"Publish or Perish" in the Internet Age

A study of publication statistics in computer networking research

Dah Ming Chiu and Tom Z. J. Fu
Department of Information Engineering, CUHK
\{dmchiu, zjfu6\}@ie.cuhk.edu.hk

This article is an editorial note submitted to CCR. It has NOT been peer reviewed. The author takes full responsibility for this article’s technical content. Comments can be posted through CCR Online.

ABSTRACT
This study takes papers from a selected set of computer networking conferences and journals spanning the past twenty years (1989-2008) to produce various statistics to show how our community publishes papers, and how this process is changing over the years. We observe the rapid growth in the rate of publications, venues, citations, authors, and number of co-authors. We explain how these quantities are related, in particular explore how they are related over time and the reasons behind the changes. The widely accepted model to explain the power law distribution of paper citations is preferential attachment. We propose an extension and refinement that suggests elapsed time is also a factor to determine which papers get cited. We try to compare the selected venues based on citation count, and discuss how we might think about these comparisons, in terms of the roles played by different venues, and the ability to predict impact by venues, and citation counts. The treatment of these issues is general and can be applied to study publication patterns in other research communities. The larger goal of this study is to generate discussion about our publication system, and work towards a vision to transform our publication system for better scalability and effectiveness.

Categories and Subject Descriptors
C.2.0 [Computer-Communication Networks]: General

General Terms
Documentation, Performance

Keywords
citation, h-index, g-index, co-authorship, academic publishing

1. INTRODUCTION
The academic publication machineries, taken as a whole, provides an archive for peer-reviewed academic papers. In the process, the meta-information associated with the publications, such as date and venue of publication, authorship and citations can also be readily gathered from various sources [1–5]. Such publication records can be very useful for research, though it is perhaps most often used in performance evaluation for hiring, promotion and tenure cases in the academic world. In this paper, we study the publication records of a selected set of conferences and journals in the networking field in the past 10-20 years at an aggregate level, summarize, and discuss the statistics. Through these statistics, we hope to (1) share some interesting observations about the way our community publish, and the characteristics of some familiar conferences and journals; (2) ask questions and generate interest for future studies; (3) get feedback on methodologies and possible collaboration for this kind of studies.

For the rest of the paper, we begin by describing (a) the paperset we use in the context of existing on-line sources, and (b) the most important previous works and our approach. Subsequently, we discuss various results and observations one by one, ending with a conclusion section. For more detailed statistics and a detailed explanation of the methodology, see our technical report [9].

2. DATA MODEL
We begin with a brief definition of terminology and an explanation of the data we analyze.
A paper is published by a venue at a date. Venues refer to conferences (workshops) or journals. Most of them publish papers on a periodic basis (e.g. every year, or every month). A paperset is a collection of papers we use to calculate various statistics. Each paper has one or more authors; each author may publish one or more papers. As a rule, each paper cites related papers published earlier. The citation count of a paper, which changes as time goes on, is the total citation received by a paper by a given time. This data model is used by various providers of academic publication statistics, e.g. Google Scholar [1], DBLP [2], IEEE [3], ACM [4], ISI [5], Citeseer [6], or Microsoft Libra [7]. These providers, however, tend to use different papersets. For example, Citeseer, DBLP and Libra focus mostly on computer science and related literature, but each has its own rules of which conferences/papers to include or not. The various statistics, e.g. citation count of papers, are derived from the respective closed papersets, leaving them not cross-comparable. They also tend to use different metrics, e.g. ISI and Citeseer may have different definitions of impact factor for venues.

For our study, we decided to focus on a particular research field, in this case, computer networking. We also decided to use the Google Scholar citation count (for each paper we consider) because Google Scholar's paperset is arguably the largest. This decision has a couple of consequences: (a) The
The process of gathering citation counts from Google Scholar cannot be completely automated. For a given set of papers, it takes some time to gather the citation counts with some level of manual verification. (b) The citation count of a paper in Google Scholar is continuously updated and changing. This means we need to focus on a limited set of conferences. In this study, we tried to choose those venues that we are more familiar with, and tried to pick different types to make them reasonably representative.

The paperset we consider comes from the set of venues listed in Table 1. We illustrate its relationship to the other papersets in Fig 1. The citation counts are gathered from Google Scholar in late summer of 2009, and can be considered as a snapshot.

![Illustration of several existing data sets.](image)

Table 1: Paper set.

