coded packet and broad-

casts it. The header describes which symbols were coded together.

This description is easy to specify at the source because all symbols

in a coded packet are generated using the packet’s code vector,~v. The

header also contains an ordered list of forwarding nodes picked from

its neighbors, each of which is closer to the destination according to

the metric described in §7.

4.2 The Forwarders

Each node listens continuously whenever it is not transmitting, at-

tempting to decode whatever it hears. When the PHY detects a packet,

it passes the subsequent decoded bits along with SoftPHY hints that

reflect its confidence in the decoded bits. The network layer gets this

information and uses it to classify symbols into clean and dirty ones.

A clean symbol is one that is likely to be correct, unlike a dirty one.

§5 describes how the MIXIT network layer classifies symbols.

When a node gets a packet without header errors, it checks whether

it is mentioned in the list of forwarders contained in the header. If

so, the node checks whether the packet contains new information,

i.e., is “innovative” [13]. A packet is considered innovative if its

code vector~v is linearly independent of the vector of the packets

the node has previously received from this batch. Checking for

independence is straightforward using Gaussian elimination over

these short vectors [13]. The node ignores non-innovative packets,

and stores the innovative packets it receives from the current batch,

preserving the “clean” and “dirty” annotations.
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Figure 3: Decision boundary for different mistake rates as a function of

SINR. At high SINR (> 12dB), all PHY symbols with Hamming distance

less than 16 (the maximum possible in the Zigbee physical layer), will

satisfy the mistake rate threshold. But at intermediate SINRs (5-12 dB),

the PHY symbols have to be picked carefully depending on the mistake

rate threshold.

When forwarding data, the node creates random linear combina-

tions of the clean symbols in the packets it has heard from the same

batch, as explained in §6, and broadcasts the resulting coded packet.

It also decides how much each neighbor should forward to balance

load and maximize throughput, as described in §7.

Any MAC protocol may be used in MIXIT, but the scheme de-

scribed in §8.1 achieves higher concurrency than standard CSMA

because it takes advantage of MIXIT’s ability to cope with much

higher error rates than previous routing protocols.

4.3 The Destination

MIXIT provides a rateless network code. Hence, the destination sim-

ply collects all the packets it can hear until it has enough information

to decode the original data as described in §9. Furthermore, MIXIT

provides flexible reliability semantics. Depending on application

requirements, the destination can decide how much information is

enough. For example, if the application requires full reliability the

destination waits until it can decode 100% of the original symbols,

whereas if the application requires 90% reliability, the destination

can be done once it decodes 90% of the original symbols. Once the

destination decodes the required original symbols, it sends a batch-

ack to the source. The ack is sent using reliable single path routing,

and causes the source to move to the next batch. For the rest of the

paper, we will assume that the destination wants 100% reliability.

5 Classifying Received Symbols

MIXIT operates over symbols, which are groups of PHY symbols. A

symbol is classified as clean if none of the constituent PHY symbols

are erroneous with a probability higher than γ . It is classified dirty

otherwise. We call the threshold γ , the mistake rate, and it is a

configurable parameter of the system. To satisfy the mistake rate

threshold, MIXIT’s network layer picks a decision boundary on the

soft values [8] of the PHY symbols. If all constituent PHY symbols

in our symbol have soft values below this decision boundary, then the

symbol is classified as clean, else it is dirty. The decision boundary

depends on the mistake rate as well as the channel SINR [29, 25].

Fig. 3 supports this argument. The figure is generated using a GNU

software radio implementation of the Zigbee protocol (see §10). The

figure plots the decision boundary on soft values of PHY symbols for

varying SINR at different mistake rates of 1%, 5%, 10% and 15%.

Clearly the boundary depends both on the mistake rate as well as the

SINR. The SINR measures the channel noise and interference, and

hence reflects how much we should trust the channel to preserve the

correlation between transmitted and received signals [29]. Factoring

in the specified mistake rate, we can use the above map to pick the

right decision boundary to classify symbols.

MIXIT uses the SoftPHY interface proposed in [8], which anno-

tates the decoded PHY symbols with confidence values and sends

them to higher layers. We also augment the interface to expose the

SINR. The SINR can be estimated using standard methods like that

in [10]. The map in Fig. 3 can be computed offline, since the rela-

tionship between SINR, the confidence estimate, and the decision

boundary is usually static [17]. The MIXIT network layer uses the

PHY information to classify symbols as clean and dirty, and then

performs symbol-level network coding over the clean symbols as

described in the next section.

6 The MIXIT Network Code

When the MAC permits, the node may forward a coded packet. The

symbols in a coded packet are linear combinations of the clean sym-

bols received in packets from the same batch. To see how the coding

works let us look at an example.

6.1 MIXIT in Action

Consider the scenario in Fig. 4, where the source S wants to deliver

two packets, Pa and Pb, to the destination. Let the bit error rate

(BER) be relatively high such that when the source S broadcasts Pa

and Pb, the nodes in the network receive some symbols in errors. The

network layer at each node classifies the symbols as either clean or

dirty using the SoftPHY hints as described in §5. Fig. 4 illustrates the

dirty symbols using shaded cells.

The objective of our symbol-level codes is to minimize the over-

head required to funnel the clean symbols to their destination. Specif-

ically, most symbols are received correctly by both R1 and R2. Hence,

without additional measures, the routers will transmit the same sym-

bols to the destination, wasting wireless capacity. To avoid such

waste, MIXIT makes the routers forward random linear combinations

of the clean symbols they received. Assuming ai and bi are the ith

symbols in Pa and Pb respectively, router R1 picks two random num-

bers α and β , and creates a coded packet Pc, where the ith symbol, ci

is computed as follows:

ci =











αai +βbi if ai and bi are clean symbols

αai if ai is clean and bi is dirty

βbi if ai is dirty and bi is clean.

