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ABSTRACT

Current network protocols must comply with rigid interfaces
and rules of behavior to fit into well defined, vertical proto-
col stacks. It is difficult for network designers to offer a wide
spectrum of alternative protocols suitable for diverse situa-
tions, and to make the stack evolve to match new needs. The
tendency is to design protocols that can adapt to the widest
possible spread of use. However, even the best adaptive pro-
tocols cannot possibly cope with all situations. When their
adaptivity limits are reached, the ability to switch to other
protocols becomes a clear advantage.

Our aim in this paper is to present Lightweight Au-
tonomous resllient Networks (LAIN), a framework that ex-
ploits the multiplicity of alternative protocol, and exposes
the spectrum of choice to the advantage of the applications.
The system runs continuous experiments with alternative
protocols online, in parallel as well as serially, in order to
select automatically those that best match the application’s
needs under the current network conditions. We report first
results on the feasibility of the approach and point out the
need for such a system in network and protocol evolution.

Categories and Subject Descriptors

C.4 [Performance of Systems]: Reliability, availabili-
ty, and serviceability; C.2.3 [Computer-Communication
Networks]: Network Operations—Network monitoring;
C.2.1 [Computer-Communication Networks|: Network
Architecture and Design Network communications—Net-
work communications

General Terms

Design, Performance, Reliability

Keywords

Autonomic network, self-evaluation, network architecture,
network evolution, runtime protocol switching, knowledge
plane.

1. INTRODUCTION

Currently, a protocol tends to be considered as more
evolved than its predecessor if it is applicable in more con-
texts and situations. In our opinion, this leads to a wrong
filter in protocol and service design and suboptimal network
operations because it establishes an artificially high barrier
against better, although perhaps specialized, solutions. It
also creates a barrier against innovation and imposes the
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need to decide whether to design for the worst case or for
the average case [7]. In both cases many situations will not
be suitably covered, and many useful protocols will not be
exploited.

We envisage a networking environment where myriads of
protocols may coexist and compete with each other to pro-
vide the best service. Minor, restricted or even partially
defective protocols may be exploited on a regular basis, pro-
vided that they are useful in some context. In this paper
we present LAIN, an experimental framework to explore
the idea of online dynamic protocol switching. The LAIN
framework permits the coexistence of alternative protocol
instances that run in parallel or serially, and are automati-
cally selected at run time.

Resilience to protocol failures or misbehavior is of para-
mount importance in this context, as a full model comprising
the behaviors of all possible protocols would be unrealistic
and cannot be counted upon. The framework is thus based
on the premise of doing continuous experiments on running
protocols, by constantly monitoring their behavior, measu-
ring their performance, and selecting the most suitable pro-
tocols accordingly.

1.1 Online Protocol Choice

The approach of protocol, service and server switching is
not new and is increasingly applied in the Internet. Star-
ting from low in the stack, we point out fall-back solutions
in modems depending on the peer’s capability and line con-
ditions. At the network level, Skype [1], in the same way as
firewall tunneling protocols [21], try out several venues until
connectivity, as well as performance, matches the required
thresholds. Regarding transport, on-the-fly compression can
be enabled depending on whether the TCP queue becomes
sufficiently filled [14]. Many fault tolerance mechanisms
rely on alternative instances they can easily switch among,
like DNS secondary name servers or the micro-rebooting of
servers [2]. Protocol switching can even be applied to full
protocol stacks as is the case for handover in wireless net-
working and software defined radios, where either the pa-
rallel operation of different stacks, or a complete switch of
stacks is part of normal operation. So far, all these “switch-
ing” activities were seen as context-specific solutions.

We propose to raise this scattered switching logic to the
level of a knowledge plane which can make informed deci-
sions within a well established framework and with sound,
reusable techniques. For that to happen in a robust way,
the system needs to monitor constantly the performance of
each protocol and compare it with a desired goal. Alterna-
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tive protocols implementing the same functionality in diffe-
rent ways compete with each other: The system selects the
most suitable one for each situation. This selective pressure
combined with self-inspection results in a system that al-
ways seeks to deliver the expected service by moving to a
better protocol when the previous one does not comply to
the expectations.

1.2 Experiments and Switching Logic

One possibility to select protocols automatically in a dy-
namic way is to run a productive or current best practice
version in parallel with an experimental, potentially better
version and continuously compare their performance. The
productive version actually delivers the service, and switch-
ing to the experimental one only occurs when the latter be-
comes clearly superior to the former. This approach ob-
viously consumes extra resources, since parallel, alternative
trial channels are maintained; but it could be regarded as a
price to pay for robustness.

However, doubling the resources is just a first approach
to the problem. Better allocation schemes, in which the ex-
perimental channel is also used for (partial) service delivery,
can be envisaged. How exactly to allocate resources, how to
assess the matching of expectations, when (and when not) to
switch etc. — all these questions are discussed in this paper,
and positioned in a framework for future network research
and development.

The contribution of this paper is threefold: First, we des-
cribe the elements of a self-selective network in Sect. 2. Se-
cond, we show the operation and benefits of case-by-case
decisions applied to two different contexts, one at transport
level and another in a voice over IP system by means of simu-
lations in Sects. 3 and 4 respectively. Finally, in Sect 5 we
discuss the selection approach compared to existing systems
and in the light of future networks supporting automatic
protocol evolution.