<table>
<thead>
<tr>
<th>Venue name</th>
<th># years</th>
<th>Total # papers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigcomm (88-08)</td>
<td>21</td>
<td>612</td>
</tr>
<tr>
<td>Infocom (89-08)</td>
<td>20</td>
<td>4069</td>
</tr>
<tr>
<td>Sigmetrics (89-08)</td>
<td>20</td>
<td>785</td>
</tr>
<tr>
<td>Elsevier CN (89-08)</td>
<td>20</td>
<td>2953</td>
</tr>
<tr>
<td>IEEE/ACM ToN (90-08)</td>
<td>16</td>
<td>1331</td>
</tr>
<tr>
<td>ICNP (93-08)</td>
<td>16</td>
<td>559</td>
</tr>
<tr>
<td>MobiCom (95-08)</td>
<td>14</td>
<td>385</td>
</tr>
<tr>
<td>ICC (98-08)</td>
<td>11</td>
<td>7721</td>
</tr>
<tr>
<td>WWW (01-08)</td>
<td>8</td>
<td>1063</td>
</tr>
<tr>
<td>IMC (01-08)</td>
<td>8</td>
<td>281</td>
</tr>
<tr>
<td>NSDI (04-08)</td>
<td>5</td>
<td>138</td>
</tr>
</tbody>
</table>

The study of academic publication statistics is by no means new. Previous attention focused mostly in different areas of science, especially physics. In fact, the field of this study is referred to as Scientometrics. The most influential work was published in 1965 by Derek de Solla Price, [10] in which he considered papers and citations as a network, and noticed the citation distribution (degree distribution) follows the power law. He tried to explain this phenomenon using a simple model, later referred to as the model of preferential attachment (i.e. a paper is more likely to cite another paper with more existing citations). Other authors also turned their attention to the network formed by authors who wrote papers together [13–17]. The difference in our study, other than the focus on the computer networking field, is mainly in the consideration of how things change over time. In the discussion of our results, we will make passing reference to the prior works as the opportunities arise.

3. PAPER INFLATION

It should not be surprising to observe that we are seeing a rapid increase in the rate we are publishing papers in our field. We can account for the increase in terms of:

1. Many conferences increase the number of papers the publish, usually by increasing the number of tracks of presentation. Fig 2 shows the total rate of publication of the list of venues we consider.

2. Most successful conferences gradually add workshops before/after the main event, which allow more papers to be published. Fig 2 also shows the number of workshops associated with the list of conferences in our list.

3. The number of conferences and journals have increased significantly over the last 10-20 years. Fig 3 shows the number of venues in CiteSeerX’s venue impact factor report. CiteSeerX tracks a much larger field than networking; based on our experience, we are assuming the growth of the networking field is strongly correlated to that of the superset tracked by CiteSeerX.

![Total number papers and number of associated workshops changing by year.](image)

Discussion - Likely reasons for paper inflation: We think the following are important reasons for paper inflation.

1. The number of authors is increasing. We will show some statistics in a later section on authorship. There may be various reasons for the increase, but two comes to mind: (a) The success of Internet and WWW has drastically raised people’s awareness and interest in working on computer networking. This is sometimes referred to as the dotcom effect. (b) Due the economic developments and opening-up of many developing countries, most notably China, a large number of authors are joining the research community overall.

2. The rate of publication per author is edging up. In order to raise the level of measurable output, many academic units or individual themselves strive to publish
more. Sometimes a minimum number of publications is imposed before a student can obtain a graduate degree.

3. The Internet and WWW make publications more accessible. As a result, publications are shared more globally.

Discussion - Consequences of paper inflation: A rapid increase in publication puts great stress on the peer-review systems. Given the decentralized way publication venues are run, the relevant papers for any research topic may become more spread out, making it harder for researchers to follow the literature, hence increase the chances of reinventing the wheels. There have been various proposals to revamp the whole publication system. It is indeed very exciting to think about how to design a global and scalable on-line system that all researchers can share their research results, and in the end all the accounting (of who did what) can be kept, and it remains highly usable (in terms of ease of finding the useful and relevant information quickly).

4. CITATION INFLATION

First, we plot the distribution of citation count earned by papers in our paperset using a log-log scale, as shown in Fig 4. The result is consistent with prior works based on larger data sets [17].

It is more interesting to observe what happens when we plot the total citation count of time, shown in Fig 5. Preferential attachment alone cannot explain this, as there seems a pronounced dependence on time. The total citation count seems to be an increasing function till some point (7-8 years from the current time) then it starts decreasing.

