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ABSTRACT

The user experience for networked applications is becoming a key
benchmark for customers and network providers. Perceived user
experience is largely determined by the frequency, duration and
severity of network events that impact a service. While today’s net-
works implement sophisticated infrastructure that issues alarms for
most failures, there remains a class of silent outages (e.g., caused by
configuration errors) that are not detected. Further, existing alarms
provide little information to help operators understand the impact
of network events on services. Attempts to address this through
infrastructure that monitors end-to-end performance for customers
have been hampered by the cost of deployment and by the volume
of data generated by these solutions.

We present an alternative approach that pushes monitoring to
applications on end systems and uses their collective view to
detect network events and their impact on services - an approach
we call Crowdsourcing Event Monitoring (CEM). This paper
presents a general framework for CEM systems and demonstrates
its effectiveness for a P2P application using a large dataset gathered
from BitTorrent users and confirmed network events from two
ISPs. We discuss how we designed and deployed a prototype
CEM implementation as an extension to BitTorrent. This system
performs online service-level network event detection through
passive monitoring and correlation of performance in end-users’
applications.

Categories and Subject Descriptors
C.2.3 [Network Operations]: Network monitoring
C.2.4 Distributed Systems Distributed Applications

General Terms
Measurement, Performance, Reliability

Keywords

Service-Level Network Events, Crowdsourcing, Anomaly Detection, P2P

1. INTRODUCTION
The Internet is increasingly used as a platform for diverse

distributed services including online multiplayer gaming, content
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distribution and IPTV. Given the popularity and potential for
revenue from these services, their user experience has become an
important benchmark for service providers, network providers and
end users [17].

Perceived user experience is in large part determined by the
frequency, duration and severity of network events (e.g., outages,
route changes or misconfigurations) that impact a service. There
is thus a clear need to detect, isolate and determine the root causes
of these service-level network events so that operators can address
them in a timely manner, minimizing their impact on revenue
and reputation. In this work, we develop a practical monitoring
approach enables online detection (within seconds or minutes) of
network events impacting the user experience for services at the
network edge.

While today’s networks generally implement sophisticated in-
frastructure that detects and issues alarms when core network
elements fail, there remains a class of events that often go un-
detected – the so-called silent failures. Configuration errors (e.g,
incorrect ACL settings), routing anomalies (e.g., routing loops),
and router bugs (simply because routers are incapable of detecting
their own internal failures) are common causes for silent failures
that can impact performance for services. Beyond these issues,
in-network alarms fail to provide information to help operators
understand the impact of network events, nor do they assist in
detecting events caused by external ISPs. Despite efforts to use
infrastructure to monitor end-to-end performance [16, 17, 36], the
cost of deployment, the number of services to monitor and the
volume of data generated by these solutions hampers their network
visibility and limits their scalability and effectiveness.

This paper presents an alternative approach to detecting, iso-
lating and reporting service-level network events – we call this
approach CEM, for Crowdsourcing Event Monitoring. The key
idea behind CEM is to push service-level event monitoring to
the end systems where the services are used. Building on end
systems has a number of clear advantages. First, the approach
provides flexibility in the types of monitoring software that can
be installed inside or alongside services, facilitating immediate
and incremental deployments. Second, by leveraging the unique
perspective of participating end systems, it offers the potential
for broad network visibility into an increasingly opaque Internet.
Finally, its collaborative model enables a highly robust and more
scalable system by drawing from every node’s resources and
avoiding any centralized components.

Detecting events from the network edge also poses a number
of interesting challenges. First, any practical approach must
address scalability constraints imposed by managing information
from potentially millions of end systems. Second, to assist oper-
ators in addressing problems promptly, events should be detected
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quickly (i.e., within minutes), isolated to specific networks (e.g.,
BGP prefixes) and this information should be available to ISPs
for troubleshooting and problem mitigation. Last, the approach
must facilitate a broad (Internet-scale) deployment of edge-system
monitors that ensures user privacy and provides trustworthy event
detection. We show how our approach addresses these challenges
and present the Network Early Warning System (NEWS), a proof-
of-concept implementation for online event detection in BitTorrent.

In Sec. 2, we describe the challenges faced by end-system
monitoring in more detail and discuss potential solutions. Sec. 3 ad-
dresses the general problem of how to detect network performance
events from the edge. Specifically, we develop a framework for our
CEM approach in which each end system performs a significant
portion of event detection locally, then uses a distributed approach
to corroborate their findings.

Demonstrating the effectiveness of any edge-based approach is
challenging due to the lack of representative testbeds and the sheer
scale and diversity of networks worldwide. In Sec. 4, we address
this issue using a large dataset of diagnostic information from edge
systems, gathered from users running the Ono plugin [8] for the
Vuze BitTorrent client. We use our findings to motivate the design
and implementation of the Network Early Warning System.

We present results of our evaluation in Sec. 5. In addition
to comparing NEWS-detected events with confirmed ones, we
demonstrate that our crowdsourcing approach detects network
events worldwide, including events spanning multiple networks.
Our approach is robust to various parameter settings and incurs
reasonably low overhead.

NEWS has already been installed 45,000 times, demonstrating
not only the feasibility of our approach for a real application, but
also that there are appropriate incentives for widespread adoption
(Sec. 6). We are currently investigating other potential hosting
applications and services for our CEM approach. Last, to assist
with quickly resolving problems causing detected network events,
we have implemented NEWSight1 – a system that accesses live
event information gathered by NEWS and publishes its results. We
are currently beta-testing NEWSight interface with ISPs.

2. CROWDSOURCING MONITORING
Monitoring service-level events – issues that impact end-to-end

performance and the user experience – is important for users,
service providers and network operators. While most networks are
instrumented with systems that detect and raise alarms for failures
in network elements, their visibility is restricted to a single network
and aggregate flows that make it difficult to extract user-perceived
performance. Infrastructure-based distributed monitoring can de-
tect events across multiple networks, but this approach is limited by
both the fraction of the Internet that remain invisible to traditional
measurement techniques and the large number of Internet locations
that need to be monitored [5]. Motivated by these limitations, we
propose online detection of service-level events through monitoring
software that runs inside or alongside applications on the end
systems where they are used.

There are a number of important issues that must be addressed
in this new context. An edge-based monitoring system must be
able to detect sufficiently fine-grained events that impact service
performance, while scaling effectively to large numbers of users.
Also, any viable deployment model must protect privacy, provide
trustworthy results and ensure widespread adoption.

Scalability. As one moves toward the edge of the network,

1
http://aqualab.cs.northwestern.edu/projects/news/

newsight.html

the number of network elements – and thus the opportunities for
failures – rapidly increases. With more than 1 billion Internet users
worldwide, an edge monitoring system that includes even a small
fraction of the population must support millions of hosts. As such,
collecting and processing raw performance data using a centralized
infrastructure is neither scalable nor practical.