2. ONLINE PROTOCOL EXPERIMENTS

In an ideal networking world, choosing among two poten-
tial services could be based on full knowledge of the factors
that determine the services’ fitness for a given task and si-
tuation. This knowledge can be gained through analytic
work and/or through past experiences. Our hypothesis is
that a complete modeling will less and less be possible, that
network state can not always be sufficiently gathered, and
that not all implementations will adhere to the supposed
model anyway. Online protocol experiments are a necessary
addition to existing assessment methods and can even be
used in cases where no model is available. In this section,
we structure the problem of automatic protocol switching
and elaborate on the problems of doing continuous evalua-
tions, both of productive as well as experimental services.

2.1 Framework

Fig. 1 shows the elements needed for implementing a
framework for online service evaluation and selection. A
sample application is displayed on top. Every application
using the framework has its own instance of the protocol se-
lection framework. Therefore each instance can be adapted
to the specific requirements of an application.

The elements of the framework are:

e Protocol functions: Pool of protocol candidates from
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Figure 1: Architectural framework for online proto-
col evaluation and switching.

which our system can choose. Depending on the granu-
larity we are looking at, these are complete stacks, sin-
gle protocols, sub-protocol functions like stream split-
ters, as well as access to remote service instances.

In order to perform the components selection, the pro-
tocol functions are grouped into services. A service
will be defined as a well-known set of tasks, with a
well-known interface. Each alternative protocol im-
plementation must adhere to the proper service speci-
fication, in order to be eligible as a candidate in the
test round. Service profiles include an input, output,
and monitoring interface. While input and output in-
terfaces rule the interaction with the application and
the underlaying services, monitoring interfaces export
performance parameters (such as correct packets re-
ceived) to the service checker. This profile also states
the functional requirements for the service (it is to say,
which support functions are needed). For instance, a
reliable transport service may require a system func-
tion to calculate an error correction code.

e Monitor helpers: Measure parameters from the net-
work and from running protocol instances and provide
this information to the experimenter. The monitors
helpers are dynamic entities that can be activated or
deactivated on demand. Moreover, new monitors can
be added to the framework, as long as they provide a
proper interface description.

e Service checker: Verifies whether a given service com-
plies to the application request, signaling any devia-
tions to the experimenter. To this end, it uses a fit-
ness function which measures the performance of each
protocol function. It may be a combination of objec-
tive (goals and observable performance parameters)
and subjective (perceived quality of service) compo-
nents. Since the criteria of the service evaluation are
determined by the particular requesting application
and user’s preferences, the fitness function should be
provided by the service petitioner. The fitness func-
tion can use any monitored parameter to perform its
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Figure 2: Several cases of parallel (a) and serial (b)
experiments

calculations, as well as utility functions which estimate
the quality of experience that the user would perceive
(e.g. the E-model for VoIP services [10]). The checker
can be either passive (just assessing by looking at the
flow of data) or active by collaborating with external
entities and/or adding its own protocol fields to the
application data.

o FEzxperimenter logic: Evaluates the running protocols
according to the feedback provided by the service
checker and monitors, and makes decisions on how to
reconfigure the running experiments properly. Possi-
ble actions include launch, stop, restart, or reconfigure
protocols with different parameters. The application
may define the percentage time allowed to perform the
experiments. Consequently, the experimenter logic can
stop a test which breaks the imposed constraints.

e Resource allocator: Executes resource policies such
as splitting downstack data streams to two transport
paths or imposing rate limitations. To carry out reser-
vations when needed, each protocol function may state
its resource requirements.

2.2 Runtime inspection and decision

At the core of the framework lies the experimenter de-
cision logic which modifies the configuration of the expe-
riments based on the feedback provided by the monitors
and checkers. Applications request services either by choos-
ing the appropriate service checker among predefined cate-
gories, or by specifying a target service profile (delay, loss,
downtime, bandwidth, each parameter potentially associ-
ated with a weight). This reminds us of existing QoS
approaches. An important difference is that here the ex-
perimenter makes its best to achieve the desired goals by
probing multiple alternatives, without an admission control
system or similar.

The experimenter starts the service with a first rough
choice of at least one production protocol, and optionally
one or more experimental ones. The production protocol is
typically the most mature among the existing options, or
the one judged most suitable to the application, by static
knowledge. The experimenter then monitors the “network
weather” [24] and can proactively switch protocols, other-
wise it periodically evaluates the competition performance
and potentially switches to the competitor. The change of a
performance variable may be also the trigger of a switch. It
is also possible to use two or more variants in parallel and
shift traffic ratios smoothly. Fig. 2 shows how parallel and
serial experiments can be performed. Fig. 2(a) shows a ty-
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pical parallel experiment. At time to the experiment starts
with three protocols in parallel: P, P>, and P3;. Each proto-
col receives a full copy of the traffic, leading to redundancy
which is used for fault tolerance: if one of the protocols mis-
behaves, the service is still delivered by one of the others.
At t1 the experimenter decides that it is better to replace P
by Pu, and at t2 Py is replaced by Ps. Fig. 2(b) shows three
possibilities for serial experiments: the first one (left side) is
the simplest case, where only one protocol is used at a given
time, and the experimenter switches protocols in response
to observations from the monitors and the checker. In the
second case (middle) a coarse multiplexing of protocols is
performed, with part of the traffic sent to one protocol and
part to the other. The shares of the different protocols vary
in coarse chunks. The third case (right side) shows a fine-
grain, gradual multiplexing scheme in which the percentage
of traffic that goes to each protocol is adjusted dynamically.