This curve can be explained intuitively. First, the fall in total citation count in more recent years is due to the fact that citation count takes time to build up. The more recent the year, the less the time for this build-up. The rise of the curve during the early years has also a good reason: it is a (subtle) consequence of paper inflation. By having fewer papers in earlier years, we lower the rate citations are collected in earlier years as well.

What is even more interesting is that we believe we discovered evidence that there is fashion in research. In other words, researchers may favor citing papers published in the recent past. This observation comes from our effort to create a model to explain the citation curve.

Let us try to explain the situation by a simple model. Let the number of papers published in year \(t \) be denoted by \(x_t \), and the number of citations a paper makes be \(\gamma \) (a constant). The total number of citations made in year \(t \) is thus \(\gamma x_t \).

The distribution of these citations to the papers published \(n \) years from the current year \(t \) is denoted \(c(n,t) \). Assuming the time horizon for \(t \) is \([s, f]\), then

\[
c(n,t) = \frac{\alpha(n)x_{t-n}}{\sum_{n=1}^{f-s} \alpha(n)x_{t-n} \gamma} x_t \gamma.
\]
The total citations received in year \(t \), denoted \(c(t) \), is then

\[
c(t) = \sum_{i=(t-1)}^{f} c(i - t, i),
\]

We then use different plausible distributions for \(\alpha(n) \), and try to fit the curve we have. We tried to use the uniform distribution and Poisson distribution with various parameters. The result for the Poisson distribution worked quite well. The paper increasing statistics is plotted in Fig 6. We used a smoothened version to model \(x_t \). The dotted line is a projection into the next few years. The resulting citation curve predicted by the model (with a mean for \(\alpha \) of 4 years\(^2\)) is as shown in Fig 7. The fashion in research, based on this data set, is thus research topics first published 3-4 years earlier.

Finally, the dotted line curve is a prediction for inflation down the road - the expected number of citation counts in the coming years based on the trend.

Figure 6: Total number of papers in each year versus quadratic fitting curve with four-year prediction.

![Figure 6](image.png)

Figure 7: Total citation number of published papers versus Poisson model with four-year prediction.

![Figure 7](image.png)

Discussion - model assumption: Needless to say, our model assumes a closed paperset that cites papers internal to the set. In our analysis, our paperset is but a (small) subset of all the networking papers in the last 10-20 years. So there is inaccuracies due to papers in our paperset citing other papers, and other papers citing our papers. We are overlooking these issues in this simple analysis.

Discussion - adjusting to inflation: Citation count (and paper count) inflation is a phenomenon relevant to people making evaluations based on citation year after year. In year \(t \), you may think a paper (or a person) receiving a citation count of at least \(c \) as adequate/good. In year \(t + 1 \), you would need to adjust your threshold up due to citation inflation. We have demonstrated how you might compute the inflation rate from a simple model, once you know about the paper inflation rate, and some idea of the citation distribution function \(\alpha \).

Similarly, when comparing two papers published at different times by citation count, you may consider using our model as a way to calibrate the comparison.

Discussion - research fashion? The model of preferential attachment alone does not seem rich enough to explain the aggregate behavior citation counts. The model of research fashion seems very interesting to us. To further validate the model, we need to use a paper database with more detailed information, e.g. including the times at which citations are made.

5. COMPARISON OF VENUES

Perhaps the most interesting question to readers is how the publication venues compare to each other, in terms of citation count. This corresponds to what is known as the impact factor in academic circles. There is no standard definition of impact factor, so we will use a number of different metrics to compute the citation statistics for different venues over a period of time: (i) The top twentieth paper; (ii) the average; (iii) the percentiles; (iv) the h-index; (v) the g-index. The results are tallied in Table 2.

H-index [8,12] and g-index [11] are recently proposed metrics for computing impact factor as a single number. To derive these numbers, you first sort all papers in descending order of citation count; h-index is the highest index \((h) \) of a paper whose citation count is at least \(h \), and g-index is the highest index \((g) \) of a paper such that the sum of the citation counts from paper 1 to \(g \) is at least \(g^2 \). H-index was originally proposed for evaluating the impact factor of a person. G-index is a variation of that. Both can be used to evaluate the impact factor of any aggregate of papers.

