
NetScale: Scalable Time-stepped Hybrid Simulation of
Large IP Networks

Laurent Fournié, Dohy Hong and Florent Perisse
N2NSoft

11 bd Sébastopol, 75001, Paris FRANCE

{fournie, hong, perisse}@n2nsoft.com

ABSTRACT
This paper presents a scalable time-stepped hybrid simula-
tion algorithm which is well adapted to the simulation of
large IP networks (up to one million of competing flows and
network elements), while tracking reactive traffic behaviour
and packet-level phenomena e.g. timeout trigger or packet
burstiness. This simulation paradigm allows one to gain sev-
eral orders of magnitude of computation time compared to
traditional discrete event simulation approaches. The accu-
racy of this simulation method is evaluated by comparison
to other simulation methodologies. Examples of large scale
network simulations are also presented.

Categories and Subject Descriptors
I.6 [Simulation and Modeling]: Model Validation and
Analysis, Simulation Output Analysis

General Terms
Algorithms, Design, Performance.

Keywords
Discrete event simulation, congestion control, time-stepped
hybrid simulation, TCP/UDP traffic, scheduling.

1. INTRODUCTION
Internet traffic and in particular TCP/IP controlled traffic

is reactive, in that the amount of traffic sent by some source
continuously adapts to the network conditions, namely to
the number and the behaviour of the other sources compet-
ing for the network resources.

One can distinguish several classes of simulation method-
ologies for handling such reactive traffic: packet level–discrete
event simulation, hybrid simulation and fluid simulation.

Packet level–discrete event simulation (such as that used
in NS) is the most accurate but it suffers from serious scal-
ability limitations. The fluid simulation approach (of e.g.
[11, 7]) scales well but fails taking into account key network
engineering features such as buffering or scheduling policies,
as it does not allow one to accurately simulate or analyze
events, be it packet level, session level or buffer level events.

Hybrid simulation uses both fluid simulation paradigms
and discrete event simulation concepts. As we shall see
with our simulation tool, NetScale, hybrid simulation of-
fers a good compromise between accuracy and scalability
and allows one to cope with the adaptive nature of Internet
traffic.

Several hybrid approaches have been investigated in the
past (e.g. [11, 6, 2, 1]). The hybrid simulation approach
described in this paper was initially motivated by the mod-
els proposed in [1]. However, the incorporation of further
ideas borrowed from [2, 6], makes it much more powerful
than the initial vision. One of the key features of the ap-
proach, which is already present in [1] but absent from [2,
6], is the notion of flow aggregation, which relies on the def-
inition of flowclasses and route pre-computation. Another
important feature common to most hybrid methods is that
events are gathered by time steps but not sorted within each
time step. In contrast with what is done in [6], the pro-
posed simulation methodology does not keep in memory all
packet header information (which is computationally expen-
sive) but only some partial information, such as the number
of packets for each flowclass and for each time step. Indeed,
flowclass information is enough to efficiently route packets
in the network and simplifies the simulation of the router
buffering/scheduling policies and that of TCP dynamic.

The main goal of the present paper is to discuss and illus-
trate the possibilities opened by this type of hybrid simula-
tion.

2. ARCHITECTURE MODEL

2.1 Network model
The network is described by a set of nodes and links. We

define two classes of nodes: a set C of core nodes and a set T
of terminal nodes. Core nodes are meshed by a set L of links
on which routing policies can be defined. These core nodes
have instantiations as routers, switches, DSLAMs, Base Sta-
tions, RNCs etc. To each node or link, one can attach a
scheduling or queue management policy. Terminal nodes
represent access terminals and are directly attached to a
core node. They have instantiations as servers, xDSL con-
nections, mobile phones, Ethernet access terminals, WiFi
access points etc.

2.2 Traffic model
The traffic is described at flow level by a set F of flows. A

flow is characterized by two terminal nodes, a source node
and a destination node, and its service class (SC). The ser-
vice class is used, in particular, to map the Class of Service
(CoS) in IP headers or the ATM traffic classes.

2.2.1 Application layer
We use a generic ON-OFF source model (cf. e.g. [1, 3]):

an application is characterized by

ACM SIGCOMM Computer Communication Review 35 Volume 36, Number 5, October 2006

• the statistics of the destination location,

• the direction of the transmission: download, upload
or both, (e.g. download for HTTP session, upload for
P2P passive session, both for bidirectional VoIP),

• the file size distribution for TCP transfers (the ON
duration is not known a priori), or the ON duration
and send rate parameters for applications over UDP
(Voice or Video in CBR/VBR mode),

• the distribution of idle periods.

Libraries with the main usual applications (P2P, FTP,
HTTP, video, VoIP...) have been developed based on statis-
tical research results (e.g. for the typical file size distribution
[10, 4]) and on specification standards (e.g. 3GPP).