The choice of the observation and switching period is cru-
cial: too short observations do not provide sufficient sta-
tistical information, and too long observations provide slow
feedback to switching decisions. Furthermore, a too short
switching period does not leave sufficient time for new pro-
tocols to initialize and adapt to the new environment, does
not capitalize on the transition time spent, and could lead
to undesirable performance oscillations. In contrast, a too
long switching period would result in slow adaptation.

The duration of an individual test can be bound from
the application requirements profile, in which the user can
specify a maximum threshold of the service degradation du-
ring the test stage. This quota can vary depending on the
importance and priority of the requested service. The mi-
nimum duration of the test must be greater than the pro-
tocol initialization delay. The maximum duration will be
bound by the total grant for the test stage. To determine
the optimal duration for an individual protocol test, it is
necessary to measure the time that a protocol needs to sta-
bilize its performance, so that it can be characterized. The
stabilization of the protocol operation could be detected by
statistical analysis. For instance, the Kolmogorov-Smirnov
test could be used to verify whether current and past perfor-
mance samples belong to the same statistical distribution,
assessing that the protocol operation impact remains stable.
Similarly, this kind of statistic tools could be employed to
determine whether the network conditions change.

3. CASE STUDY I: TRANSPORT PROTO-
COL SWITCHING

In this section, we describe a series of simulation experi-
ments that demonstrate the usefulness of dynamic protocol
switching. We have focused on the transport layer, in the
context of a file transfer application, to select the best proto-
col which best fits the network conditions, as it is described
in section 3.1. These experiments will start showing a sim-
ple case where the switching between two transport proto-
cols obtain an overall enhanced performance. To this end,
we will show two simple reference scenarios in Sect. 3.2. For
each scenario, one of the two protocols behaves its best, and
the other presents a poor performance. In subsection 3.3 we
will present a mixed scenario in which a complete knowledge
of the network weather is supposed and where the switching
approach is deployed, obtaining an improved performance.

Finally, an experiment to test the feasibility of an auto-
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nomic switcher is shown in Sect. 3.4, where a simple auto-
matic procedure triggers online protocol tournaments.

3.1 Experimental setup

The file transfer experiment is implemented in the ns2
simulator [16]. A number of simulations are conducted for
several scenarios. The file transfer application can use both
TCP [22] and an UDP [23] based transport protocol that we
will call Bulk UDP (BUDP). Both protocols offer the same
service: a reliable delivery of data.

The switching approach performed for these experiments
is the simple serial switching (refer to Fig. 2). Note that
each time that a switch is performed, a protocol reboot is
needed. This means that, when using TCP, the connec-
tion is shut down, thus a reconnection is needed after the
switch. This procedure cleans the TCP sending buffer and
frees the required resources. Therefore, each switching en-
tails resources allocation, parameter setup and freeing.

Observe that we are working with existing protocols as
TCP; we do not intend to reimplement them or change
their behavior, achieving thus a versatile framework applica-
ble without modifying existing (and future) protocols. The
switching procedure may not know the protocols’ operation,
treating them as black boxes, using the client feedback of the
service and the network impact as indicators.

The BUDP protocol relies on UDP to deliver the data.
It has no congestion control scheme, sending the data at a
fixed transmission rate. The protocol and the server/client
interaction can be described as follows:

1. The client requests the range(s) of bytes that needs to
complete the file (nb; bytes for the cycle number 7).

2. The client estimates the time (t) to get all the packets,
which is based on end to end delay (), sender rate
(r), and the number of packets requested (n).

3. The server sends the requested bytes in bulk, at a rate
r, encapsulated in m bytes packets long.

4. If the file has been completely received, (i.e., list of
pending bytes is empty) the protocol finishes.

5. When the estimated transmission time ¢ expires, the
client reboots and goes back to the first step.

It is important to emphasize that we take TCP and BUDP
as simple examples to illustrate the autonomic protocol
switching concept. Since these two protocols have radically
different behaviors, the effects of switching between both
can be clearly observed. Our purpose is neither to analyse
the performance of TCP, nor to propose the wide use of a
naive protocol such as BUDP as an alternative to TCP in
specific scenarios. We aim at showing that a dynamic proto-
col selection framework can provide advantages with respect
to static protocol stacks.

3.2 Individual protocol performance

In this section, we show the performance of TCP and
BUDP individually, in optimum and worst case scenarios for
each protocol. While TCP is suitable for the most commonly
encountered situations on the Internet, it is not designed to
adapt to all cases. For instance, it is well known that TCP
has a poor performance under some circumstances such as
high packet loss rates and large end to end delays.
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When there is no congestion and a constant amount of
bandwidth is available, the use of a protocol with no con-
gestion control and without per packet retransmission can
lead to better performance in terms of packet delays. This
case can be illustrated with a scenario where there is no con-
gestion, but packet losses occur as shown in Sect. 3.2.1. On
the other hand, a congested network is not the best context
to deploy a protocol which does not adapt to the available
bandwidth, as it is the case of BUDP shown in 3.2.2.