We propose a decentralized approach to event detection in which
each host uses its own passively gathered performance information
to detect local problems as potential network events. By processing
performance data at each monitoring host, CEM facilitates an
immediately deployable, scalable monitoring system.

Granularity. Any online network monitoring system should
quickly identify network events and determine the affected network
region. The time to detect a problem is largely dependent on
how frequently a system can sample performance information. For
instance, in an end-system monitoring approach like Hubble [16],
the number of networks to monitor and the overhead for active
measurements limits its resolution to 15 minutes. By passively
gathering and processing this information locally at each end
system, CEM can enable event detection with fine granularity
(on the order of seconds) and relatively low CPU and memory
overhead. To isolate the scope of network events, CEM correlates
multiple locally detected events from the same network region.
These regions can be drawn from publicly available BGP prefixes
and AS numbers, or richer information such as AS relationships
and topologies for cross-network problems.

Privacy. Any implementation of an edge-based network moni-
toring service is subject to privacy concerns. In previous work that
used control-layer information (e.g., BGP updates), network probes
(e.g., traceroutes) or aggregate flows to identify network events,
privacy is ensured because no personally identifiable information
(PII) is exchanged. However, in an edge-based approach that relies
on corroboration among multiple vantage points to confirm and
isolate events, users must share information about their network
views. We demonstrate how edge-based monitoring can remain
effective without publishing any PII.

Trust. Most existing network event detection approaches are
implemented as closed systems, where third parties are unable
or highly unlikely to affect the accuracy or validity of detected
problems. In the context of edge-based detection, an open,
decentralized approach is vulnerable to attack. For example, one
ISP may wish to “poison” the system by introducing false reports of
events detected by users in a competitor’s ISP. We propose several
ways to harden an implementation against such attacks.

Deployment model. Any network event detection approach is
limited by the coverage of its deployment. As an application-layer
approach CEM is essentially free to deploy and there are practically
no limitations as to where participating hosts can be located. The
main challenge for CEM is thus gaining widespread adoption.
There are a number of ways in which this can be addressed, such as
incorporating the software into an OS, providing it as a background
service, and/or distributing it as part of networked applications.

In deployments where users must install new software, an appro-
priate incentive model is essential. Existing approaches to network
monitoring have used incentives such as micropayments [27],
altruism [31] and mutual benefit [8]. Based on the success of
Ono [8], we propose using a mutual benefit model where providers
and customers both gain from participation. In this instance,
customers (i.e., those running the monitoring software) benefit
from immediate notification and logging of network performance
problems while network providers receive a more detailed view
of their network for improving the quality of their service. This
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Figure 1: Schematic view of our edge detection approach.

has been sufficient for a prototype implementation of CEM already
installed over 45,000 times.

3. CEM FRAMEWORK
The previous paragraphs discussed many of the issues faced by

any edge-based monitoring system. In this section we describe
how we address these challenges in CEM. Fig. 1 depicts the CEM
architecture as a collection of cooperating edge system monitors

(ESMs). We assume that each ESM has access to one or more
sources of performance information that it can use to identify a
problem (e.g., transfer rates, latency jitter and dropped packets).
Further, each ESM can connect to a distributed storage system to
share information about detected events.

As previously mentioned, it is infeasible for edge systems
to publish detailed performance data for scalability and privacy
reasons. To address this issue, our approach detects events affecting
each ESM using only locally available performance data, gathered
mostly through passive monitoring (step (1) of the figure). We
describe the CEM approach to local detection in Sec. 3.1.

Local event detection presents new design challenges for de-
termining the scope and severity of events. CEM addresses this
through a decentralized approach to disseminating information
about detected events and the network(s) they impact. In particular,
each edge system publishes its locally detected events to distributed
storage (step 2), allowing any other participating host to examine
these aggregate events. When multiple hosts detect the same
problem at the same time in the same network, our approach
determines the relative likelihood of the detected problem being
caused by the monitored network (as opposed to coincidence, for
example). We discusses how CEM determines the likelihood that a
set of these locally detected problems corresponds to a widespread

event in Sec. 3.2.
In our architecture, the scope of detected events can be deter-

mined by ESMs or via third-party analysis. Each participating host
can use the distributed store to capture events corresponding to its
network (step 3), then determine whether these local events indicate
a network event. Additionally, a third-party system (e.g., run by an
ISP) could use the distributed store to perform this analysis (step
4). Thus network customers can monitor the level of service they
receive and operators can be informed about events as they occur,
expediting root-cause analysis and resolution.

3.1 Local Detection
The first step in CEM is to analyze local performance infor-

mation to determine whether the monitored host is experiencing
a problem. In general, network event detection consists of mon-
itoring a number of signals and using a detection algorithm to

determine when there may be a problem. In this section, we
discuss the types of available performance signals and techniques
for detecting local performance events in CEM.

3.1.1 Performance Signals

By pushing detection to end systems located at the edge of the
network, CEM can use a wide variety of service-level information
to diagnose local performance problems (Table 2). Examples of
these performance signals available to any monitored application
include flow and path-quality information such as throughput,
loss and latencies. Our approach can also incorporate service-
specific information to distinguish normal performance changes
from potential network events. For instance, P2P file-sharing
systems can provide information about whether a transfer has
completed and a VoIP application can indicate when there is
silence. Our approach can also use system-level information for
local event detection. For example, the operating system can
provide information about throughput consumed by all running
applications, allowing CEM to account for the performance impact
of concurrent applications. Because these types of information can
be gathered passively, they can be sampled frequently so that events
are detected as soon as they occur.

Finally, to assist with diagnosing network problems, our ap-
proach can incorporate limited active measurements such as tracer-
outes, pings and available bandwidth probes.

3.1.2 Event Detection

CEM uses signals described in the previous section to detect
local performance events. The goal of local detection is to provide
sufficient information for determining the scope of a problem,
i.e., whether the problem is local (isolated to a single ESM) or
network-related. To this end, the output of local detection is a
summary of each event describing its type (e.g., throughput drop,
lost video frame), the time of detection, where in the network it was
discovered and how it was detected.

The types of events that can be detected and the appropriate
technique to detect them are dependent on the service being
monitored. For instance, when monitoring end-to-end throughput
for a host (e.g., for video streaming), we show that moving
averages can identify drops in transfer rates potentially caused by a
network issue like congestion. In the domain of IPTV [23], video
quality (among other factors) may indicate network problems.
Alternatively, a VoIP application may experience sudden jitter that
impacts call quality. Our approach is agnostic to how these events
are detected, so long as they correspond to service-level problems.

Correlating local events. Performance changes for monitored
services do not necessarily indicate widespread problems. In a
P2P application like BitTorrent, for example, download rates often
drop to zero abruptly. While this may appear at first to be a
network problem, it can be explained by the fact that downloading
stops when the transfer is complete. Additionally, information
gathered at the operating system level can assist in evaluating
whether changes in performance are caused by interactions among
concurrent applications (e.g., VoIP and P2P file sharing) instead of
the network.