2.2.2 Transport layer
As NetScale simulates all packet transmissions and recep-

tions, no modeling part is necessary to integrate transport
protocols. In particular, TCP reactiveness will be the conse-
quence of the protocol specifications at the source and desti-
nation. Libraries with main transport protocols and variants
(UDP, TCP Reno, NewReno, SACK, Tahoe...) have been
implemented.

3. SIMULATION METHODOLOGY

3.1 Time stepped simulation
Time-stepped simulation consists in discretizing time into

a fixed-length time step and in treating the bundle of packets
falling into the time step without differentiating the detailed
events. The time step is typically a few milliseconds. The
reader should refer to [6] for a more detailed description
of the time stepped approach and the classification of the
different hybrid methods.

3.2 Flowclasses
As each terminal node is connected to a unique core node,

we can consider the set of flows which have the same char-
acteristics: source/destination core nodes, path in the core
network and SC. We will refer to it as a flowclass. After
each session establishment or routing change, the new path
is computed according to core node routing tables and the
flow is added to the corresponding flowclass. This scheme is
compatible with advanced routing: it has been successfully
used in [8] to study dynamic load-balancing mechanisms.

Defining flowclasses allows one to gather packets (and
acks) and to route them all at once, saving computation
time (compared to e.g. [6] which stores a list of all packet
headers and computes the next hop for each packet). Pack-
ets are stored per flowclass in so-called buckets, simple el-
ements holding the number of packets and losses. Buckets
are routed from one core node to another along the flowclass
path until they reach the destination core node. They are
delayed along the way because of buffering and propagation.

When a bucket reaches a congested core node, it is added
to the queue (cf. Section 3.4). If the buffer constraint is
reached, some of its packets are lost (and its loss counter
is incremented). Then, the queue outputs one bucket per
flowclass. Each bucket is sent to the corresponding link,
where it is stored during the propagation delay (rounded to
the time step granularity, the rounding bias is added to next
delay, to avoid cumulative rounding error).

3.3 Packet aggregation/de-aggregation
Packets generated flow by flow according to the applica-

tion and transport layers (cf. Section 2.2) are enqueued at
the source terminals and scheduled following the specifica-
tion of each terminal type.

0 5

0 5

0 5
0 5

F1

F2

F3

0 5
F4

FC1

0 5

FC2
0 5

step 3: buckets added

packet repartition stored

 in the network
step 2: aggregation

 in bucketsstep 1: flow dynamics

Figure 1: Packet aggregation

Figure 1 describes the way NetScale generates buckets in
the core nodes at each time step:

• step 1: packets are dequeued flow by flow from the
source terminals;

• step 2: packets from the same flowclass are gathered
in a bucket. Moreover, the number of packets per flow
for this time step is stored to correctly spread packets
at destination nodes (see step 6);

• step 3: buckets are added in the first core node queue,
then propagated along the flowclass route.

10

10

10

10

10

FC1

FC2

F2

F1

F3

10
F4

10

packet repartition

step 4: last corenode
output step 5: bucket selection step 6: packet arrivals

Figure 2: Packet repartition among flows

Once the last core node output is computed, we have to
assign packets to their original flow. Figure 2 describes the
way NetScale spreads packets:

• step 4: the last core node outputs buckets with the
corresponding number of transmitted and lost packets;

• step 5: buckets which have reached their destination
are removed from the core network;

• step 6: using the flowclass packet repartition stored in
step 2, packets are assigned to their respective flows
and scheduled in destination terminal nodes.

As explained above, NetScale does not store information
on the individual packets in the core nodes. As a conse-
quence, we need a way to estimate the arriving packet se-
quence numbers (e.g. to decide when to trigger duplicate
acks for TCP): we keep the information on lost packets until
destination (cf. Section 3.2). Hence, assuming that packet
order is kept and combining the information on the number
of packets and of losses in each time step, we can compute
the sequence numbers of arriving packets.

We also need to accurately estimate round trip times at
TCP sources: we store at step 2 (Figure 1) the packet trans-
mission time (rounded to the time step granularity, one value
per flowclass), so that we can measure the experienced round
trip time when acknowledgments arrive at the sender.

ACM SIGCOMM Computer Communication Review 36 Volume 36, Number 5, October 2006

3.4 Queueing dynamics: example of a FIFO
queue

Each core node is characterized by the choice of a schedul-
ing policy, a queueing management, a propagation delay and
a routing table. For the sake of simplicity, we only con-
sider FIFO queues here. However, the SC information at
flow level can be used to simulate any flowclass differen-
tiation policy such as weighted fair queueing, DiffServ or
features like shaping, policing, Active Queue Management
mechanisms (e.g. WRED). The extension to input or out-
put buffered switches and e.g. maximal weight scheduling
can also be integrated.

t=0

t=1

t=2

loss = max(unif[−2,2],0)
=> 1 lost (at t=1)

Figure 3: Simulation of a FIFO queue.