If both ai and bi are dirty, no symbol is sent. Similarly, R2 generates

a coded packet Pd by picking two random values α ′ and β ′ and

applying the same logic in the above equation. Since R1 and R2 use

random coefficients to produce the coded symbols, it is unlikely that

they generate duplicate symbols [5].

When R1 and R2 broadcast their respective packets, Pc and Pd ,

the destination receives corrupted versions where some symbols are

incorrect, as shown in Fig. 4. Thus the destination has four partially

corrupted receptions: Pa and Pb, directly overheard from the source,

contain many erroneous symbols; and Pc and Pd , which contain a few

erroneous symbols. For each symbol position i, the destination needs

to decode two original symbols ai and bi. As long as the destination

receives two uncorrupted independent symbols in location i, it will

be able to properly decode [5]. For example, consider the symbol

position i = 2, the destination has received:

c2 = αa2 +βb2

d2 = α ′a2.
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Figure 4: Example showing how MIXIT works: The source broadcasts

Pa and Pb. The destination and the routers, R1 and R2, receive cor-

rupted versions of the packets. A shaded cell represents a dirty symbol.

If R1 and R2 forward the clean symbols without coding, they generate

redundant data and waste capacity. With symbol-level network coding,

the routers transmit linear combinations of clean symbols, ensuring that

they forward useful information to the destination.

Given that the header of a coded packet contains the multipliers

(e.g., α and β ), the destination has two linear equations with two

unknowns, a2 and b2, which are easily solvable (the details of the

decoder are explained in §9). Once the destination has decoded all

symbols correctly, it broadcasts an ACK, causing the routers to stop

forwarding packets.

6.2 Efficient Symbol-Level Codes

The difficulty in creating a network code over symbols is not the

coding operation, but in how we express the code efficiently. The

length of a symbol is small, one or a few bytes. The MIXIT header in

the forwarded packet has to specify how each symbol is derived from

the native symbols so that the destination can decode. If all symbols

in a packet are multiplied by the same number, then effectively we

have a packet-level code, which can be easily expressed by putting

the multiplier in the header. However, in MIXIT we want to code

clean symbols and ignore dirty ones; i.e., only clean symbols are

multiplied by a non-zero number.

Consider a simple example where the batch size is K = 2 with the

two packets; Pa and Pb. Say that our forwarder has received two

coded packets Pc = αPa + βPb and Pd = α ′Pa + β ′Pb. Now our

forwarder picks two random numbers v1 and v2 and creates a linear

combination of the two packets it received.

P = v1Pc + v2Pd = (v1α + v2α ′)Pa +(v1β + v2β ′)Pb

Thus, the newly generated packet has a code vector ~v = (v1α +
v2α ′,v1β + v2β ′). This vector would be sufficient to describe the

whole packet if the forwarder received only clean symbols. Specif-

ically, the clean symbol in the jth position in packet P, called sj, is

coded as follows:

sj = v1cj + v2dj, where ci and dj are clean

= (v1α + v2α ′)aj +(v1β + v2β ′)bj

But because some received symbols are dirty, we need a more detailed

description of how individual symbols in the packet P are derived

from the native symbols. Depending on whether the forwarder has

cleanly received the jth symbols in Pc and Pd , called cj and dj respec-

tively, the generated symbol sj might take one of four possible values,

with respect to the native symbols.

sj =



















(v1α + v2α ′)aj +(v1β + v2β ′)bj cj and dj are clean

v1αaj + v1βbj only cj is clean

v2α ′aj + v2β ′bj only dj is clean

0×aj +0×bj cj and dj are dirty

(1)

Naive Coded Packet

1R
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3vγ
r

21 vβvα
rr

+

21 vβ'vα'
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+

2R 3R 4R 5R 6R 7R

2
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and dirty symbols

Second Outgoing Coded Packet

1000)](1),v[(γ 3 :

r

1500)](1001),vβv[(α 21 :

rr
+

Header describing
runs and code vectors

Figure 5: Creating coded packets with longer runs: The forwarder re-

ceived 3 packets with code vectors v1, v2 and v3. All packets contain

dirty symbols represented as shaded areas. Naively coding over all clean

received symbols results in a coded packet with 7 different runs. How-

ever, by ignoring some of the clean symbols, the node can generate coded

packets with much fewer runs.

Each different value of the symbol is associated with a different code

vector, the header has to specify for each symbol in a transmitted

packet what is the symbol’s code vector.

We address this issue using the following two mechanisms.

(1) Run-length encoding: Because wireless errors are bursty [18,

28], a sequence of consecutive symbols will have the same code

vector. We can therefore use run-length encoding to describe the

encoding of the transmitted symbols in an efficient manner. The

header specifies a sequence of runs, each of which is described as

[(Code Vector of run),(Runstart : Runend)]. For exam-

ple, in Fig. 5, the header of the first outgoing coded packet will specify

two runs, [(γ~v3),(1,1000)] and [(α~v1 +β~v2),(1001,1500)].

(2) Pick codes that give longer runs: We force the overhead to stay

small by intentionally discarding clean symbols that fragment our run-

length-encoding. Said differently, a forwarder can decide to ignore

some clean symbols to ensure the header has longer runs of symbols

with the same code vector, and thus can be encoded efficiently.

Consider the example in Fig. 5, where the forwarder has received 3

packets, each with some dirty symbols. Naively, applying the symbol-

level network code along with the run-length encoding described

above, we get a coded packet that has seven different runs. But,

we can create fewer runs of longer lengths by ignoring some clean

symbols in the coding procedure. For example, in the first five runs

in the naive coded packet, we can ignore clean symbols from the first

and second received packets. As a result, the five runs would coalesce

to a single longer run with the code vector γ~v3, where γ is a random

multiplier and ~v3 is the code vector of the third received packet.