As we remove these confounding factors from our analysis, we
improve our confidence that a detected problem is independent
of the monitored service. Similarly, concurrent events occurring
in multiple performance signals for a service (e.g., download and
upload rates), further increases our confidence that the event is
independent of the service.

Publishing local events. After detecting a local event, CEM
determines whether other hosts in the same network are seeing the
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same problem – this requires hosts to share local event detection
results (but no local performance data). To ensure scalability,
distributed storage (e.g., a DHT) is an appropriate medium for
sharing these events.

3.2 Group Detection
Locally detected events may indicate a network problem, but

each local view alone is insufficient to determine if this is the
case. We now formulate a technique for using multiple hosts’
perspectives to confidently identify when a network problem is the
likely source.

3.2.1 Corroboration or Coincidence?

To identify events impacting a particular network, CEM first
gathers a list of events reported by monitors in that network. This
can be done periodically or on demand (e.g., in response to events
detected by an ESM). If multiple events occur concurrently in the
same network, our approach must determine if these events are
likely to be due to the network.

There are a number of reasons why multiple hosts can detect
events concurrently in the same network. For example, problems
can be isolated to one or more related physical networks due to a
router malfunction or congestion. The problem can also be caused
by the service driving network activity, e.g., performance from a
Web server or from a swarm of P2P users. Finally, simultaneous
events can occur simply by chance, e.g., with multiple users
experiencing interference on separate wireless routers.

Below, we discuss how CEM accounts for service-specific
dependencies and correlated events that occur by coincidence.
After accounting for service dependencies, our approach tests the
null hypothesis that each host experiences events independently

and not due to network problems. By comparing this value to the
observed rate of local events occurring concurrently for hosts in a
network, CEM can determine the relative likelihood of the detected
problem being caused by the network instead of by chance. We
quantify this with a likelihood ratio, which has been used, e.g.,
in the field of medicine for diagnostic testing to determine the
probability that a condition (e.g., a disease) is present.

Accounting for dependencies. The first step in the likelihood
analysis is to determine the probability that each of the N partic-
ipating hosts detects local service problems independently. Thus,
for each host h we produce a series Sh = {sh,i, sh,i+1, ..., sh,j}
for the time period T = [i, j], such that at time t, sh,t = 1 if a local
event was detected and sh,t = 0 otherwise. During the time period
T , we use the observed detection rate to estimate the probability of
host h detecting a local event in any given bucket as:

Lh =
1

j − i

∑j
t=i sh,t

To control for service-specific dependencies, any set of hosts
whose performance is mutually dependent during a time interval
(i − 1, i] are treated as the same host during that interval for
the purpose of the analysis. Thus, such hosts do not corroborate
each other’s events. For example, in the case of a P2P file-
sharing application, performance problems seen by peers that are
downloading the same file and connected to each other are not

treated as independent events. Besides such explicit dependencies,
our approach can incorporate automatically generated ones from a
tool like Orion [6].

After this step, our approach quantifies the probability of n (out
of N ) independent hosts detecting an event at the same time by

coincidence, i.e., the joint probability that for a given time t,
∑

h sh,t ≥ n.
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Figure 2: How increasing the number of hosts corroborating

an event decreases the likelihood of it occurring by chance.

In general, this is calculated as the union probability of any one of
N participating hosts seeing an event:

P (
⋃N

h=1
Lh) =

∑N
h=1

P (Lh) −
∑N

j>h=1
P (Lh ∩ Lj) + ...

+ (−1)n−1P (L1 ∩ ... ∩ LN )
(1)

We are testing the hypothesis that the events are independent, so
we can simplify the union probability:

P (
⋃N

h=1
Lh) =

∑N
h=1

P (Lh)−
∑N

j>h=1
P (Lh)P (Lj) + ...

+ (−1)n−1P (L1)...P (LN )
(2)

This equation gives the union probability for any one host seeing
an event, i.e., without corroboration. Generally, this is much larger
than the probability that at least n hosts (1 < n ≤ N ) in the
network will see concurrent events. To calculate this, we peel off
the first n − 1 terms of Eq. 2. For example, the probability that at
least two hosts will see concurrent events is:

P (
⋃N

j>h=1
Lh ∪ Lj) =

∑N
j>h=1

P (Lh)P (Lj)

−
∑N

k>j>h=1
P (Lh)P (Lj)P (Lk)

+ ...+ (−1)n−1P (L1)...P (LN )

(3)

Effect of corroboration. Intuitively, our confidence in a de-
tected event being due to the network increases with (i) the number
of hosts detecting the event and (ii) the number of independent
performance signals indicating the event. We now quantify the
impact of these factors through a simulation of a region of interest
(e.g., a BGP prefix) with N hosts. Each of these hosts provides
multiple performance signals as described in Sec. 3.1.1. The
probability of host h witnessing an event in a signal, Lh, is chosen
uniformly at random in the range 0.005 ≤ Lh ≤ 0.05. We then
determine the probability of c hosts (1 < c ≤ 5) seeing an event
by coincidence for networks with N = 10, 25, 50 hosts, and we
compare this value with the probability of any one host seeing an
event. For each setting, we run 100 randomly generated networks.

Fig. 2 uses a CDF to show the effect of varying the size of
the network on the probability of seeing correlated events by
coincidence. In general, the figure confirms the intuition that
relatively large numbers of monitored hosts are unlikely to see
network events at the same time simply by coincidence. More
concretely, for N = 50, four hosts are an order of magnitude less
likely to see simultaneous events than two hosts. We observed
a similar effect when varying the number of signals detecting
local events – the more signals experiencing performance events

390



concurrently, the less likely that the events are occurring by chance.
When N = 25, e.g., it is three orders of magnitude less likely
that five peers experience synchronized events in three performance
signals than in one signal.

Relative likelihood. As we discussed at the beginning of this
section, we would like to determine the relative likelihood that
concurrent local events are due to the network and not happening
by coincidence. To quantify this, we propose using a likelihood

ratio, i.e., the ratio of the observed probability of concurrent events
to the probability of concurrent events happening independently.

To derive this ratio, our approach first takes events seen by
n peers in a network at time t, and finds the union probability
Pu that the n (out of N ) peers will see a performance problem
at time t by coincidence. Next, CEM determines the empirical
probability (Pe) that n peers see the same type of event (i.e, by
counting the number of time steps where n peers see an event
concurrently and dividing by the total number of time steps in
the observation interval, I). The likelihood ratio is computed as
LR = Pe/Pu, where LR > 1 indicates that detected events are
occurring more often than by coincidence for a given network and
detection settings. We consider these to be events indicative of a
network problem.

3.2.2 Problem Isolation

When many hosts in a network detect an event at the same time,
it is usually a problem best addressed by the responsible network
operators. In such cases, our approach should be able to identify
the network(s) affected by the event so as to provide the necessary
information for operators to determine the root cause and fix the
problem.