Comparing publication venues is controversial. There are several issues: (a) there is no well-established metric; (b) the venues publish papers at different rates (c) in our paperset, the data cover different time periods, and we know from the citation inflation discussion, it is not fair to compare citation statistics for paper published at different time. For (a), what we try to do is to apply many different metrics and let the readers make their own judgements. For (b) and (c), we re-computed all the statistics for a window of three years common to all venues. Indeed, the ranking for NSDI, the venue had the most negative bias, moved up in ranking in all metrics. The other conferences with 8 years of papers (WWW and IMC) also moved up slightly. The detailed results can be found in the technical report [9].

To remove the time-dependent effects, we can also try to do the comparison on a year by year fashion. Instead of doing this for all metrics, we do it using only one metric: plot...
the median citation count for all venues (in Fig 8). In this case, a couple of conferences consistently stand out - these are the ACM single-track conferences Sigcomm and MobiCom, with very low annual acceptance rates (about 10%).

<table>
<thead>
<tr>
<th>Venue name</th>
<th># of paper</th>
<th>top 20th Avg. 90- 80- 70- 60- 50- 40- 30- 20- 10- h-index g-index</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigcomm</td>
<td>612</td>
<td>1155 233.5 513 281 181 114 79 58 34 16 6 179 362</td>
</tr>
<tr>
<td>MobiCom</td>
<td>385</td>
<td>962 201.3 484 230 142 93 62 39 22 12 5 124 276</td>
</tr>
<tr>
<td>ToN</td>
<td>1331</td>
<td>1026 99.4 206 102 61 39 24 16 10 5 2 167 333</td>
</tr>
<tr>
<td>NSDI</td>
<td>138</td>
<td>108 53.2 141 85 61 39 28 20 16 11 7 50 82</td>
</tr>
<tr>
<td>IMC</td>
<td>281</td>
<td>144 52.9 126 82 57 42 28 18 11 6 3 68 111</td>
</tr>
<tr>
<td>Infocom</td>
<td>4069</td>
<td>727 52.3 132 69 40 25 16 10 6 3 1 207 341</td>
</tr>
<tr>
<td>Sigmetrics</td>
<td>795</td>
<td>233 47.9 113 66 42 27 18 11 7 3 1 97 167</td>
</tr>
<tr>
<td>WWW</td>
<td>1063</td>
<td>293 40.8 120 51 32 20 11 7 3 2 0 110 176</td>
</tr>
<tr>
<td>ICNP</td>
<td>559</td>
<td>156 30.2 76 43 24 14 10 6 3 1 0 66 113</td>
</tr>
<tr>
<td>Elsevier CN</td>
<td>2953</td>
<td>453 29.2 54 25 15 9 6 4 2 1 0 127 241</td>
</tr>
<tr>
<td>ICC</td>
<td>7721</td>
<td>270 9.3 20 10 6 4 3 1 1 0 0 100 161</td>
</tr>
</tbody>
</table>

Table 2: Percentile- and index-based analysis on 11 selected venues.

Figure 8: Median citation number of 11 selected venues in Computer Networking field with all paper counted in each year.

Discussion - different needs: First, it is expected that there are many levels of publications. In one extreme, we have papers based on new discovery, or a new idea, or by experienced researchers who have certain amount of self-discipline when submitting papers. In the other extreme, we have many papers written to mostly fulfill graduation, or job requirements. Different venues position themselves to satisfy different needs, in the process providing different kinds of service to the community.

Discussion - use of venue to judge impact: If the venue of a paper is used to predict the potential impact of that paper, the different venues have very different predictive power. For example, if we consider a (Google-scholar) citation count of 20 or higher to be of impact, then a Sigcomm paper is close to 80% likely to satisfy that threshold, whereas an ICC paper has only 10% likelihood of doing so. For venues with low predictive power, the citation count should be considered as well. In some academic institutions, only papers from journals are counted. This may be a reasonable simplification for conferences like ICC, but it is not wise to exclude those conferences that can indicate high
citation count reliably. For example, in our paper set, Infocom published comparable number of papers as the journal Computer Networks, and for each percentile, the paper from the former had more citations than that of the latter.