Similarly for the last two runs, if we ignore clean symbols from the

third received packet, we are left with a single longer run with the

code vector α~v1 +β~v2, where α and β are random multipliers and~v1

and~v2 are the code vectors of the first and second received packets.

The resulting coded packet shown in Fig. 5 has only two runs with

two code vectors, and requires less overhead to express.

But, what if the forwarder has to transmit a second coded packet?

One option is to ignore the same set of clean symbols as above, but use

different random multipliers, α ′,β ′,γ ′. We would get a coded packet

with two runs and their code vectors being γ ′~v3 and α ′~v1 + β ′~v2.

But this transmission will be wasteful, since the symbols in the first

run are not innovative w.r.t the first coded packet the node already

transmitted (γ ′~v3 is not linearly independent of γ ′~v3). The solution

is to split the first long run into two smaller runs by including clean

symbols from the first and second packets, which we had previously

ignored. The second coded packet, shown in Fig. 5 has 3 runs with

3 different code vectors β ′~v2 + γ ′~v3, α ′~v1 + γ ′~v3 and α ′~v1 + β ′~v2 .
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The new packet is innovative w.r.t the previously transmitted coded

packet, and uses lower overhead in describing the codes.

6.3 Dynamic Programming to Minimize Overhead

We now present a systematic way to minimize the number of runs in

a coded packet, while ensuring that each packet is innovative with

respect to previously transmitted coded packets. We formalize the

problem using dynamic programming. Let there be n input packets,

from which we create the naive coded packet, as shown in the previ-

ous example. Say the naive packet contains the runs R1R2 . . .RL. The

optimization attempts to combine consecutive runs from the naive

coded packet into a single run, whose symbols all have the same code

vector by ignoring some of the input clean symbols. Let Cij be the

combined run that includes the runs Ri . . .Rj from the naive coded

packet. Note that the combined run Cii is the same as run Ri.

Next, we show that each combined run can be assigned a cost, and

that the optimization problem that minimizes the number of inno-

vative combined runs exhibits the “optimal substructure” property,

i.e., the cost of a combined run can be derived from the cost of two

sub-runs.

The goal is to create an outgoing coded packet out of the smallest

number of combined runs, while ensuring that the information we

send out is innovative. Thus, we can formulate the cost of a combined

run as follows:

Cost(Cij) = min

{

f(Cij), min
i<k<j

{Cost(Cik)+Cost(Ckj)}

}

(2)

where f(Cij) is given by:

f(Cij) =

{

∑
j
i |Ri| if Cij is not innovative

(2logS)/8+K otherwise
(3)

Intuitively, the function f(Cij) says that if the combined run Cij

is not innovative with respect to previous transmissions, the cost is

the number of symbols in that combined run. But if the combined

run is innovative with respect to previous transmissions, its cost

is just the number of bytes required to describe it. This requires

describing the start and end of the combined run, which can be done

using (2logS)/8 bytes, where S is the packet size, and describing the

combined run’s code vector, which can be done using K bytes, where

K is the batch size. The second component in Eq. 2 checks if splitting

the combined run Cij into two smaller runs incurs a smaller cost, and

if it does, it finds the best way to split it.

The forwarder computes the dynamic program top-down using a

table to memoize the costs. Because the algorithm coalesces runs in

the naively coded packet, the table has at most as many entries as

there are combined runs. The worst case complexity of the algorithm

is O(L3), but in practice it runs faster due to the following heuristic.

In Eq. 2, if Cij is innovative, we do not need to check whether splitting

it reduces the cost because f(Cij) will always be lower than the cost

of the two sub runs, whose cost will at least be 2f(Cij). Typically, the

DP takes under a millisecond to run for a packet with L ≈ 15−20.

7 Congestion-Aware Forwarding

In general, because wireless is a broadcast medium several down-

stream routers will hear any given symbol without error. For each

symbol, the ideal situation is for the downstream forwarder with

the best path quality to the destination to forward the symbol (after

coding it). For example, in Fig. 6(a), routers R1 and R2 hear all

the symbols from S1. However, R2 should be the one to forward

the symbols because it can deliver them to the destination in fewer

transmissions.

S1 D1

R1

R2

Flow 1

S1 D1

R1

R2

Flow 2

Flow 1

(A) (B)

Figure 6: Example of congestion-aware forwarding: If there is a single
flow in the network, S1 should always send all his traffic through R2 since

he has the better link to the destination. But if R2 is involved in a second

flow, then S1 should also send some of his traffic through R1 to avoid

creating a bottleneck at R2.

Path quality is not the only consideration in making this decision

because one ultimately cares about the time it takes for a symbol to

reach the destination. If a path has high quality (as measured by a low

error rate), but also has long queues at its forwarders, it would not be

advisable to use it. Fig. 6(b) shows an example where a second flow

being forwarded through R2 causes R2’s queues to grow, so having

R1 forward some of its traffic would improve performance and avoid

creating a bottleneck at R2.

These requirements suggest the following approach for a node

to decide how its downstream forwarders should forward on its be-

half. First, for each path (via a downstream node), determine the

expected time it would take to successfully send a symbol along that

path. This time, which we call C-ETS (for “congestion-aware ETS”),

incorporates both path quality and node queue lengths (backlog).

C-ETS via a downstream node i to a destination d is computed as

C-ETS(i,d) = PQ(i,d)+ kQ(i). Here, PQ is the path quality from i

to d, which depends on the symbol delivery probabilities and captures

the time taken to deliver a symbol to the destination in the absence

of any queueing. In our implementation, we approximate this term

using the ETS metric (defined as the expected number of transmis-

sions required to deliver a symbol), instead of using a more exact

formula for the expected number of transmissions using opportunistic

routing [2].2 Q(i) is the total number of symbols (backlog) across all

flows queued up at node i yet to be transmitted (k is a constant dimen-

sional scaling factor that depends on the time it takes to transmit one

symbol).