Figure 3 describes the NetScale modeling of a FIFO queue
with a capacity D of 4 packets per timeslot and a buffer size
B of 12 packets. Each time step, a new bucket for each
flowclass is added to the queue size: q′ = q + A, where q
is the previous queue size and A the amount of packets in
new buckets. After packet arrivals, we first check the buffer
level. The number of lost packets is bounded by: (q′ −B)+

(all packets arrive at the beginning of the time step) and
(q′ − B − D)+ (packets are spaced regularly). The number
of losses depends on the packet inter-arrival law. If this law
is known, we could pre-compute the corresponding empirical
law of the number of losses. Here, we sampled a uniformly
distributed random value between (q′ − B) and (q′ − B −
D). The lost packets are then spread among flowclasses,
with a probability proportional to the number of packets in
the newly arrived buckets. Other models (e.g. cf. [6]) of
loss repartition can be used as well. The presence of this
modeling or measurement based element is the reason for
which the simulation method described here is called hybrid.

Then, we serve the oldest buckets: packets are removed
from the buckets and gathered in output buckets (again,
buckets are separated by flowclass). For instance, at t = 2,
buckets arrived at t = −1 and t = 0 are completely served
and the fourth packet to be served is sampled randomly
inside buckets arrived at time t = 1.

4. VALIDATION AND PERFORMANCE
To evaluate the accuracy of this approach, we first ran the

whole set of scenarios of [5] for each TCP version. Figure 4
shows the outputs from NetScale for the case of TCP SACK
with four packet losses. The time step was set to 10ms, so
that the bottleneck router serves only one packet per time
step. The packet dynamic matches very closely the one in
[5], with an error on RTT bounded by the time step. The

Time Step (ms) ns2 1 2 4 10
AvgQueue (Mbit) 7.17 7.04 7.00 6.98 6.97
Loss Proba (%) 0.216 0.217 0.201 0.222 0.223
CPU Time Ratio 1 0.52 0.27 0.13 0.07
Memory (MB) 27 2.9 2.7 2.6 2.6

Table 1: Impact of the time step.

reactive nature of the TCP protocol is accurately captured
by NetScale in all scenarios. With a longer time step, as the
packet burstiness is not simulated inside one timeslot, the
loss and input processes may be slightly different.

 0

 10

 20

 30

 40

 50

 60

 0 0.5 1 1.5 2 2.5 3 3.5 4

P
ac

ke
t N

um
be

r
(M

od
 6

0)

Time

packets
acks

lost packets

Figure 4: Sack TCP with four dropped packets

The impact of the time step is shown in Table 1 for a
Dumbbell network with 100 on/off TCP SACK flows.1 The
file size (respectively off time) distribution is exponential
with mean 20 Mbit (resp. 5s). The shared capacity and
buffer size are 100Mbit/s and 1250 pkts with packet size of 1
kbytes and maximum window size of 60 pkts. The minimum
round trip times (RTTmin) are sampled uniformly on [100,
200] ms. For the timeout probability, we noticed a significant
difference (0.6 e−5 vs 1.2 e−5 for NetScale and ns2 resp.): as
NetScale and ns2 results match closely for this probability
when running TCP Reno (2.8 e−4 for NetScale vs 2.5 e−4

for ns2), we suspect that this difference comes from variants
of the SACK protocol. Figure 5 plots the input rate density
for ns2 and NetScale with different time steps. As predicted,
the model accuracy increases for smaller time steps.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 20 40 60 80 100 120 140 160 180

P
ro

p
o
rt

io
n
 (

%
)

Input Rate (Mbit/s)

ns2
1ms
2ms
4ms

10ms

Figure 5: Input Rate density

To evaluate the benefits of NetScale, we compared its per-
formance with that of ns2, for an increasing number of flows.
The scenario is a Dumbbell network with N TCP persistent
flows. The shared capacity is set to 2Mbit/s × N and the
buffer size to 25 × N pkts. The RTTmin is equal to 0.1s.
Figure 6 shows ns2 (thin lines) and NetScale (large lines)
run times (red lines with crosses) and used memory sizes
(blue lines with squares), as a function of the capacity, for
a simulation time of 500s. The time step is 10ms.

For small networks, we can see that CPU time and mem-
ory size are 10 times lower with NetScale. However, the gain
by flowclass aggregation, route pre-computation and time

1For each scenario, the average value of three simulations is
presented.