Discussion - use of citation count to judge impact: Of course, citation count is not always a reliable indicator of impact. For citation count produced by Google Scholar, since it does not remove self-citations and it includes some on-line articles not peer-reviewed, it can have a lot of noise, especially when the value is lower than a certain threshold (of 10 for example). Finally, the correlation of the citation count of a paper to the quality and research value of a paper is complicated. Whether a paper gets cited seems to depend a lot on whether it gets introduced to and read by other researchers interested in the same topic, which can no longer be guaranteed these days since the rate of publication is higher than the ability of a researcher to follow them. Many other factors, such as presenting the paper to more people at different occasions, the prestige and the social connection and activeness of the authors, all seem to bias the citation count. To remove the effect of the noise, perhaps a condensed scale should be established (e.g. 0-10, 10-20, 20-50, 50-100, 100-200 etc counts as 0,1,2,3,4 and so on)\(^3\). The other major problem with the use of citation count is the initial time lag. For this, our model of deriving the effect of this lag on an average basis can be used as a rough predictor of citation count of a young paper. This is a topic worthy of further study. In our study, we do not have the citation history of individual papers. Some repositories provide this, such as ISI [5], but Google Scholar’s output format does not make it easy to collect this information. It is interesting to study what the history (the rate of citation over time, and perhaps where the citations come from) can predict. For example, what type of impact? is it due to a controversy, or a short-lived hot topic? how broad and lasting is the impact?

6. CONFERENCE-THEN-JOURNAL

It seems we often publish a paper in conference, and then journalize it. How often do people try and successfully journalize a paper? It is said computer science people prefer to only look at conference papers, and usually do not bother journalize papers. We compiled some statistics to look at papers that were published in conference first and were journalized subsequently, versus papers that were not journalized. The method to determine a journalized paper is somewhat

\(^3\)This method is used to score matches in contract bridge.
Table 3: Comparison on average citation number between journalized papers and non-journalized ones.

<table>
<thead>
<tr>
<th>Conf.</th>
<th>Total</th>
<th>Journalized</th>
<th>Conf Cite</th>
<th>Jnl Cite</th>
<th>Total Cite</th>
<th>Non Jnl Cite</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sigcomm</td>
<td>541</td>
<td>108</td>
<td>276.5</td>
<td>298.9</td>
<td>575.4</td>
<td>193.1</td>
</tr>
<tr>
<td>Infocom</td>
<td>3415</td>
<td>597</td>
<td>34.9</td>
<td>82.1</td>
<td>117.0</td>
<td>56.0</td>
</tr>
<tr>
<td>Sigmetrics</td>
<td>691</td>
<td>88</td>
<td>37.3</td>
<td>84.3</td>
<td>121.6</td>
<td>47.7</td>
</tr>
<tr>
<td>ICNP</td>
<td>414</td>
<td>58</td>
<td>41.2</td>
<td>55.4</td>
<td>96.6</td>
<td>31.9</td>
</tr>
<tr>
<td>MobiCom</td>
<td>314</td>
<td>91</td>
<td>72.9</td>
<td>205.0</td>
<td>277.9</td>
<td>245.9</td>
</tr>
<tr>
<td>ICC</td>
<td>5547</td>
<td>336</td>
<td>7.5</td>
<td>17.8</td>
<td>25.3</td>
<td>12.3</td>
</tr>
<tr>
<td>WWW</td>
<td>598</td>
<td>65</td>
<td>71.9</td>
<td>97.6</td>
<td>169.5</td>
<td>58.1</td>
</tr>
<tr>
<td>IMC</td>
<td>209</td>
<td>17</td>
<td>82.6</td>
<td>74.2</td>
<td>145.8</td>
<td>60.4</td>
</tr>
</tbody>
</table>

Discussion - percentage of papers journalized: Across the board, less than 20% of the papers are journalized, and the overall average is significantly lower than 10%. The relatively low percentage may be due to different reasons. For ACM conferences, some authors may consider there is no need to journalize; so the limit may be caused by the authors. For other conferences, it can be limited by the quality of the paper.

Discussion - journalizing and citation count: First, again across the board, the total citation count (for the conference version plus the journal version), on average, is higher than those non-journalized papers (in last column). Apparently, two rounds of peer reviews can better sort out work with more impact - this is reasonable and expected. Note, this applies to the case of the ACM conferences as well.

Second, the journal version, on average, receive more citations than the conference version. The exception is IMC. Our guess is that for a measurement conference, timeliness of a paper is more important than other type of papers, possibly leading to the poorer citation count for the journalized versions. This can also be due to a glitch, since the sample size for IMC is quite small. For this topic, we have done more analysis. For example, to find out the distribution of the number of years it takes to journalize (most often 1-2 years, but there are cases between 0 to 8 years); and to find out which journals the conference paper go. The readers are referred to read our technical report for more details.