In our approach, the scope of a problem is explicitly determined
by the grouping of hosts for the likelihood analysis. As such, the
approach supports localization of problems using structural infor-
mation about the organization of networks and their geographic
locations. For instance, it can use events detected by hosts in the
same routable BGP prefix or ASN, and use geographic information
to localize events to cities and countries. Further, CEM can use
an AS-level Internet graph to localize network issues to upstream
providers or a router-level graph to isolate problematic routers and
links.

4. IMPLEMENTING CEM
The previous section described our CEM approach for detecting

events from edge systems. Designing, deploying and evaluating
CEM poses interesting challenges given the absence of a platform
for experimentation at the appropriate scale.

A promising way to address this is by leveraging the network
view of peers in large-scale P2P systems. P2P systems use
decentralization to enable a range of scalable, reliable services and
are so prevalent that reports indicate they generate up to 70% of
Internet traffic [30]. By avoiding the need to deploy additional
infrastructure and offering hosts that are already cooperating, these
systems are an appealing vehicle for monitoring – one that grows
naturally with the network [9, 36].

Based on these advantages, we choose to design and evaluate
a prototype implementation of CEM in a large P2P system. To
guide the design of our prototype and evaluate its effectiveness at
scale, we take advantage of a large edge-system dataset comprising
traces of BitTorrent performance from millions of IP addresses.
The following paragraphs describe this unique dataset, a collection
of confirmed network problems we rely on for evaluation, and a
particular case study we use in our presentation. We close the
section describing the Network Early Warning System (NEWS), our

Category Number (Pct of total)

Number of users 1,000,000

Countries 212

IP addresses 4,300,000

Prefixes 72,100

Autonomous systems (ASes) 8,700

IPs behind middleboxes ≈ 82.6%

Table 1: Summary of our P2P vantage points.

prototype edge-based event detection system that uses BitTorrent as
a host application. NEWS is currently deployed as a plugin for the
Vuze BitTorrent client [34], to facilitate adoption and to piggyback
on the application’s large user base.

Building on P2P systems to provide network monitoring is not
without limitations. For one, each monitor contributes its view
only while the P2P system is active, which is subject to user
behavior beyond our control. Second, the end system may run
other applications that interfere with P2P applications and event
detection. Finally, some event detection techniques require access
to information not accessible to a P2P application, e.g., system
calls.

4.1 Datasets
The following paragraphs present the data collected from BitTor-

rent and a set of confirmed network problems from two ISPs.

4.1.1 BitTorrent traces

The BitTorrent traces we use are gathered from users of the Ono
plugin for the Vuze BitTorrent client.2 Ono implements a biased
peer selection service aimed at reducing the amount of costly
cross-ISP traffic generated by BitTorrent without sacrificing system
performance [8]. Beyond assisting in peer selection, the software
allows subscribing volunteers to participate in a monitoring service
for the Internet. With more than 1,000,000 users today, distributed
in 212 countries, this system is the largest known end-system
monitoring service. The following paragraphs describe the data
collected; summary information about Ono users is in Table 1.

Trace details. Our dataset consists of transfer rate for each
connection and cumulative transfer rates (over all connections),
all sampled once every 30 seconds. Besides this, the dataset
includes protocol-specific information such as whether each peer
is “leeching” (both downloading and uploading) or “seeding” (only
uploading), the total number of leechers and seeds, and information
about the availability of data for each download. The complete list
of collected signals is in Table 2. Note that this collection is for our
design and evaluation only and it is not required for NEWS event
detection.

Edge coverage. Any dataset is subject to limits in the coverage
of its measurement hosts. The dataset we use currently contains
connection information from users to more than 390,000,000 peer
IPs; collectively, its users monitor more than 17 million paths per
day. Ono’s user base has grown to over 72,100 prefixes (covering
nearly every country) in less than three years. Collectively,
these users have established connections to peers in over 222,000
routable prefixes and 21,800 ASNs.

Besides covering many paths, the dataset reaches true edge
systems located in portions of the Internet not accessible to existing
distributed research and monitoring platforms. For example, over
80% of the user IPs correspond to middleboxes (i.e., they are
assigned private IP addresses). Further, we find that the P2P traffic
in these traces covers paths invisible to public views. Specifically,

2
Users are informed of the diagnostic information gathered by the plugin

and are given the chance to opt out. In any case, no personally identifiable
information is ever published.
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we map three months of BitTorrent traffic data to AS pairs, then
use 13 months of publicly available BGP data to map the traffic to
AS-level paths. We find that a large majority of BitTorrent traffic
in this dataset cannot be mapped to a public BGP path [7]. These
results are consistent with findings by Chen et al. [5] demonstrating
that public views miss large portions of the Internet topology
covered by P2P users.

4.1.2 Confirmed network problems

Evaluating the effectiveness of a network event detection ap-
proach requires a set of events that should be detected, i.e., a set
of ground-truth events. Among the different strategies adopted
by previous studies, manual labeling – where an expert identifies
events – is the most common [28].

As one example, we use publicly available event reports from the
British Telecom (BT Yahoo) ISP3 in the UK. This site identifies the
times, locations and nature of network problems. During the month
of April, 2009 there were 68 reported problems, including Internet
and POTS events.

In addition, we use network problems reported from a large
North American ISP. For nondisclosure reasons, we cannot report
absolute numbers for these events.

Despite its many advantages, the set of labeled problems for
a network is restricted to events that can be detected by the
in-network monitoring infrastructure, using currently deployed
techniques, or generated by user complaints. Further, human
experts can introduce errors and disagreement, e.g., in reporting
the time and duration of an event. As a result, we can determine
when confirmed events are detected by our approach, but cannot
draw strong conclusions about false positive and negative rates.

4.2 Case study
To assist with the presentation of NEWS, we pick one of the

events from the previous section. Specifically, we demonstrate how
NEWS detects a reported problem in BT Yahoo: On April 27, 2009
at 3:54 PM GMT, the network status page stated, “We are aware of

a network problem which may be affecting access to the internet in

certain areas...” The problem was marked as resolved at 8:50 PM.
Fig. 3 presents a scatter plot timeline of upload rates for peers

located in the same routable prefix in BT Yahoo (81.128.0.0/12)
during this event, which is depicted as a shaded region. Each
point in the graph represents an upload-rate sample for a single
peer; different point shapes/colors represent signals for different
peers. The figure shows that multiple peers experience reduced
performance between 10:54 and 16:54, while another set of peers
see a significant drop in transfer rates at 14:54. These are consistent
with the reported event, when accounting for delays between the
actual duration of an event and the time assigned to it by a
technician. Further, we see that there were two distinguishable
network problems corresponding to the single generic report.

4.3 Network Monitoring from BitTorrent
We now discuss key design aspects of NEWS, a prototype edge-

system monitor for BitTorrent. Throughout this discussion we use
the confirmed BT Yahoo event in Fig. 3 to explain our design
choices. With respect to the design challenges listed in Sec. 2, we
address scalability and granularity through our local event detection
and group corroboration approach; the remaining issues of privacy,
trust and adoption are covered in the subsequent sections. We
provide low-level implementation details in Sec. 6.