3.2.1 Scenario with periodic packet losses

The scenario shown in Fig. 3 (but without nodes n4 and
n5) is used to describe this case. At node n0, a file server
will send to the file client (at node n3) the requested file in
chunks of 500 bytes of data, at a rate of 512 Kbps. The total
file size to be sent is 3 - 10° bytes. Each link in the topo-
logy has a bandwidth of 512 kbps. The propagation delay
for every link is 10 ms. At the intermediate link nl — n2,
packets are corrupted with a constant probability p during
each simulation. In this scenario, no additional cross traffic
will be sent from node n4 to nb5.

For a start, 50 simulations are conducted with TCP as
transport agent. Additional 50 simulations of the file trans-
fer using the BUDP transport protocol are executed. For
both the TCP and the BUDP protocols executions, Fig. 4
shows the average time of the simulations to transmit com-
pletely the file as a function of the probability of loss.

Fig. 4 shows how the required time to deliver the whole
file in the TCP case grows exponentially with the probabi-
lity of loss. This is mainly due to the congestion detection
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scheme of TCP: when a retransmission timer expires, the
congestion windows decreases to the minimum segment size
(MSS).The increase of the window is additive and, therefore,
in case of a high probability of loss, the congestion window
has the minimum size during almost the whole simulation.
This situation can get even worse if we increase the end-to-
end delay in the selected topology.

The time to transfer the file for the BUDP protocol is
much lower than for TCP: Even for extreme cases of p = 0.7,
BUDP delivers the file in less than 690 seconds, while TCP
needs more than 240 times this value. This performance
of BUDP is mainly due to its operation. The sender does
not need to wait for positive acknowledges. If the estimated
time to get the file (and to send the request for lost packets)
is accurate, the resulting time to transmit the file is near
the minimum, as well as the required bandwidth and the
number of retransmitted packets. Regarding the number
of the sent packets, both TCP and BUDP obtain the same
results as a function of p.

This scenario, as we have seen, is the most suitable for
the BUDP protocol. However, let us study a scenario with
no link failures and additional traffic sharing the link.

3.2.2  Scenario with congested periods

In this scenario, depicted in Fig. 3, the only packet losses
will be caused by the congestion of a router due to the back-
ground crossing traffic. For this experiment, the probability
of loss at the nl — n2 link is zero. A constant bitrate traffic
traverses link nl1 —n2 during the whole simulation, consum-
ing thus a percentage of bandwidth. This may cause that
the router n1 is not able to cope with all the input traf-
fic (background and file data packets), discarding some of
them. The size of the cross traffic packets is 125 bytes. This
causes the available link bandwidth to decrease, although
the file server sending rate is fixed at 512kbps.

For different bandwidth occupation of the cross traffic in
the shared link, 50 simulations are conducted for each of
the transport protocols. The resulting values for the dura-
tion of the transmission vs. the available channel bandwidth
percentage can be seen in Fig. 5. Note that the estimated
available bandwidth, noted as B, hereafter, is calculated as
the difference of the link capacity and the bitrate of the cross
traffic, and, although the calculated available bandwidth is
zero, some file packets can be successfully delivered, leading
to other traffic packet drops. Comparing the results, no sig-
nificant differences are found in terms of the average time
to transfer the file. However, as it can be seen in Fig. 5, the
performance of the BUDP protocol drops when we examine
the number of packets sent to complete the file transmission.
As we have mentioned before, the lack of an adaptive send-
ing rate strategy or a congestion control procedure makes
BUDP unsuitable in case of congestion. In such situation,
BUDP will increase the congestion, discarding thus a higher
percentage of packets.

On the other hand, TCP behaves fairly in this scenario
in terms of bandwidth use. While BUDP sends more than
twice the size of the file when additional traffic uses the 80%
of the path bandwidth, TCP incurs in a negligible overhead.

3.3 Serial protocol Switching performance

The previous section illustrated how each of the studied
protocols provides a suitable performance under some given
circumstances. In fact, each protocol behaves poorly in the
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most suitable opponent’s scenario. This section shows the
maximum improvement that can be achieved with switching
under ideal conditions. With this we evaluate the feasibility
of switching alone, without taking into account the influence
of monitoring, evaluation and switching decision algorithms.

To illustrate this, the switch will be made following a
full knowledge approach, that is to say, the system has a
global knowledge of the network conditions and instantly
switches to the most adequate protocol when these condi-
tions change. In this case, the file size will be 15 - 10° bytes
(30000 packets of 500 bytes each), and the sending rate will
be set at 512kbps.

In this scenario, detailed in Fig. 3, both background traffic
and losses at link nl1 —n2 are simulated. During periods 100
to 200 and 300 to 400, cross traffic is injected at a rate
of (1 — Ba) - 512 = 460.8kbps, so only the 51.2kbps are
available during that time (B, = 0.1). During the rest of
the simulation, no bandwidth is consumed by other traffic
than the generated by the file transfer, but packets are lost
at link nl — n2 with a probability p = 0.3 instead, as it is
labeled in Figs. 6(a,b). The results in Fig. 6(a) and 6(b)
show how this switching leads to a solution with the best of
all the considered protocols.