Discussion - archival versus quality differentiation

Originally, an important need for journalizing is because it serves an archival need. Nowadays, it can be argued that conference papers are equally well-archived. So the gain in journalization is mostly in allowing more time and more rigorous reviewing to achieve higher quality. But in reality, the review process for journals are not that more extensive than the better quality conferences; and neither have consistent quality control. A scalable and consistent mechanism for quality differentiation of publications is a very interesting open problem.

7. AUTHORSHIP STATISTICS

We now turn to authorship statistics. Let us define a few quantities, each for a given period of time:

- \(n \): number of papers published;
- \(m \): number of distinct authors;
- \(r \): average number of papers published by each author;
- \(q \): average number of co-authors per paper.

And there exists an invariant relationship connecting these quantities:

\[nq = mr \]

We can call this the balancing equation of authorship.

It can be easily verified that the equation is valid. There is one challenging problem - how to separate out distinct authors. We adopted the simplest solution - take the name from the paper as is. This method has two problems:

1. Name collision - more than one real person share the same name. They will be treated as the same author by us.
2. Multiple name representations - for example, Dah Ming Chiu is sometimes represented as D. M. Chiu. In this case, one real person is considered as two separate authors by us.

We will come back to this issue later in the section.

We can consider 1989-2008, the twenty years of our paper, as one period. But the time aspect is lost. We are interested to see how the above statistics \((n, m, r, q)\) changed over the twenty years. If we consider each year as a separate period of time, the sample size is small (hence variance would be large). So we divided the twenty years into four windows of five-year periods. The resulting quantities are tabulated in Table 4.

From the column for \(n \), we see the number of papers published in successive 5-year windows increased very rapidly, as we discussed before. The number of distinct authors in the corresponding periods had equally rapid increases. Many of these authors (perhaps most students) wrote only a single paper, as shown in Fig 9.
It is interesting to note that the number of co-authors per paper has increased nearly 50%. At the same time, the number of papers per author also increased about 20-30%. These are all average numbers. If a large group of people maintain the same behavior (e.g. write only one paper), then the rest of the people must have incurred a much more significant change. In Table 5, we separately account for the number of co-authors per paper for each conference. We see that the number of co-authors stayed relatively more constant for some large conferences like Infocom. At the same time, some smaller conferences such as Sigcomm underwent much more significant increase in number of co-authors.

We found a way to double-check our method using another paperset. The DBLP [2] project open their paperset data for the public to use. Their paperset is much larger, containing approximately 1.1 million papers (1989-2008) covering a broader set of disciplines. We extract those published in computer networking venues in 1989-2008, a total of 105441 papers. For these papers, we performed the same (aggregate) authorship analysis. The results are shown in Table 6. If we plot the distribution of papers per author for each of the five-year intervals, the result is basically the same as that shown in Fig 9: We see increasing number of authors over time, but the distribution remains the same. This means a set of curves with the same (negative) slope, moved out slightly corresponding to the increased author numbers. In Fig 10, we plot the distribution for the entire period (1989-2008) for both papersets, for a comparison.
authorship relationships, and will be treated as two separate authors. Despite a different (and much larger) paper set, and a somewhat different way of identifying distinct authors, the resultant statistics are quite similar to those from our smaller paper set.

Discussion - authorship observations: These results on authorship confirmed our speculation on the reasons for paper inflation earlier. Indeed, we have all these causes - more authors, and authors are writing more papers on average. It behooves us to further study the type of authors and their contribution to the load on the publication system. Such information can be very helpful in the discussion of how to transform the current system into a more scalable system.

Discussion - co-authorship implications: The co-authorship patterns and statistics can help us understand the prevailing collaboration trends, inter-institution or intra-institution. For intra-institution, the traditional mode may be dominated by student-supervisor collaboration. The increased co-authorship numbers may indicate group supervision, or hierarchical research groups are becoming more common. As pressure for more publications increase, there is also suspicion by some that some co-authors are free-riding. We are not able to ascertain this one way or the other.

Overall, the number of co-authors for computer networking (from our statistics) is similar to that for the field of physics (average 2.53) and biology (average 3.75), but higher than that for mathematics (average 1.45), as reported by a 2004 study by Newman [14].

Another interesting co-authorship analysis is to look at the collaborator distribution - how many collaborators an author has - on both data sets (in Fig 11).