3
http://help.btinternet.com/yahoo/help/servicestatus/
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Figure 4: Moving averages facilitate identification of separate

network events affecting transfer rates for two groups of peers

during the same period shown in Fig. 3. Best viewed in color.

4.3.1 Local Event Detection

Any CEM system must define what constitutes a service-level
event that could be due to a network problem. In NEWS, we
define these to be unexpected drops in end-to-end throughput for
BitTorrent, which corresponds to steep drops in the time series
formed by BitTorrent throughput samples.

Event detection in BitTorrent. NEWS employs the simple,
but effective, moving average technique for detecting edges in
BitTorrent throughput signals. Given a set of observations V =
{v1, v2, ..., vn}, where vi is the sample at time i, the technique
determines the mean, µi, and the standard deviation, σi of sig-
nal values during the window [i − w, i]. The moving average
parameters are the observation window size for the signal (w)
and the threshold deviation from the mean (t · σ) for identifying
an edge. Given a new observation value vi+1 at time i + 1, if
|vi+1 − µi| > t · σi, then an edge is detected.

To demonstrate visually how moving averages facilitate edge
detection, Fig. 4 plots the 10-minute averages of upload rates
for two groups of affected peers extracted from Fig. 3. Using
these averages, it becomes clear that there is a correlated drop in
performance among a group of three peers at 14:54 (top graph),
while the bottom graph shows a series of performance drops, the
first near 10:54 and the last around 13:00. Both groups of peers
recover around 17:30.

The window size and deviation threshold determine how the
moving average detects events. Tuning the window size (w) is
analogous to changing how much of the past the system remembers
when detecting events. Assuming that the variance in the signal is
constant during an observation window, increasing the number of
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Deviations for any one peer are highly variable; those for seven

peers rarely capture any performance drops. The peaks in

deviations for three peers correspond to confirmed events.

samples improves our estimate of σ and thus detection accuracy. In
general, however, σ varies over time, so increasing the window size
reduces responsiveness to changes in σ.

The detection threshold (t · σ) determines how far a value can
deviate from the moving average before being considered an edge
in the signal. While using σ naturally ties the threshold to the
variance in the signal, it is difficult a priori to select a suitable
value for t. If our approach to local detection is viable, however,
there should be some threshold (t · σ) for identifying peers’ local
events that correspond to network ones. To demonstrate this is
the case, Fig. 5 shows how deviations behave over time for peers
experiencing the network problems illustrated in Fig. 4, using a
window size of 10. Specifically, each curve shows the maximum
drop in performance (most negative deviation) seen by at least n
peers in the network at each time interval. Because these deviations
vary considerably among peers, we normalize them using the
standard deviation for the window (σ).

The top curve, where n = 1, shows that the maximum deviations
from any one peer produces a noisy signal with a wide range of
values, and features of this signal do not necessarily correspond to
known network problems. The bottom curve, where n = 7, shows
that it is rarely the case that seven peers see performance drops
simultaneously, so features in this signal are not useful for detecting
events during this period. Last, the middle curve, n = 3, produces
a signal with a small number of peaks, where those above 2.5σ
correspond to real network problems. This suggests that there are
moving-average settings that can detect confirmed problems in this
network. In Sec. 4.3.2, we show how NEWS can extract network
events from a variety of settings, using the analysis from Sec. 3.2.

Confounding factors. A drop in a BitTorrent host’s throughput
signal is not necessarily due to network events (Sec. 3.2). Thus,
when monitoring BitTorrent it is essential to use service-specific
information to distinguish expected behavior from network events.

Table 2 lists the information available when monitoring BitTor-
rent. NEWS uses several of these signals to eliminate well known
confounding factors. For instance, NEWS tracks the transfer states
of torrents and accounts for the impact of download completion. To
eliminate performance problems due to the application (as opposed
to the network), such as missing torrent data or high-bandwidth
peers leaving a swarm, all peers connected to the same torrent are
treated as the same peer. As another example, NEWS accounts for
correlations between the number of peers connected to a user and
the average transfer rate for each peer.

NEWS also requires multiple performance signals to see con-
current events before publishing an event. As we discussed in
Sec. 3.2, improving our confidence that the event is independent

Signals General to P2P Systems

Overall upload rate Overall download rate

Per-connection upload rate Per-connection download rate

Connected hosts RTT latencies

Signals Specific to BitTorrent

Availability Connected seeders/leechers

Number available leechers Number available seeds

Number active downloads Number active uploads

Table 2: Signals available when monitoring from BitTorrent.

of the application also improves our confidence that it is caused by
the network.

When detecting an event, NEWS must not only determine that
there is a problem with a network, but specifically identify the

host’s network as the one experiencing the problem. If a host’s
connections were biased toward a single AS, for example, it would
be unclear if detected problems were specific to the host’s AS or
the biased one. To explore this issue, we determine the number of
routable prefixes visited per hour by each peer’s connections during
a 6-day period, then find the average of these hourly totals for each
peer. We find that the vast majority of our vantage points (99%)
connect to peers in four or more prefixes during an average hour-
long period; the median number is 137. This range indicates that
it is unlikely that problems in remote networks would be falsely
interpreted as problems in the host’s network.

4.3.2 Group Corroboration

As discussed in Sec. 3.2, after detecting local events, CEM
determines the likelihood that the events are due to a network
problem. Thus, once a local event has been detected, NEWS
publishes local event summaries to distributed storage so that
participating hosts can access detected events quickly.

We now apply this likelihood analysis to the events in BT
Yahoo as described in Sec. 4.2. Recall that we would like to
detect synchronized drops in performance that are unlikely to have
occurred by chance. To that end, we determine the likelihood ratio,
LR = Pe/Pu, (Sec. 3.2.1). For this analysis, we use one month
of data to determine Pe and Pu; as we show in the following
paragraphs this is sufficient to detect confirmed network events.

Figure 6 depicts values for LR over time for BT Yahoo using
different local event detection settings. In both figures, a horizontal
line indicates LR = 1, which is the minimum threshold for
determining that events are occurring more often than by chance.
Each figure shows the LR values for up to three local signals
(e.g., upload and download rates) that see concurrent performance
problems for each peer. As previously mentioned, the more signals
seeing a problem, the more confidence we can attribute to the
problem not being the application.

In Fig. 6 (top), we use a detection threshold of 1.5σ and window
size of 10. Using such a low threshold not surprisingly leads
to many cases where multiple peers see synchronized problems
(nonzero LR values), but they are not considered network problems
because LR < 1. Importantly, there are few values above LR = 1,
and the largest corresponds to a performance drop potentially due to
congestion control, since it occurs when peers have simultaneously
saturated their allocated bandwidth after the confirmed network
problem is fixed.

Fig. 6 (bottom) uses a detection threshold of 2.2σ and window
size of 20. As expected, the larger threshold and window size detect
fewer events. In this case, all values that appear above LR = 1
correspond to the known network problems, and they are all more
than twice as likely to be due to the network than coincidence.