We now discuss how a node decides how many of its queued up

symbols, Q(i, f ) for flow f , each downstream node should forward.

(Because of the random network code, we don’t have to worry about

downstream nodes sending the exact same information.) The high-

level idea is to favor nodes with smaller C-ETS values, but at the

same time apportioning enough responsibility to every downstream

node because no link or path is loss-free in general. Each node

assigns responsibility to its downstream nodes by assigning credits.

Credit determines the probability with which the downstream node

should forward symbols belonging to the flow when they receive

transmissions from the node. The downstream node with best the

C-ETS has credit 1; the next-best node has credit (1−p1), where p1 is

the symbol delivery probability to the best downstream node; the best

one after that has credit (1−p1)(1−p2), and so on. What we have

done here is to emulate, in expectation, the best downstream node

sending all the symbols it hears, the next-best one only forwarding a

fraction that the best one may not have heard, and so on, until all the

nodes down to the worst neighbor have some small responsibility.

How many transmissions should the node make? The node should

make enough transmissions to make sure that every queued up symbol

reaches some node with a lower C-ETS metric. If the symbol delivery

2Computing the ETS metric is simpler and does not change the paths used by much.
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probability to downstream neighbor j is pj, then the probability that

some downstream neighbor gets any given symbol is P = 1−∏j(1−
pj). Hence in expectation, the number of coded symbols from a batch

that a node would have to send per queued up symbol is equal to

1/(1−P) before some downstream node gets it. Each node achieves

this task by maintaining a decrementing per-flow Transmit Counter,

throttling transmission of the batch when its value reaches 0.

The above intuitions are formalized in Alg. 1.

1 Computing credit assignment at node i

while Q(i, f ) > 0 do

Update C-ETS of downstream nodes from overheard packets
Sort downstream nodes according to their C-ETS
Pleft = 1
for node j in set of downstream nodes sorted according to C-ETS do

credit assgn(j) = Pleft

Pleft = Pleft ∗ (1−p(i, j))
Increment Transmit Counter of flow f by 1/(1−Pleft)
Decrement Q(i, f ) by 1

Distributed protocol: Each node, i, periodically measures the

symbol delivery probabilities p(i, j) for each of its neighbors via

probes. These probabilities are distributed to its neighbors using a

link state protocol. Node i includes the computed credit assgn for

each of its downstream nodes in the header of every packet it transmits.

When downstream nodes receive a packet, they update their Q(i, f )
for that flow by the amount specified in the header. Further, whenever

node i transmits a packet, it includes its C-ETS to the corresponding

destination in the header. Upstream nodes which overhear this packet,

use the C-ETS value in their credit assignment procedure.

The algorithm above improves on the routing algorithms used in

prior packet based opportunistic routing protocols like MORE [2] in

two ways. First, we use queue backlog information explicitly to avoid

congested spots and balance network-wide load, prior work ignores

congestion. Second, the algorithm works at the symbol-level, which is

the right granularity for performing opportunistic routing on symbols.

The algorithm is similar in spirit to theoretical back-pressure [19]

ideas, but the exact technique is different and simpler. We also present

an actual implementation and evaluation of this algorithm in §11.

8 Increasing Concurrency

Current wireless mesh networks allow a node to transmit only when

they are sure that they can deliver the packet to the intended next hop

with high probability. MIXIT however, has looser constraints:

1. It does not require the delivery of correct packets; it can work with

partially correct packets.

2. Because of its opportunistic nature, MIXIT only needs to ensure

that every symbol reaches some node closer to the destination than

the transmitter; it does not need to ensure that a specific node gets

the correct symbols.

MIXIT exploits the above flexibility to increase concurrency without

affecting end-to-end reliability, improving throughput by enabling a

more pipelined transmission pattern. MIXIT’s concurrency design

has two components: determining when concurrent transmissions are

beneficial and building a distributed protocol to take advantage of

concurrency opportunities. We describe both components below.

8.1 When Should Two Nodes Transmit Concurrently?

MIXIT, similar to conflict maps [26], determines if two nodes should

transmit concurrently by predicting the throughput under concur-

rent transmissions and comparing it to the throughput when the

nodes transmit separately. The nodes independently pick the strategy

with the higher expected throughput. Specifically, let n1 and n2 be

two nodes transmitting packets of two flows l and k. Ne(n1, l) and

Ne(n2,k) are the corresponding sets of downstream nodes for n1 and

n2 for the respective flows. Symbol delivery probabilities on any link

will depend on whether these nodes transmit concurrently or not. Let

pc(i, j) be the symbol delivery probability on link (i, j) when the two

nodes transmit concurrently and p(i, j) when they don’t. The symbol

delivery likelihoods achieved by node n1 for flow l with and without

concurrent transmissions are given by

Dc(n1, l) = 1− (∏j∈Ne(n1,l)(1−pc(n1, j)))

D(n1, l) = 1− (∏j∈Ne(n1,l)(1−p(n1, j)))
(4)

The symbol delivery likelihood is the probability that at least one

node in Ne(n1, l) receives the symbol correctly when node n1 trans-

mits. The symbol delivery likelihood depends on other concurrent

traffic, and could differ if n2’s transmission interferes with n1’s. Sim-

ilarly, n2 can compute its symbol delivery likelihood under both

conditions.

Each node then computes the following concurrency condition:

Dc(n1, l)+Dc(n2,k) > (D(n1, l)+D(n2,k))/2 (5)

The above equation compares overall delivery likelihood under the

two scheduling strategies. If the above condition is true, it implies

that more information gets delivered per time slot when nodes trans-

mit concurrently than when they transmit separately. Each node

independently evaluates the above condition and decides its strategy.3

8.2 Estimating Symbol Delivery Probabilities

The concurrency condition above depends on the symbol delivery

probabilities. Empirically measuring these probabilities for all pairs

of concurrent transmissions has O(N2) cost, where N is the number

of nodes. Instead, MIXIT uses O(N) empirical signal-to-noise ratio

(SNR) measurements to predict these probabilities for any set of

concurrent transmissions. The approach works as follows.