During the congested periods (from seconds 100 to 200
and from 300 to 400) the TCP protocol is selected. Du-
ring the packet loss periods, the BUDP approach is ac-
tivated instead. As it can be seen, while the pure TCP
lasts 11336.27 seconds to deliver the whole file, the switch-
ing scheme finishes in 497.6 seconds. In addition, while the
pure BUDP protocol sends 56681 packets to get the whole
file transferred, resulting thus in an overhead of 88.9%, the
switching approach sends 42050 packets (14631 packets less),
obtaining an overhead of 40.2% additional packets. In this
case, TCP needed to send a 42.9% of additional packets,
mainly due to the retransmissions needed during the periods
of packet losses with p = 0.3. As a result, the switching pro-
cedure obtained an overall performance which beats the ones
of the TCP and BUDP pure protocols, reducing both the
overhead of sent packets and achieving a time performance
close to the BUDP approach.
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3.4 Serial online testing performance

In an ideal environment, the system can know which is
the most suitable protocol under some given network state,
as in the examples of the previous section.

However, it is not possible to have full knowledge about
the network weather and the suitability of every new pro-
tocol: comprehensive comparisons between other existing
protocols should be made, and network parameters have to
be precisely identified. Several issues arise in this scheme:
how many candidate protocols should compose the tests? In
which order? How long should the test last?

The following experiments will show the benefits of an
automatic mechanism for triggering the testing stage and
switching protocols when needed. For this purpose, we ins-
tantiate the elements of the LAIN framework outlined in
Sect. 2, to the specific scope of a file transfer service:

Service checker: Note that the service implemented in
current experiments aims to deliver the entire file as
soon as possible, with the minimum bandwidth use.
Therefore, the service checker should take into account
the duration and the overhead to assess the goodness of
the protocol performance. The simple fitness function
®; for the file transfer service used in the experiment
is expressed as:

(1)

Dpr=n, —my
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where n, is the number of successfully received packets
(replicated packets are not considered), and n; is the
number of detected packet losses, including the re-
transmitted lost packets. Note that ®y; could become
negative in cases in which a selection incurs in a high
percentage of loss, such as using BUDP in a heavy con-
gested scenario, which are counterproductive scenarios
that must be penalized.

Monitor helper: In order to check whether the network
conditions change, periodic probing packets, which
generate a negligible bandwidth use (10 probing packets
per second, consuming only 0.4 kbps), are sent by the
server side of the monitor. When the client detects a
change, it notifies the server of the new network state.

The test procedure will be triggered when the network
monitor notices a change. To this end, the current and
the previous stable states are characterized by the Ja-
cobson expression proposed for the estimation of the
round trip time (r¢t) in TCP [12]. The network mo-
nitor assesses that the network weather (the packets
delay in this case) is stable when the condition 2 is
verified:

(2)

where p;, , and oy, , represent the smoothened ave-
rage and the variance of the previous stable state of the
network respectively, and p;, characterized the current
average delay. These values are updated with every
probe packet as shown in equations 3 and 4:

Ot = (1 — ﬁ) *O0ty_q + ,8 . |N’ti—1 - (tnow - tsent)‘
Ht; = (1 — Oé) Mty g + - (tnow - tsent))

Bty =200y < ey < ;g 2000,

3)
(4)

Where t,0. is the packet arrival time, and tsen: is the
sending timestamp of the packet. a = i and 8 = % as
recommended in [12].

Experimenter: In case a change is detected (condition 2
is not verified), the test stage is triggered.

As a result, shown in Fig. 7(a) and Fig. 7(b), we ob-
tain a plot which outperforms both BUDP and TCP. As
in previous scenarios, the time to transmit for LAIN is
around 23.66 times lesser than TCP’s, and the number of
sent packets differs in 7832 packets to the BUDP protocol.

However, the use of the network monitor in order to trig-
ger the tests leads to tests rounds which are not necessary, as
it can be seen in Fig. 7 at second 141.1, where a test round is
activated (the unnecessary tests and switch are marked with
an asterisk). This shows that the network monitor and the
experimenter decision maker have to be carefully designed
in order to avoid unnecessary tests.

4. CASE STUDY II: SWITCHING INTER-
LEAVERS IN AUDIO STREAMS

Although the proposed framework is mainly targeted to
autonomous systems in which protocol switching is a long
term target, in this section we present a scenario which
shows how the switching procedure can be applied to appli-
cations which need to adapt in a short period of time.

Voice over IP (VoIP) is an example of this kind of applica-
tions. VoIP traffic is characterized mainly by its tight time
restrictions (packets’ end-to-end delay must be lower than

Volume 38, Number 2, April 2008



; L _P=03,B,=1

1k i BUDP 403. 75 sec.
H TCP 12297.96 sec.

: 519.87 sec.

Ideal LAIN 499.06 sec.

p=0.3, B;=1_|_p=0, B,=0.1 : D=0, B,=0.1 |_p=0.3,B,=1
=< =< T

0.8
2 ; g
o ¥ ~~—Select UDP
e T e
§ P IR S R A4 Test UDP
£ ; Test UDP ‘Test TCP
b Test UDP", { MestTCP |
3 Test rcp*\ L | :
2 t i o i
% o4 Setect IS"F i/ «~—Select UDP
¢ A i
B T\\\Tem UDP
Q \\\Selecl TCP*\Test TCP
0.2 & t UD!
Test TCP § :
0 / SelectiUDP ‘ | | |
1 2 4
\Test uoh° 00 . 300 ] 00 500
Test TCP imeline (seconds)
(a)
p=03.B,=1o p=0.B=0.1. p=03.B,=1. _p=0.B=0.1./ p=03.B,=1 _
; BUDP (51313 p! _—
18 ; TCP 43155p ts : i
‘ Ideal tﬁIN 45085 "hts """" /
eal S /
1.6 Pt :