These examples demonstrate that our approach is able to reli-

393



 0

 0.5

 1

 1.5

 2

 2.5
Li

ke
lih

oo
d 

R
at

io

Deviation=1.5σ, Window=10

1 signal 2 signals 3 signals

 0

 0.5

 1

 1.5

 2

 2.5

 3

08:54
Apr 27

10:54 12:54 14:54 16:54 18:54 20:54
Apr 27

Li
ke

lih
oo

d 
R

at
io

Time

Deviation=2.2σ, Window=20

Figure 6: Timeline showing the likelihood ratio for different

moving average settings. In each case, there are few events with

LR > 1, and nearly all correspond to confirmed events.

ably detect different problems with different parameter settings.
They also suggest that the approach generally should use multiple

settings to capture events that occur with different severity and
over different time scales. Because CEM uses passive monitoring
approach, an implementation can use several detection settings in
parallel with minimal additional overhead, then use the likelihood
ratio threshold as a single parameter to select cases where each
setting identifies likely network problems. As we discuss in Sec. 6,
we use this strategy in our current implementation.

4.3.3 Privacy and Trust

Any implementation of a network monitoring service is subject
to important considerations such as privacy and trust. To ensure
user privacy, NEWS does not publish any personally identifiable
user information (e.g., IPs or download activity). Rather, it reports
only detected events and assigns per-session, randomly generated
IDs to distinguish events from different users.

While this approach to ensuring privacy is appealing for its
simplicity, it opens the system to attack by malicious parties. For
example, one ISP may wish to “poison” the system by introducing
false event reports for a competitor’s ISP. There are several ways to
harden an implementation against such attacks. First, we include
each host’s Lh in the event reports, and recall that largerLh leads to
a smaller contribution to the likelihood (Eq. (3)). This mitigates the
effect of an attacker generating a large volume of false event reports
using NEWS. While an attacker could forge Lh, any participating
host could detect that it is inconsistent with the number of reports
placed in the distributed store. In addition, simple rate-limiting can
be applied to a centralized attacker and a Sybil-like attack can be
mitigated with secure distributed storage [4]. Such an approach
eliminates anonymity by assigning identities to users; however, the
privacy of the details of their network activity is maintained.

4.3.4 Participation Incentives

In general, our approach does not require incentives for adoption,
e.g., if applications are deployed with instrumentation by default.
For our prototype system in BitTorrent, however, the deployment
model relies on users installing third-party software.

Based on the success of Ono [8], we propose using a similar
mutual benefit incentive model. The incentive for users to install
Ono is based on users’ selfish behavior – the software offers
potentially better download performance while at the same time
reducing cross-ISP traffic. To encourage NEWS adoption, we rely
on this selfish behavior by offering users the ability to ensure they
receive the network performance they pay for. Similar incentives

have been successfully used by the Grenouille project4 (20,000
users) and various network neutrality projects (e.g., Glasnost [11],
installed more than 350,000 times).

Specifically, NEWS users contribute their network view (at
essentially no cost) in exchange for early warnings about network
problems that impact performance. As these problems may indicate
changes in ISP policies, violations of SLAs or ISP interference,
such warnings provide a mechanism for users to ensure that the
Internet service they pay for is properly provided. This has been
sufficient incentive for NEWS, which has already been installed
over 45,000 times.

5. EVALUATION
We use one month of data gathered from BitTorrent users to

answer key questions about the CEM approach as implemented
in NEWS. We first demonstrate its effectiveness using confirmed
events from two large ISPs. We show that using a popular P2P
service as a host application can offer sufficient coverage for edge-
system event detection and present a summary of results from our
detection algorithm on networks worldwide. Last, we evaluate the
robustness of NEWS to parameter settings.

NEWS is designed to detect any event impacting the perfor-
mance of BitTorrent hosts at the edge of the network. On the
other hand, confirmed events from ISPs are typically restricted
to significant outages. Thus, one cannot draw strong conclusions
about false positives/negatives and the results presented here are
necessarily limited to the kinds of events detectable by BitTorrent
users.

5.1 Effectiveness
To evaluate the accuracy of our approach we compare its results

against labeled network problems from two ISPs, our ground truth.
For the purpose of comparing these datasets, if an event was
detected within 2 hours of a reported time, we count it as being
the same event (based on reporting delays in our case study).

For BT Yahoo, of the 181 events detected by our approach, 54
are confirmed network problems – covering nearly 80% of the
labeled events. Our edge-based approach detected an additional
127 events; although these are not confirmed problems, we caution
against inferring false positive rates, as the reported events are
based on those detectable from existing monitoring systems. Still,
even in the unlikely case that these events are not real, the average
false alarm rate (just over 4 events per day) is manageable.

For a North American ISP, our approach detected a variety of
performance events, some of which were confirmed outages. For
cases where there was a drop in performance but not an outage,
we were not able to obtain ground truth information. Figure 7
shows a sample of three cases of events detected by our approach:
(a) an confirmed outage, (b) a non-outage performance event
(unconfirmed) and (c) an unconfirmed outage.5 Table 3 presents
summary results for this ISP. Our approach was able to detect
half of the largest outages (column 3). In column 4, we show
the number of outages that appeared to affect monitored hosts,
but not in sufficient numbers to validate the event. In addition to
these events, our approach detected 41 events during the 1-month
period. Unfortunately, the ISP did not have sufficient information
to confirm or deny them.

4
http://www.grenouille.com

5
An outage refers to loss of network connectivity; non-outages indicate

connectivity with significantly reduced performance.
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(b) Unconfirmed non-outage event.
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(c) Unconfirmed outage.

Figure 7: Timelines depicting events (centered in the figures) affecting transfer rates for peers in a North American ISP. Throughput

drops are misaligned due to periodic data reports being dropped during the outages. Best viewed in color.

Affected customers Pct of total events Detected Possible

C ≥ 10000 53% 50% 38%

10000 > C ≥ 1000 40% 0% 67%

C < 1000 7% 0 0

Table 3: Comparison with events from a North American ISP.

(a)

ISP Users Events

Deutsche Tel. 6760 69

HTP 3652 112

HanseNet 3216 17

Neuf Cegetel 2821 108

Arcor 2245 29

Cableuropa 1999 245

Proxad/Free 1769 176

France Tel. 1688 31

Tel. Italia 1651 20

Telefonica 1337 27

(b)

ISP Users Events

Cableuropa 1999 245

BTnet UK 1277 182

Proxad/Free 1769 176

HTP 3652 112

Neuf Cegetel 2821 108

Deutsche Tel. 6760 69

Telewest 237 50

Pakistan Tel. 729 46

Comunitel 197 45

Mahanagar Tel. 454 42

Table 4: Top 10 ISPs by users (a) and by events (b).