1. The SNR profile of the network is measured when there is little

traffic. Each of the N nodes broadcasts probe packets in turn, while

the rest of the nodes measure the received SNR and the fraction

of correctly received symbols. The measurements are of the form

SNR(i, j) and p(x), where SNR(i, j) is the received SNR at j when i

transmits and p(x) is the fraction of correct symbols received when

the SNR is x.

2. Nodes use the SNR profile to predict the signal-to-

interference+noise ratio (SINR) at any node under con-

current transmissions. Specifically, if nodes n1 and n2

transmit concurrently, the SINR at node m is computed

as SINR(n1,n2,m) = SNR(n1,m) − SNR(n2,m) assuming

SNR(n1,m) > SNR(n2,m) ≥ c, where c is a threshold SNR below

which no symbol can be decoded. The symbol delivery probability

is then predicted to be p(SINR(n1,n2,m)), i.e., it is the same as if

the signal was received at m with SNR of SINR(n1,n2,m).

Fig. 7 plots the CDF of prediction errors using the above model.

The results are from a 25-node testbed of GNURadio software nodes

with USRP frontends, with two concurrent senders transmitting

802.15.4 packets. The figure demonstrates that the prediction model

is quite accurate, with the inaccurate predictions occurring at low

SINR (< 4 dB). But because the symbol delivery probability at low

3The above conditions assumes a single radio transmission bit-rate; it can be adapted
easily to handle variable bit-rates.
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Figure 7: Prediction error CDF: The SNR based prediction model accu-

rately predicts the symbol delivery probabilities under concurrent trans-

missions for 72% of the cases. The inaccuracies are primarily in cases

where (SNR(n1,m)− SNR(n2,m) < 4dB, i.e., when concurrent transmis-

sions will result in a signal being received with low SINR at the receivers.
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Figure 8: MIXIT’s error correcting code design: The source prepro-

cesses the original packets with a MRD code in groups of B symbols and

transmits them. The network applies symbol-level network coding on

clean symbols. Erroneous clean symbols may end up corrupting all the

received symbols at the destination, but the destination can use the MRD

code to decode most of the original data symbols.

SINR is negligible, inaccuracies in the low SINR region do not affect

performance. Furthermore, unlike prior proposals [24, 20] that try to

predict packet delivery rates using a SINR model, MIXIT’s model pre-

dicts symbol delivery likelihoods. The latter is simpler since packet

delivery is a complex function of error rates, nature of interference

etc. Finally, the concurrency condition is a binary decision, even if

the predicted probabilities are slightly off, it is unlikely to affect the

decision.

8.3 Distributed Channel Access Protocol

A node uses a two-step procedure when it has packets enqueued for

transmission. First, if it has not heard any on-going transmissions,

it simply goes ahead and transmits. But if it has heard an on-going

transmission, then it uses Eq. 5 to determine if it should transmit

concurrently or defer until the on-going transmission has finished.

How does a node know which other nodes are transmitting at that

time instant? Similar to prior work [8, 26], MIXIT encapsulates every

packet with a header and trailer. The header includes the identity of

the transmitting node, and the flow to which the packet belongs. Other

nodes overhearing a packet use the header to identify the beginning

of an active transmission and the trailer to signify the end.

9 Error Correction

Until now we have ignored the difference between clean and correct

symbols and focused on delivering clean symbols to the destination.

But clean symbols can be incorrect. Moreover, an erroneous symbol

that was incorrectly classified clean may end up corrupting other

correct clean symbols due to network coding. Thus, the destination,

could get all symbols corrupted due to a single clean but erroneous

symbol. Fortunately, MIXIT comes with error correction capability

that allows the destination to recover the original correct symbols.

The error-correcting code is not affected even if all received symbols

are corrupted; the only thing that matters is how many erroneous

symbols were incorrectly classified clean. The code guarantees that

if m erroneous symbols were incorrectly classified clean, then the

destination needs only B + 2m symbols to recover the original B

symbols. This guarantee is theoretically optimal [30]. The code

is simple, rateless and end-to-end; routers inside the network are

oblivious to the existence of the error-correcting code.

MIXIT’s error-correcting code is built on the observation that

random network coding is vector space preserving [12]. Specifically,

if we model the original data injected by the source as a basis for a

vector space V, then the random network code acts only as a linear

transformation T on the vector space. But vector spaces are preserved

under linear transformations if no errors occur, and if errors do occur,

the received vector space U is very close to the transmitted vector

space V under an appropriately defined distance metric on vector

spaces.

Recent work [12, 23, 7] has studied the problem of making network

coding resilient to byzantine adversaries injecting corrupted packets.

It has observed that low complexity Maximum Rank Distance (MRD)

codes [3], with a small modification, can be applied to exploit the

vector space observation and correct adversarial errors. The network

coding in MIXIT is different, but the basic algorithm in MRD can

be adapted to work with MIXIT’s symbol-level network code. Fig. 8

shows the high level architecture of how MRD codes are integrated

within MIXIT. The exact details of decoding MRD codes can be

found in [23, 21, 3], we outline the main differences here:

• Symbol-level network coding along with the end-to-end MRD

code functions as a rateless error-correcting code. The destina-

tion attempts to decode the original data vector ~Di as soon as it

receives B < K coded symbols for that position. If no erroneous

symbols had seeped through, then it will be able to recover the

original correct data. If not, it simply waits to receive more coded

symbols until it can decode. The code guarantees that if m erro-

neous symbols incorrectly classified as clean seeped through, then

the destination can decode as soon as it receives B + 2m coded

symbols.