12 :
. | | / Sélect TCP
s / o

08 Select ToP*- /.
Test BUDP*, :

06 Test TCP* ‘ & i
' Select TEPYQ\ |, Select BUDP

: Test BUDP
Test BUDP TeSt TCP

0.4 /
0.2 / Tgst TCcP

/£ Select BUDP , :

0 ' . L L i .
Test BUDR° 200 300 400 500

Test TCP Timeline (seconds)

| & select BUDP
i -Test BUDP

i TestTCP |

Sent data cumulative ratio

Figure 7: Fraction of the file received (a) and sent
(b) vs. timeline

a threshold Di,qax = 300ms) and its tolerance to low packet
loss rates [20]. On the contrary, consecutive packet losses
lead to a rapid degradation of the quality of the perceived
voice stream [13].

Several approaches have been proposed to cope with this
problem, providing techniques such as the so called packet
interleaving [20]. Basically, the interleaver scrambles the
packets obtaining thus a stream in which bursts of errors
become individual losses when the stream is ordered at the
receiver. Its main drawback is the additional incurred delay.

The so called multiflow block interleaver type II(ng,s)
[18] is a special kind of block interleaver which takes packets
from several VoIP sessions and outputs an aggregate stream
with the desired isolation capabilities, introducing the mini-
mum theorical delay.

In addition to the number of available flows (ny) to per-
form the interleaving, the device needs as input the target
burst length (s), that is to say, the maximum burst length
that it will isolate. For a given pair of ny and s, the resul-
ting device provides the minimum delay interleaving with a
maximum of dnf,s seconds of end-to-end delay. Such delay
is not monotonically decreasing with the target burst length.

Instead, the dn,,s delay introduced by the interleaving
follows a non monotonic trend. The calculation of that delay
is shown in detail in [18]. In our experiments we will activate

ACM SIGCOMM Computer Communication Review

39

an interleaver that has to switch the s target parameter to
the actual burst lengths in order to optimize the resulting
packet loss distributions and the incurred delay.

Such selection has to be made regarding that the maxi-
mum delay must be lower that Dy,qq.-

4.1 Framework elements

Several LAIN framework elements had to be instantiated
for our simulations.

4.1.1 Monitor helpers

The implemented monitor checks whether the packet loss
pattern changes or keeps stable. To this end, the monitor
at the receiver side logs the burst distribution of the trans-
mission path by means of maintaining a histogram of the
experienced packet losses.

Periodically, the loss monitor sends the updated statistics
of the link loss pattern and the average packet delay (d)
to the experimenter. More precisely, the receiver side of
the monitor sends back to the source the 80" percentile of
the receiver cumulative distribution function (CDF) of the
burst length. The meaning of this value is that the 80% of
the experimented bursts of losses are equal or lower than
this score, noted as bgytn hereafter.

Finally, the histogram is reset each time that a switch is
performed or a test round is triggered.

4.1.2 Service Checker

The service checker for this experiment uses a fitness func-
tion q)d’bsoth which considers the average burst length and

the experimented end-to-end delay, (eq. 5):

1 Dz —d
Dmax

()

édybgoth - bgotn
Where d is the average packet delay, D,,qz is the maximum
tolerated end-to-end delay (300 ms in our case), and bggen is
the 80" percentile of the experimented burst length CDF.

A candidate performs better than another if its fitness
score is greater than the other candidate. The fitness score
is thus designed to highlight those results with a final short
average burst length and shorter delays.

4.1.3 Experimenter logic

Each time the network loss distribution changes, the test
tournament is triggered. Also, periodic tests tournaments
are held each 75 seconds. At the beginning of the test, a
number of interleaver candidates are generated. Such can-
didates must verify that their maximum delay is lower than
the maximum threshold Dj,4,. Their input parameters are
ny =4 and s (which is chosen to be close to the bgytn value
reported by the monitor helper).

In our simulations, only the 3 candidates (out of 21) with
the shortest distance to the bgy:n value are tested. They are
activated for a period of 5 seconds, registering their fitness
scores. After the test round, the one with the best fitness
value is selected, and the production interleaver is substi-
tuted by switching.

A test round is also triggered when a pattern change is
detected. A change of network’s conditions stability is de-
tected when one of the conditions expressed in Eq. 6 below
is verified:

—15]  (6)

’VbSOf’h,'L'fl + 15—| < bSOf’h,'L' < LbSOth’,ifl
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where bgyen ; is the most recently reported value, and
bggtn ;1 is the last stable period value. The current bggen ;
is recalculated after every update report by the smoothing
average detailed in the equation 7:

bSOth,ifl = 09 . bSOth,ifl + 01 . bSOth,i (7)

It is worth noting that the number of candidates, their se-
lection order, the period of the per protocol tests and the
frequency of the tournament test are key parameters which
have to be carefully selected. Due to the exploratory nature
of our experiments, those parameters have been selected to
be simple, and therefore not necessarily optimized.