5.2 Coverage
Edge-system event detection requires a sufficient number of

peers to concurrently use a network for the purpose of corrob-
oration. To evaluate whether using a popular P2P service as
a host application can offer sufficient coverage for edge-system
event detection, we calculated the maximum number of peers
simultaneously online (and active) for each network in our dataset.
Figure 8 plots a CDF of these values for each routable prefix and
ASN. On average, the number of simultaneous online peers per
routable prefix is 3 and per ASN is 7. Even though our installed
base of users represents less than 0.4% of all BitTorrent clients,
we find that this offers sufficient coverage (three or more peers
concurrently online) for more than half of the ASNs that we study.

5.3 Worldwide events
Having shown the effectiveness of NEWS, this section charac-

terizes network events that detected worldwide, using a threshold
LR = 2 (as guided by Fig. 6). For a one-month period, our
approach detected events in 38 countries across five continents,
emphasizing how edge-based detection can achieve broad network
coverage worldwide. In Table 4(a), we list the top 10 ISPs in terms
of the number of users participating in our study, and the number
of events detected in each of these ISPs.

Because different networks provide different quality of ser-
vice [22], increasing the number of peers should not necessarily
increase the number of events detected. As the table shows, there
is indeed little correlation between the number of vantage points in
a network and the number of detected performance events.

Relationship Min. ASNs # cases # countries

Customer-Provider 2 370 5

Customer-Provider 3 7 2

Peer-Peer 2 487 7

Table 5: Number of cross-network events as inferred from

single-network events. The first column indicates the AS

relationship; the following columns specify the minimum

number of ASes and countries affected.
Time (GMT) Provider(s) Affected ASes Country

Apr 16, 13:35 8218 15557,12876,12322 FR

Apr 17, 12:40 1267 16338,3352,6739 ES

Apr 30, 01:15 10396,7910 12357,16338,12715 ES

Table 6: Example cross-network events corresponding to the

second row of Table 5.

Table 4(b) shows the top 10 ISPs in terms of the number of
events detected, covering ISPs of varying size in Europe and
Asia. We note that with the exception of the top three ISPs, our
approach generates fewer than four detected events per day. Thus,
a deployment of our approach should report events at a reasonable
rate – one that will not overwhelm network operators and users.

5.4 Cross-network events
A unique advantage of an edge-system based monitoring ap-

proach like NEWS is its ability to detect network problems af-
fecting multiple ISPs, e.g., due to provider or peering link issues.
The following paragraphs describe cross-network events detected
during the period of study.

We focus on events due to issues with upstream providers or
peers. To this end, we find events that occur in multiple ASes at
the same time, then determine which of these ASes have a peering
relationship or identical providers (based on the AS topology
generated by Chen et al. [5]). Events that occur within 30 minutes
of each other are considered the same, and we conservatively
consider AS relationships only for those ASes in the same country.

Table 5 summarizes our results. The first row indicates that
when searching for at least two ASNs with the same provider,
there are 370 cases in five countries. In the second row, we use
a more restrictive search where we require that at least three ASNs
having the same provider see synchronized network events – such
events are, as expected, much rarer; a sample of them is provided
in Table 6. Finally, the last row indicates that there is a significant
number of peering ASNs that see synchronized problems.

5.5 Robustness
As discussed in Sec. 4.3.2, the likelihood ratio (LR) can be seen

as a parameter for distilling network events from locally detected
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ones. As such, the number of network events detected using an
LR threshold should not significantly change with different local
detection settings.

Fig. 9 plots CDFs of LR values for BT Yahoo during one month.
In Fig. 9(a), we plot LR values for W = 10 and σ = 1.5 and
Fig. 9(b) plots the same for W = 20 and σ = 2.2. Settings for
small deviations and small window sizes logically yield a larger
number of ratio values greater than one (2.15% of the time) whereas
larger deviations and windows yield a smaller number (0.75%).
Generally, such cases (where concurrent events occur more often
than chance) are rare for different detection parameters, suggesting
that LRs are indeed robust to detection settings.

6. DEPLOYMENT DETAILS
The NEWS plugin for Vuze is written in Java and the core

classes for event detection comprise ≈1,000 LOC. Released under
an open-source (GPL) license, our plugin has been installed over
45,000 times since its release in March, 2008. In the rest of this
section, we discuss details of our NEWS implementation in its
current deployment. In addition to providing specific algorithms
and settings that we use for event detection, our discussion includes
several lessons learned through deployment experience.

Local detection. NEWS detects local events using the moving
average technique discussed in Sec. 4.3.1, which uses the window
size (w) and standard-deviation multiplier (t) parameters to identify
edges in BitTorrent transfer rate signals. NEWS currently uses
w = 10, 20 samples and t = 2.0, 2.5, 3.0 in parallel, dynamically
configurable settings that have shown to be most effective.

In practice, we found that BitTorrent often saturates a user’s
access link, leading to stable transfer rates and small σ. As a result,
a moving-average technique may detect events in the through-
put signals even when there are negligible relative performance
changes. We address this issue in NEWS by including a secondary
detection threshold that requires a signal value to change by at least
10% before detecting an event.

Throughput signals also undergo phase changes, during which a
moving average detects consecutive events. NEWS treats these as
one event; if enough consecutive events occur, we assume that the
signal has undergone a phase change, and reset the moving average
using only signal values after the phase change.

After detecting a local event, NEWS generates a report con-
taining the user’s per-session ID, w, t, a bitmap indicating the
performance signals generating events, the current event detection
rate (Lh), the time period for the observed detection rate, the
current time (in UTC) and the version number for the report layout.
The current report format consumes 38 bytes.

The plugin disseminates these reports using Vuze’s built-in
Kademlia-based DHT [24], a key-value store that maintains mul-

tiple values for each key. To facilitate group corroboration of
locally detected events, we use network locations as keys and the
corresponding event reports as values.

In our deployment we found variable delays between event
detection and reporting, in addition to significant clock skew. To
address these issues, NEWS uses NTP servers to synchronize
clocks once per hour, reports event times using UTC timestamps
and considers any events that occurred within a five-minute window
when determining the likelihood of a network event occurring.

Group corroboration. After a NEWS peer detects a local event,
it performs corroboration by searching the DHT for other event
reported in each of the host’s regions – currently its BGP prefix
and ASN.6 Before using a report from the DHT for corroboration,
NEWS ensures that: (1) the report was not generated by this
peer; (2) the report was generated recently; and (3) the standard-
deviation multiplier and window size for detecting the event match
a local detection setting.

If these conditions are met, the report’s ID is added to the set
of recently reported events for the corresponding detection setting.
If a peer finds events from at least three other concurrent peers (a
configurable threshold), it uses Eq. 3 to determine the likelihood
of these events happening by coincidence. Using the information
gathered from events published to the DHT over time, the peer
can calculate the likelihood ratio described in Sec. 4.3.2. If the
likelihood ratio is greater than two (also configurable), the monitor
issues a notification about the event.