• MIXIT’s rateless code provides flexible reliability semantics. Since

the code works on groups of B symbols, there is no fate sharing

across groups. Its likely that when the destination receives a few

packets, it will be able to decode most of the groups of B symbols,

but not some since they had more errors. Depending on the appli-

cation, the destination could wait to receive more coded symbols

until it can decode, or ignore the undecoded symbols and ask the

source to proceed to the next batch by sending a batch-ack to the

source.

10 Implementation

10.1 Packet Format

MIXIT inserts a variable length header in each packet, as shown in

Fig. 9. The header is also repeated as a trailer at the end of the packet

to improve delivery in the face of collisions [8]. The header contains

the source and destination addresses, the flow identifier, and the the

batch identifier. These fields are followed by a variable length Code

Vector Block, which describes how the symbols in this packet have

been created. It has the format (Code Vector, Run Start, Run End);

the values of these fields are obtained using the algorithm in §6.2.

Following that is the variable length Forwarder Block that lists all
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Experiment Section Result

MIXIT in a lightly loaded network 11.2.1 MIXIT improves median throughput by 2.1× over MORE and 2.9× over SPR

Impact of concurrency 11.2.2 MIXIT exploits loose packet delivery constraints to increase concurrency.

Impact of symbol level diversity 11.2.2 MIXIT with plain carrier sense still outperforms MORE by 1.5×.

Impact of mistake rate threshold 11.2.3 MIXIT’s error correcting code allows us to be flexible with the mistake rate. This reduces

the fraction of correct symbols incorrectly labeled dirty and increases throughput.

Impact of batch size 11.2.4 MIXIT is insensitive to batch size, providing large gains for sizes as small as 8.

MIXIT in a congested network 11.3.1 MIXIT improves median throughput by 2.8× over MORE and 3.9× over SPR.

Impact of forwarding algorithm 11.3.2 MIXIT’s congestion-aware forwarding prevents hotspots and keeps network capacity

from dropping during congestion.

Table 1: A summary of the major experimental contributions of this paper.

SRC_IP DST_IP

FLOW_ID

BATCH_NO

NUM_RUNS

CODE VECTORENDSTART

NUM_FORWARDERS

FORWARDER ID FRD_CREDIT

MAC HEADER

MIXIT HEADER

Encoded Data

FORWARDER 

BLOCK

CODE VECTOR

BLOCK

MAC TRAILER

MIXIT TRAILER

Figure 9: MIXIT’s packet format.

the neighbors of this node ordered according to their C-ETS metrics.

For each neighbor, the header also contains its credit assignment as

described in §7. The Code Vector Block and the Forwarder Block

are computed and updated by the forwarders. The other fields are

initialized by the source and simply copied by each forwarder.

10.2 Node State

Each MIXIT node maintains per-flow state, which is initialized when

the first packet from a flow that contains the node ID in the Neighbor

Block arrives . The per-flow state includes:

• The batch buffer, which stores the received clean symbols for each

batch. This buffer is at most K×S, where K is the batch size and S

the packet size.

• The credit counter, which stores the number of credits assigned to

the node by the upstream neighbors for the batch. Upon the arrival

of a packet from a node with a higher C-ETS, the node increments

the credit by the corresponding credit assignment as indicated in

the packet header.

• The transmit counter, which is incremented by the credit assign-

ment algorithm in §7. After a packet transmission, it decrements

by one.

10.3 Control Flow

MIXIT’s control flow responds to packet receptions. On the receiv-

ing side, whenever a packet arrives, the node checks whether it’s

ID is present in the Forwarder Block. If it is, then it updates the

credit counter for the corresponding batch of that flow by the credit

assigned to it in the Forwarder Block. Next, the node picks out clean

symbols from the received packet using the SoftPHY hints and adds

them to the batch buffer. If the credit is greater than one, it runs the

credit assignment algorithm from §7. It then creates transmit counter

coded packets using the technique in §6.2 and enqueues them. The

MAC layer transmits these packets using the rule discussed in §8.1.

When the destination node receives a packet, it checks the symbol

positions for which it has received at least B coded symbols and

decodes whichever of them it can. It sends a batch-ack to the source

when it has decoded the required fraction (determined by the applica-

tion’s reliability requirements) of original symbols. The batch-ack is

sent periodically until packets from the next batch start arriving.

11 Evaluation

We compare MIXIT with two routing protocols for wireless mesh

networks: MORE, a state-of-the-art packet-level opportunistic routing

protocol, and SPR, single path routing using the commonly used ETX

metric. Our experimental results are summarized in Table 1.

11.1 Testbed

We use a 25-node indoor testbed deployed in a lab. Each node is a

Zigbee software radio. The hardware portion of the node is a Univer-

sal Software Radio Peripheral [6] with a 2.4 GHz daughterboard, the

remainder of the node’s functions (demodulation, channel decoding,

network coding etc) are implemented in software. The peak data rate

on the link is 250 Kbits/s when there are no other transmissions in

progress. Paths between nodes are between one and five hops long,

and the SNR of the links varies from 5 dB to 30 dB. The average

packet loss rate on links in our network is 23% for 1500 byte packets.

11.2 Single Flow

11.2.1 Throughput Comparison

Method: We run SPR, MORE, and MIXIT in sequence between 120

randomly picked source-destination pairs in our testbed. Each run

transfers a 5 MByte file. The batch size of MIXIT is 12, but the

error-correction preprocessing stage described in §9 converts it into

16 packets. To make a fair comparison, MORE uses a batch of 16

packets. We use the same batch sizes for MIXIT and MORE for all

other experiments unless specifically noted otherwise. The packet

size for all three protocols is 1500B. The mistake rate γ for MIXIT is

fixed at 5% and the symbol size for MIXIT is 6 bytes unless otherwise

noted. Before running an experiment, we collect measurements to

compute pairwise packet delivery probabilities, which are then fed to

SPR and MORE to be used in their route computations. The same

measurement packets are used by MIXIT to compute the network’s

SNR profile as described in §8. We repeat the experiment for each

source-destination pair five times and report the average throughput

for each scheme.