Discussion - relationship to other studies: Previous to this section, the analysis is based on only the paper citation network (node=paper, link=citation). For the authorship analysis, the network is extended to authors. There are two types of relationships: author-to-paper, and author-to-author (co-authorship). The author network is a special case of social network. There is considerable related work on this, and the more recent interest in on-line social networks. A proper survey of this area is beyond the scope of our current study.

8. AUTHOR PRODUCTIVITY

Suppose we agree to take the number of published papers as a measure of author productivity. We are interested to find out what factors have statistical correlation to productivity. We are able to study a few factors and report them here.

The first factor we consider is the number of distinct collaborators. The correlation (of number of papers to number of collaborators) is plotted in Fig 12. There is clearly some correlation.

Discussion - supervision of students: As we discussed earlier, there may be many patterns of collaboration. The collaboration between a supervisor and his/her students (or other hierarchical relationships) would lead a clear-cut correlation, a straight line with the slope corresponding to the average number of papers published involving a student. If other lateral collaboration relationships can be separated out, it would be interesting to see how the behaviour is different.

The next factor we consider is the number of active years. There are at least two ways to define active years: (a) the number of years, starting from the year of the first publication to the year of the last publication, of a given author; (b) the number of years in which a given author published at least one paper. We used the latter definition, and plot the result in Fig 13. Again, there is clearly positive correlation, as expected. But the diversity is quite high - from authors who publish one paper per year, to authors who publish about ten papers per year, on average.

Next we consider the correlation with the number of co-authors. The result is as shown in Fig 14. In this case, there does not seem to be noticeable correlation.

Finally, we show how a percentage of the most productive authors relate to the percentage of all papers published, in our paper set. In other words, we are interested in the minimum number of authors covering any percentage of papers published. This number can be computed approximately using a greedy algorithm, described as follows:

Initialization: Sort all the authors in a descending order of their productivity (number of published papers);

Repeat: Remove the author with most papers from the author list, and all his/her papers from the paper list; and plot (% authors removed, % papers removed).

The plot is shown in Fig 15, for both paper sets (ours and the one from DBLP). Furthermore, we also plot (% authors, % citations), derived from the same greedy algorithm, replacing papers by citations. This is done only for our paper set, since citation information is readily available. It is interesting to note that both paper coverage curves satisfy the 20/80 rule: twenty percent of the most active authors can take credit for eighty percent of the papers. The top 80% of the citations, however, can be credited to the top 5% of the authors.

Discussion - Partitioning authors: From Fig 15, it is perhaps reasonable to separate the authors into two broad classes: professional authors and occasional authors. For purpose of studying author productivity, we may see certain properties for the class of professional authors, which may
not be easily visible when considering all authors together. This will be considered in future work.

9. RELATING CITATION COUNT TO CO-AUTHORSHIP

Finally, we study the relationship between the number of co-authors with citation count. In this case, we only used our own paperset. For the DBLP paperset, although they have the co-authorship information, the citation count information (based on Google Scholar) is not easily available. The result is plotted in Fig 16. The main figure is a scatter plot. In the inset, we also plot the average citation count for each number of co-authors. For higher number of co-authors, the sample size is very small, so the variance can be high. Between 1 to 7 co-authors, the average citation count seems almost flat, except for 5 authors. It is not clear if this is statistically significant, and if so why.

10. CONCLUDING REMARKS

What drove us to this work is a strong feeling that our publication system is running into a huge scalability problem. It seems we have endless number of deadlines for paper reviews and paper submissions, and yet we do not have enough time to read all the papers being published on the research problems we are working on. We also noticed how the number of publications and citations of researchers seem to be going through an inflation process, causing a lot of confusion on how to evaluate researchers for degrees and jobs.

We tried to pick a relatively small but representative set of conferences and journals and all the papers published at these venues in the past twenty years. We relied on available data and tools as much as possible, and tried to produce some meaningful statistics to our community, with discussion based on our perspective. We believe the model for citation history, and the balancing equation for authorship are useful tools and the time-based viewpoint is worthy of further studies. Our goal is to provoke more thinking by the whole community about how to improve our own system of publications, starting from how it is working now.

Acknowledgement

The authors wish to thank the student helpers, Kevin Lee and Ivy Ting, for their hard work and carefulness in data
collection; and thank Don Towsley, Vishal Misra and John Lui for various suggestions. The work is partially supported by a CUHK direct grant 2050411.

11. REFERENCES