4.2 Experimental setup

This scenario consists of 4 audio sources which send
packets through a common path. The path is subject to
a changing loss pattern generated by a Gilbert model [9].
The Gilbert model consists of a 2 state Markov chain. One
of the states represents the error-free period (labeled with
70”), and the other represents the burst of losses (label 71”).
Fig. 8 depicts the two-state Gilbert model.

The probabilities of transition from the error-free state to
the error state (po1) and from the error state to the error-free
node (p1o) characterize the model.

Fig. 9 shows the simulated topology. It consists of 4
source nodes which originate the audio streams, 4 sink nodes
which represent the listeners, and 2 common nodes, labeled
IGO0 and IG1, which are connected to all the streams via the
common link where errors occur. The source nodes produce
audio packets with a sending rate of 50 packets per second.
The so called Type I1(4,s) Multiflow block Interleaver is
located at node 1GO.

In order to assess the perceived quality of voice transmis-
sions, the E-model has been proposed by the ITU-T [10].
The E-model provides an estimation of the Mean Opinion
Score (MOS) of the voice quality that real users would assess
in a MOS test. The MOS scale ranges from 1 (“bad qua-
lity”) to 5 (“excellent quality”) [11]. A drawback of the E-
model is that, although it estimates the voice quality, it does
not completely model all the involved perceptual factors.
In fact, the E-model does not capture the bursty behavior
of losses (it only uses the overall probability of loss), and
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[Scheme [ s [ MOS | by [ pa (sec.) |
LAIN | [4 —13] 2.33 | 2.87 0.099
2.35 3.31 0.080
2.31 2.85 0.120
2.29 2.58 0.135
2.32 2.38 0.110
2.01 2.24 0.211
1.59 2.11 0.280
1.65 1.94 0.270

Fixed

= =
Sl B ©| 00| ~1| | &t

Table 1: Results for changing network conditions

therefore it is not sufficient to assess the performance of the
interleaving scheme. To provide a complete quality score
which takes into account all the impairments which affect
the perceived quality, the average resulting burst length by,
and the average packet delay pq, key parameters to assess a
VoIP stream, will also be provided in our evaluations.

4.3 Serial on-line testing performance

The evaluation is held in a scenario where the error
patterns change in time. The switching procedure has to
result in the adaptation of the interleaver to the given con-
ditions, in order to obtain better performance (and perceived
quality) than in a classical approach.

The evaluation will be provided with the MOS score ob-
tained by the application of the E-model and the average
per packet delays and resulting burst lengths.

In the experiment with the fixed T'ypelI(4, s) interleaver,
the target burst length (s) is set at the beginning of the
simulations. In order to compare the static strategy with the
adaptive approach, several simulations with different values
for s from 5 through 13, which are the possible values within
the time restrictions, are conducted to find the best result
with a static strategy.

The network loss properties change during the voice over
IP session. More precisely, from seconds 0.001 to 500 the
Gilbert model is characterized by po1 = 0.03571 and p1o =
0.08334, resulting in an overall probability of loss p = 0.3
and an average burst length by, = 12. From seconds 500 to
1000, pp1 = 0.0125, and p10 = 0.05, resulting in p = 0.2 and
br, = 20.

Table 1 presents the results for these simulations. The
MOS score obtained by the E-model, the average burst
length b; and the average per packet delay pq are shown
for the different possible s values verifying the D,,q, dead-
line constraint. To obtain the same MOS score and by, value
as the LAIN approach with the fixed scheme, at least s = 6
must be chosen. However, the average introduced delay piq
is 0.019 seconds greater. To obtain a lower delay, s = 5
could be chosen for the fixed approach, but the average burst
length b;, = 3.31 exceeds in 0.44 the value obtained by our
LAIN approach. Note that for a high probability of loss (as
in this case, p = 0.3), even small differences in the average
burst length have a great impact on the perceived quality.

S. DISCUSSION AND RELATED WORK

In the previous sections we have demonstrated dynamic
protocol switching at the transport level for an elastic as well
as an inelastic application. In both cases, we see that obser-
ving and switching protocols dynamically can be beneficial
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in many situations, even with the very simple monitoring
and selection strategies implemented. Monitoring capability
and appropriate switching logic are important issues which
have to be further investigated. In this section, we discuss
more research questions and related work, and present an
outlook to the future with automatic protocol evolution.

5.1 Protocol Variety

Our framework assumes that plentiful protocol choice is
available. Several approaches have provided solution to
this question, for example x-kernel, ComScript, active net-
working, protocol toolkits like Click, and (active) middle-
ware. As a recent example, a dataflow system is presented
in [4], in which protocols can be dynamically assembled out
of reusable building blocks for peer-to-peer overlay networks.
More related to TCP we point out the work of Patel et al.
who propose an extension XTP and later a protocol upgrade
system STP system [19] (Self-Spreading Transport Proto-
cols) where many protocols become potential candidates to
be run, hence selection among them is necessary. STP in-
cludes a policy manager that rejects or accepts protocols
based on their origin (e.g. trusted software vendor) or the
history of their behavior. However, no scheme is presented
on how to obtain such a history. The design of policies is
recognized as important but left for future work.

We assert that there is no shortage in protocol composi-
tion and deployment mechanisms but that there is a lack in
policies and algorithms to automate the choice of elements
to compose and deploy, and to bring this choice into pro-
ductive use.