Results: Fig. 10 plots the CDF of the throughput taken over 120

source-destination pairs in our testbed. MIXIT provides a median

throughput gain of 2.1× over MORE and 2.9× over SPR.

We note that MIXIT improves performance across the entire

throughput range. Packet-based opportunistic routing protocols, like

MORE, provide large throughput gains for dead spots, i.e., scenar-

ios where all paths between the source and destination are of poor
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quality. The gains for high quality paths were relatively minor [1, 2].

Both MORE and ExOR exploit diversity at the packet level to build

better quality links out of many bad links. But for source-destination

pairs that are connected via good links, diversity does not help. Nat-

urally, this makes one wonder whether MIXIT’s gains over packet

based opportunistic routing protocols arise from its ability to exploit

concurrency, a question that we address in the next section.
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Figure 10: Throughput comparison: The figure shows that MIXIT

has a median throughput gain of 2.1× over MORE, the state-of-the-art

packet level opportunistic routing protocol, and 2.9× over SPR, a single

path routing protocol based on the ETX metric.

11.2.2 Where do MIXIT’s Throughput Gains Come From?

MIXIT exploits both wireless diversity and concurrent transmissions.

We would like to measure how much each of these components

contributes to MIXIT’s throughput gains.

Method: We first compare MIXIT with a modified version of

MORE that takes advantage of concurrency at the packet level, which

we call MORE-C. Like MORE, MORE-C performs packet based

opportunistic routing. But MORE-C also allows nodes to transmit

concurrently. To check whether two transmissions should be transmit-

ted concurrently, MORE-C uses the same algorithm used by MIXIT

and described in §8, but after it replaces symbol delivery probabilities

with packet delivery probabilities.
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Figure 11: Impact of concurrency: The figure shows the throughput

of MIXIT, MORE, and a concurrency-enabled version of MORE which

we term MORE-C. Clearly concurrency helps but it is not sufficient to

achieve the same throughput as MIXIT.

Results: Fig. 11 plots the CDF of the throughputs of MIXIT,

MORE, and MORE-C taken over the same source-destination pairs

as before. MIXIT provides a median throughput gain of 1.7× over

MORE-C. The main result is that even when compared against a

protocol that exploits both diversity and concurrency like MORE-C,

MIXIT still does significantly better. The only extra property that

MIXIT has beyond MORE-C is its ability to work at the symbol level.

Is the median gain of 1.7× over MORE-C due mainly to MIXIT’s

ability to exploit clean symbols, i.e., is symbol-level diversity the

dominant contributor to MIXIT’s overall throughput gain?

Method: To answer the above question, we prevent MIXIT from

aggressively exploiting concurrent transmissions and use plain carrier

sense. The intent is to limit its gains over MORE to be from being

able to perform opportunistic routing over clean symbols. We call the

resulting version MIXIT-CS.
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Figure 12: Throughputs for MIXIT with CS: The figure shows the

throughput of MIXIT, MORE, and MIXIT-CS, a version of MIXIT

which uses plain carrier sense and can only take advantage of symbol-

level diversity. MIXIT-CS still performs better than MORE due to its

ability to exploit long opportunistic receptions but with a few errors in

them.

Results: Fig. 12 plots the CDF of the throughputs of MIXIT,

MIXIT-CS and MORE. MIXIT-CS provides a median through-

put gain of 1.5× over MORE, i.e., significantly less gain than

MIXIT. Thus, symbol-level diversity is not the dominant contrib-

utor to MIXIT’s throughput gains. Indeed, comparing Fig. 12 with

Fig. 11 shows that the overall gain of MIXIT over MORE is roughly

Gain of MIXIT-CS over MORE×Gain of MORE-C over MORE, i.e.

1.5×1.4 = 2.1. The multiplicative effect is due to the symbiotic inter-

action between concurrency and symbol-level opportunistic routing;

concurrency tries to run the medium at high utilization and hence

increases symbol error rate. But when the symbol error rate becomes

high, almost every packet will have some symbols in error causing

the whole packet to be dropped. Consequently, trying to exploit con-

currency with a packet level protocol is limited by nature. Only a

protocol that filters out incorrect symbols can push concurrency to its

limits.

11.2.3 Impact of Letting More Errors Through
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Figure 13: Impact of changing the mistake rate: The figure shows that

many mistake rate thresholds provide significant throughput gains and

hence MIXIT performs reasonably well even if the network is configured

with a suboptimal threshold.

Method: We evaluate how the threshold on classifying clean sym-

bols affects throughput. As explained in §5, MIXIT has the flexibility
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Figure 14: Impact of batch size: The figure shows the CDF of the

throughput achieved by MIXIT for different batch sizes. It shows that

MIXIT is largely insensitive to batch sizes.

to choose the threshold mistake rate γ . We vary this threshold and

compare the average throughput. For the Zigbee protocol, the PHY

symbol is 4 bits long, while the MIXIT symbol size is 6 bytes.

Results: Fig. 13 plots the average throughput across all source-

destination pairs for different mistake rates. The average throughput

surprisingly increases as we let more errors through! It peaks when

the mistake rate is around 5% and drops at higher error rates.

This may sound counter intuitive, but recall that we are talking

about a probability of error; if the router would know for sure which

PHY symbols are incorrect, the best it can do is to drop all incorrect

PHY symbols. But a PHY symbol that has a 5% chance of being in

error has also a 95% chance of being correct. For our topology, at 5%

mistake rate, the cost of correcting the error end-to-end balances the

opportunity of exploiting correct symbols that made it to their next

hops, maximizing the throughput.

The right mistake rate threshold depends on the network. We as-

sume that the administrator calibrates this parameter for her networks.