ACM SIGCOMM Computer Communication Review 37 Volume 36, Number 5, October 2006

 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07

 1 10 100 1000 10000 100000 1e+06
 1

 10

 100

 1000

 10000

 100000

 1e+06

 1e+07
C

PU
 ti

m
e

(s
)

U
se

d
m

em
or

y
(M

by
te

s)

Capacity (Mb/s)

Netscale (time)
Netscale (memory)

ns2 (time)
ns2 (memory)

Figure 6: Run time and memory occupation.

stepped simulation, is more significant for large networks:
CPU time increases linearly whereas it grows drastically for
ns2. The gain factor for 1000 flows is 1000.

5. EXAMPLES OF LARGE NETWORK
SIMULATIONS

NetScale has been also tested in various large heteroge-
neous network architectures. Simulation results obtained by
NetScale on the European research network GEANT (Fig-
ure 7) topology are reported in [9]: the topology includes 19
core nodes and 60 gigabit links, on which several hundreds
of thousands DSL access terminals have been connected and
up to 15 millions of TCP sessions analyzed (hundreds Tbits
of data for 1000s simulated).

Figure 7: The GEANT (European Research Net-
work) topology.

For this scenario, NetScale could both derive detailed end-
to-end session level performance (goodput, losses, jitters...)
and global link/network properties (utilization, availabil-
ity...) in classical and dynamic routing settings. For more
details, the reader should refer to [8, 9].

We also used NetScale for analyzing large tree-like DSL
access networks with IP/ATM type DSLAMs. In such a
context, TCP plays a key role, as access is most often the
bottleneck, and NetScale allowed us to study the detailed
service differentiation mechanisms present in such IP/ATM
architectures.

It is also possible to mix the hybrid approach with pure
packet level simulation: such a mixed approach has been
validated e.g. for large UMTS/HSDPA networks (including

thousands of base stations). These last issues will be the
object of a future publication.

6. CONCLUSION
In this paper, we briefly discussed the advantages of com-

bining time-stepped hybrid simulation and a flow aggrega-
tion based on a pre-computation of routes. We showed that
this approach combines scalability and an excellent accuracy
when compared to packet level discrete event simulation.
This approach opens new possibilities for simulating, ana-
lyzing and understanding large and heterogeneous IP net-
works in a systematic and unified way.

Acknowledgments
The authors are very grateful to François Baccelli for his
very valuable comments and suggestions. The authors wish
to thank also Philippe Raoult and Max Unger for their gen-
erous contributions.

7. REFERENCES
[1] Baccelli, F., Hong, D. (2003) Flow Level Simulation of

Large IP Networks. Proc. of INFOCOM, April.

[2] Bohacek, S. Hespanha, J. P., Lee, J. and Obraczka K.
(2003) A Hybrid Systems Modeling Framework for
Fast and Accurate Simulation of Data Communication
Networks. ACM SIGMETRICS, June.

[3] Cao, J., Cleveland, W., Gao, Y., Jeffay, K., Smith,
F.D., Weigle, M. (2004) Stochastic Models for
Generating Synthetic HTTP Source Traffic. Proc. of

INFOCOM, March.

[4] Crovella, M.E., Taqqu, M.S. and Bestavros, A. (1998)
Heavy-Tailed Probability Distributions in the World
Wide Web. A Prac. Guide To Heavy Tails: Stat. Tech.

and Appl., Birkhauser Verlag.

[5] Fall, K., Floyd, S. (1996) Simulation-based
Comparisons of Tahoe, Reno, and SACK TCP
Computer Communications review, July

[6] Guo, Y., Gong, W-B. and Towsley, D. (2000)
Time-stepped Hybrid Simulation (TSHS) for Large
Scale Networks. Proc. INFOCOM, pp. 441-450.

[7] Liu, Y., Presti, F.L., Misra, V., Towsley, D., Gu, Y.
(2003) Fluid Models and Solutions for Large-Scale IP
Networks Proc. of ACM SIGMETRIC.

[8] Randriamasy, S., Fournié, L., Hong, D. (2006)
Distributed Multi-path and Multi-objective routing
for network operation and dimensioning. 2nd

EuroNGI Conf, April.

[9] Randriamasy, S., Fournié, L., Hong, D. (2006)
Distributed adaptive multi-criteria load balancing:
analysis and end to end simulation. INFOCOM Poster

and Demo Session, April.

[10] Willinger, W., Paxson, V. and Taqqu, M.S. (1998)
Self-Similarity and Heavy Tails: Structural Modeling
of Network Traffic. A Prac. Guide to Heavy

TailsBirkhauser Verlag.

[11] Yan, A. and Gong, W-B. (1999) Time-Driven Fluid
Simulation for High-Speed Networks. IEEE Trans. on

Inf. Theory, vol 45, no. 5, July.

ACM SIGCOMM Computer Communication Review 38 Volume 36, Number 5, October 2006