NEWS peers read from the DHT after detecting a local event in
order to corroborate their finding. To account for delays between
starting a DHT write and its value being available for reading,
NEWS sets a timer and periodically rechecks the DHT for events
during a configurable period of interest (currently one hour).

Last, our likelihood ratio calculation requires access to the local
detection rate for each online peer. To ensure it is available, each
peer writes its local detection rate to distributed storage at least
once per hour, regardless of whether it has yet detected a local event
during its current session.

Third-party interface. Beyond end-users, network operators
should be notified to handle service-level events. With this in mind,
we have implemented a DHT crawler (NEWS Collector) that any
third party can run to gather in and analyze local event reports.

To demonstrate its effectiveness, we built NEWSight – a system
that accesses live event information gathered from NEWS Collector
and publishes detected events through a public Web interface.
NEWSight allows network operators to search for events and
register for event notifications. Operators responsible for affected
networks can confirm/explain detected events.

6
Vuze already collects the host’s prefix and ASN; we are currently adding

support for whois information.
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Whereas NEWS crowdsources event detection, NEWSight can
be viewed as an attempt at crowdsourcing network event labeling.
Confirmed events can help to improve the effectiveness of ours
and similar approaches – addressing the paucity of labeled data
available in this domain [28]. We are currently beta-testing this
interface with ISPs; the interface and its data are publicly available.

Overhead for participating hosts NEWS passively monitors
performance and uses low-cost event-detection techniques, so
there is negligible overhead for detecting local events. The
primary sources of overhead are calculating the union probability
(CPU/memory) and sharing locally detected events (network). We
now demonstrate that these overheads are reasonably low.

For determining the union probability, the formula in Eq. (3)
specifies nCn/2 (n choose n/2) operations, where n is the number
of hosts in the network having a nonzero probability of detecting
an event.7 We use Miller’s algorithm [25], an optimal trade-off
between memory, O(n), and computation, O(n3). While a sub-
stantial improvement over a naïve implementation, its processing
overhead can still be significant for a large n (e.g., n > 50). To
bound this, we limit the number of hosts used in the computation
to the H hosts with the largest Lh. In this way, we conservatively
estimate an upper bound for Pu for the full set of n hosts.

The other source of overhead is using distributed storage to
share locally detected events. While this overhead is variable and
dependent on factors including the target network and detection
settings, we found it to be reasonably low for many settings. For
example, our analysis shows that read and write operations are
performed by each host with average frequencies on the order of
several minutes, and in the worst case once every 30 seconds (less
than 4 B/s for each peer in the BT Yahoo network).

7. RELATED WORK
The problem of detecting network events (or anomalies) has

attracted a large number of research efforts. In this context, CEM
is a framework for online detection of network events that impact
performance for applications running on end systems. This section
classifies key properties of event detection systems and describes
how CEM relates to previous work in these areas.

Crowdsourcing. Central to our approach is the idea of crowd-
sourcing event detection to ensure good coverage and accuracy
at the scale of hundreds of thousands of users. This model has
successfully enabled projects that include solving intractable [33]
or otherwise prohibitively expensive problems [1] using human
computation. Unlike these examples, our system passively mon-
itors network activity from each member of a crowd, but it does
not require human input. Dash et al. [10] use a similar model to
improve the quality of intrusion detection systems in an enterprise
network and demonstrate its effectiveness through simulation using
traffic data from 37 hosts inside their enterprise network.

Event types. A class of previous work focuses on detecting
network events in or near backbone links, using data gathered
from layer-3 and below [13, 18, 19, 21, 29]. While these monitors
can accurately detect a variety of events, they may miss silent
failures (e.g., incompatible QoS/ACL settings) and their impact
on performance. Other work focuses on detecting network events
from a distributed platform [2, 16, 20, 36]. These solutions do not
correlate these events with user-perceived performance, and their
detection is limited by their network visibility and/or the overhead
for probing large numbers of networks. The goal of CEM is to

7
When Lh = 0 for a host, it does not contribute to the union probability.

Thus n is the number of hosts seeing at least one event.

detect service-level network events and correlate their impact on
application performance from the perspective of end users.

Monitoring location. CEM targets events that impact user-
perceived application performance, by running on the end systems

themselves. While several researchers have proposed using end-
host probing to identify routing disruptions and their effect on end-
to-end services [12,16,35,37], they have focused on GREN [20,36]
or enterprise [10, 15, 26] environments and have not looked at the
impact of network events on application performance nor addressed
the issues of scalability when running on end systems. Some
commercial network monitoring tools generate flows that simulate
protocols used by edge systems (e.g., Keynote and IneoQuest8).
While these can indeed detect end-to-end performance problems,
these tools require controllable, dedicated infrastructure and are
inherently limited to relatively small deployments in PoPs. Our
CEM approach does not require any new infrastructure, nor control
of end systems, and thus can be installed on systems at the edge
of the network. Several research efforts have investigated the idea
of active and passive network measurement from end users, e.g.,
DIMES [31] and Neti@home [32], but have not explored the use
of their monitoring information for online network event detection.

Measurement technique. CEM focuses on passive monitoring

of popular applications to detect events, which allows our approach
to scale to the vast numbers of users at the edge of the network
while still detecting events quickly. In a similar vein, previous
work has suggested that the volume and breadth of P2P systems’
natural traffic could be sufficient to reveal information about the
used network paths without requiring any additional measurement
overhead [9,36]. PlanetSeer [36] uses passive monitoring of a CDN
deployed on PlanetLab, but relies on active probes to characterize
the scope of the detected events. Casado et al. [3] and Isdal et
al. [14] use opportunistic measurement to reach these edges of the
network, by leveraging spurious traffic or free-riding in BitTorrent.
Unlike these efforts, CEM takes advantage of the steady stream
of natural, (generally) benign traffic generated by applications.
Approaches that use active monitoring (e.g., [2, 16]) are limited
by the overhead for detection, which grows with the number of
monitored networks and services. While CEM could be combined
with limited active probes to assist in characterizing and localizing
network events, it does not require them.

8. CONCLUSION
The user experience for networked applications is becoming an

important benchmark for customers and network providers. To
assist operators with resolving such issues in a timely manner,
we argued that the most appropriate place for monitoring service-
level events is at the end systems where the services are used. We
proposed a new approach, called CEM for Crowdsourcing Event
Monitoring, based on pushing end-to-end performance monitoring
and event detection to the end systems themselves. We presented
a general framework for CEM systems and demonstrated its effec-
tiveness using a large dataset of diagnostic information gathered
from peers in the BitTorrent system, along with confirmed network
events from two different ISPs. We showed that our crowdsourcing
approach enables worldwide event detection, including events
spanning multiple networks. Finally, we designed, implemented
and deployed a BitTorrent extension that performs online event
detection using our approach – currently installed more than 45,000
times. Having demonstrated the feasibility and effectiveness of this
approach, we are investigating opportunities for porting it to other
host applications such as VoIP and streaming video.

8
http://www.keynote.com and http://www.ineoquest.com/
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