A large mistake rate like 30% does not make sense for any network.4

The results however show that a wide range of choices provide good

throughput and outperform packet-based opportunistic routing.

11.2.4 Impact of Batch Size

We evaluate whether MIXIT’s throughput is sensitive to batch size.

Fig. 14 plots the throughput for batch sizes of 8,12,16 and 32. The

throughput is largely insensitive to the batch size. The slight drop

off at lower batch sizes is primarily because of higher overhead. A

bigger batch size allows MIXIT to amortize the overhead over a

larger number of packets, increasing throughput. Insensitivity to

batch sizes allows MIXIT to vary the batch size to accommodate

different transfer sizes. For any transfer larger than 8 packets, MIXIT

shows significant advantages. Shorter transfers can be sent using

traditional routing.

11.3 Multiple Flows

11.3.1 Throughput Comparison

Method: We run MIXIT, MORE and SPR in sequence, varying the

number of random active flows in the network. The rest of the setup

is similar to the single flow case. We run 50 experiments for each

choice of number of flows, with each experiment repeated 5 times.

We calculate the average throughput for each run.

Results: Fig. 15 plots the average throughput for MIXIT, MORE,

and SPR with increasing number of flows. We see that MIXIT’s

4Even under optimal conditions, it takes at least two symbols to correct each incorrect
symbol [30] and hence a mistake rate higher than 33% would never make sense.
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Figure 15: Average throughput with multiple active flows: The figure

shows that MIXIT’s throughput scales as offered load increases until

the network is saturated. MORE and SPR become similar as load in-

creases and perform worse than MIXIT because they cannot exploit con-

currency opportunities.
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Figure 16: The role of congestion-aware forwarding: The figure shows

that congestion-aware forwarding is particularly important when the

number of active flows is large.

throughput gain generally increases with load, and at its peak reaches

2.8× over MORE and 3.9× over SPR.

The higher gains as load increases are due to MIXIT’s ability

to aggressively exploit concurrency and perform congestion-aware

forwarding. Both MORE and SPR, which rely on carrier sense,

become conservative in accessing the medium as the number of flows

increases. Thus, they cannot fully exploit the spatial diversity in the

network. MIXIT however, can maintain high levels of concurrency

because of its ability to deal with partially correct packets.

The throughput gains drop slightly as the network gets heavily

congested. The primary reason is hidden terminals, whose effect is

exacerbated by the fact that the USRP nodes, which perform all pro-

cessing in user mode on the PC, do not have support for synchronous

acks, and thus cannot quickly detect hidden terminals and backoff.

11.3.2 Impact of Congestion Aware Forwarding

Method: We evaluate the impact of MIXIT’s congestion-aware for-

warding component on performance. Node congestion is built into

MIXIT’s routing algorithm due to its use of the backlog parameter

Q(i), the number of symbols queued up at node i yet to be trans-

mitted. Nodes that are backlogged will not be assigned credits by

their upstream parents and thus traffic will be routed around hotspots.

We compare this scheme with one where this component is disabled.

Specifically, parent nodes assign credits to their downstream nodes

based only on the path quality, i.e. based on the path ETS, and ig-

nore congestion information. We call this scheme MIXIT-NCA, for

MIXIT with ”No Congestion Aware” forwarding.

Results: Fig. 16 plots the average throughput for MIXIT and

MIXIT-NCA for increasing number of flows. The figure shows that
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congestion-aware forwarding accounts for 30% of the throughput

gain at high load. As load increases, the probability of the network

experiencing local hotspots increases. MIXIT-NCA does not route

around such hotspots, and insists on pushing the same amount of

information through regardless of congestion. MIXIT adaptively

routes around these hotspots and therefore increases throughput.

12 Conclusion

A key finding of MIXIT is that routers need not forward fully cor-

rect packets to achieve end-to-end reliability, and that loosening this

constraint significantly increases network throughput. With MIXIT,

as long as each symbol in every transmitted packet is correctly re-

ceived by some downstream node, the packet is highly likely to be

delivered to the destination correctly. Designing a network that has

this attractive property is not an easy task because it needs to scalably

coordinate overlapping symbol receptions and cope with erroneous

symbol propagation. MIXIT solves these problems using a symbol-

level network code that has an end-to-end rateless error correction

component.

Instead of using link-layer error detection and recovery, MIXIT

treats the entire wireless network as a single logical channel whose

component links could run at high error rates. Because MIXIT can

cope with individually high error rates, it encourages an aggres-

sive MAC protocol that greatly increases concurrency compared to

CSMA.

Although MIXIT exploits cross-layer information, its architecture

is modular and layered: it can run atop any radio and PHY that

provide suitable confidence hints, with the routers being oblivious

to the end-to-end error correction mechanism. The gains may vary

depending on the PHY and MAC used, but it can be used in any

multi-hop wireless network with the following properties:

1. Computational capabilities: The coding/decoding algorithms in

MIXIT are more demanding than traditional store and forward

networks. In our proof-of-concept software implementation on

software radios, the algorithms can achieve at most an effective

throughput of 4.7Mb/s. In [9], we describe a hardware implemen-

tation using shift registers, which is similar to traditional Reed-

Solomon (RS) hardware decoders. Because current RS decoders

can achieve speeds of 80 Gigabits per second [15], we believe that

computational considerations will not limit the applicability of our

algorithms at high data rates.

2. Memory: MIXIT’s nodes need to store packets from recent batches.

The default batch size is 16, and typically there are two or three

batches in flight, requiring storage space of roughly 70 KBytes, a

modest amount for modern communication hardware.

The ideas in MIXIT may be applicable in sensor networks to

ship data to sink nodes. Because most traffic in these networks is

uni-directional, data from different sensors can be coded together

to improve throughput. In addition, MIXIT could also be used to

multicast data in a mesh network. Because all destinations require

the same data, routers can keep transmitting coded data until all

destinations can decode them.
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