An algorithm to perform such choice is proposed in the
context of autonomic computing [26], to select automati-
cally among competing components based on their workload
characteristics. In [6], the authors propose an algorithm to
select the most appropriate web service from a set of candi-
dates. In both cases, accurate performance profiles are key
parameters in the switching decision.

The LAIN framework differs from related work mainly in
that it does not assume full knowledge about protocol per-
formance or behavior, nor a full network characterization.
Therefore, it is inherently more robust to protocol misbe-
havior or inadequacy. This is the reason why a previous
protocol profiling in every possible scenario can not be used.
On the other hand, our framework requires timely protocol
switching under reliable monitoring information. An algo-
rithm to perform the optimum switch is one of our key future
work objectives.

5.2 Automatic Protocol Evolution

The framework proposed is part of a wider research
agenda on how to automate the evolution of the network
and its protocols. The fundamental question is how to
create new protocols automatically based on existing, work-
ing ones. An equally important question, and focus of this
paper, is how to evaluate the suitability of the newly pro-
duced protocols for the intended task.

Synthesizing new code can be approached via determinis-
tic, formal methods or via non-deterministic trial-and-error
methods such as genetic programming. The formal method
approach, albeit promising, is difficult to transpose to an
online setting and to generalize to large and complex dis-
tributed systems. The non-deterministic path seems easier,
however, the candidate solutions produced can not be gua-
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ranteed to provide the intended service before being exten-
sively tested for fitness. Therefore, a resilient run-time eva-
luation method for these cases must be found.

An adaptation scheme based on genetic algorithms is pro-
posed in [17]. Candidate solutions are evaluated dynam-
ically in the real world. The problem of online evaluation
under environmental changes in [17] is similar to ours. How-
ever, we focus on the evaluation and selection of existing
solutions (protocols), while [17] focuses on generating com-
bined solutions of online and offline genetic algorithms.

In a previous work [25], we used genetic programming to
recombine and mutate existing protocols in order to evolve
new solutions in a simulated online setting. The idea of
evaluating and selecting protocols online is presented there,
and further developed in the present paper to cover concrete,
real-world protocols.

We believe that this field of research could give rise to
a new era of self-sustaining, almost organic systems whose
constituent parts could suffer any sort of damage or attack,
and the system would be able to detect and restore the
affected parts in a self-healing manner.

5.3 Interface Issues

Since the LAIN framework envisages completely new pro-
tocols being added dynamically to the system, the definition
of a flexible and extensible Application Programming Inter-
face (API) is a must to let new and existing protocols inter-
operate, and to allow the applications to specify their needs
and preferences in a flexible and protocol-agnostic way.

There is a growing tendency nowadays towards ontology-
oriented interfaces, in which components’ interfaces are des-
cribed through standardized languages such as IDL [15],
WSDL [3] or OWL [5]. In this context, reasoning tools are
proposed to find a best match between application require-
ments and the potential services satisfying them.

As a first step, service description interfaces could be used
in LAIN to help screening protocol candidates before test-
ing them. Only those descriptions satisfying the application
specifications would be retained. However, descriptions do
not exempt the framework from performing regular intensive
tests to evaluate the actual behavior of a protocol, which in
many situations might not comply to the description.

In the long term, however, we believe that such predefined
descriptions do not offer an ideal solution. In Genetic Pro-
gramming, researchers are studying how modules and their
interfaces could emerge via evolution [27]. Stretching this
idea far into the future of distributed software systems, one
could imagine the notion of well-defined, independent pro-
tocol entities yielding to smaller, atomic interacting units
that may form short-lived clusters to solve a given problem
or to provide a given service, then dissolve when no longer
needed. A new kind of emergent interfaces would be needed
for such systems, with all their implications in terms of how
to control the system and specify a desired behavior without
preprogramming it.

6. CONCLUSIONS

We have presented a framework for dynamic protocol eva-
luation and selection, with initial feasibility experiments on
switching protocols online. To this end, case studies covering
two categories of applications with different characteristics
have been shown: an elastic file transfer application and an
inelastic real-time audio streaming application. The bene-
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fits and trade-offs involved in protocol switching have been
exposed for each case.

As in any emerging field, many issues remain to be solved.
The design of a service checker for protocols may be quite
hard. Although schemes to differentiate normal from abnor-
mal protocol behavior have been proposed [8], the functiona-
lity check of a service from a high level description is still
mostly unsolved.

Fitness evaluation requires continuous tests: their dura-
tion and resources consumed should be carefully assessed.
Moreover, tests may affect network behavior, making the
comparison between protocols difficult.

The appropriate monitoring and switching logic needs to
be carefully studied in order to detect the correlation bet-
ween actions and events, which is a classical problem in feed-
back systems needed for continuous evaluation.

The coordination (signaling) needed is also a matter of
concern: in a distributed system, fitness should be reported
by the remote side in an accurate and trustworthy manner;
the process of switching protocols must happen in a coordi-
nated way such that all end points use compatible protocols.

Another issue of concern is how to ensure fairness among
competing sessions when diverse protocols may be selected
at any time. The classical solution is to impose a good be-
havior, such as TCP-friendly, or a fair resource allocation
scheme. A different solution could be to allow the network
to do also experiments against the users for ensuring con-
vergence to a fair allocation.

Although challenging, this seems a promising research di-
rection, ultimately leading to future networks in which pro-
tocols can be synthesized automatically, which evolve to
match new needs, and heal themselves against disruptions.
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