
An Improved DFA for Fast Regular Expression Matching

Domenico Ficara
domenico.ficara@iet.unipi.it

Stefano Giordano
s.giordano@iet.unipi.it

Gregorio Procissi
g.procissi@iet.unipi.it

Fabio Vitucci
fabio.vitucci@iet.unipi.it

Gianni Antichi
gianni.antichi@iet.unipi.it

Andrea Di Pietro
andrea.dipietro@iet.unipi.it

Department of Information Engineering, University of Pisa
via G.Caruso 16, Pisa, ITALY

ABSTRACT
Modern network devices need to perform deep packet in-
spection at high speed for security and application-specific
services. Finite Automata (FAs) are used to implement reg-
ular expressions matching, but they require a large amount
of memory. Many recent works have proposed improvements
to address this issue.

This paper presents a new representation for determinis-
tic finite automata (orthogonal to previous solutions), called
Delta Finite Automata (δFA), which considerably reduces
states and transitions and requires a transition per char-
acter only, thus allowing fast matching. Moreover, a new
state encoding scheme is proposed and the comprehensive
algorithm is tested for use in the packet classification area.

Categories and Subject Descriptors
C.2.0 [Computer Communication Networks]: General—
Security and protection (e.g., firewalls)

General Terms
Algorithms, Design, Security

Keywords
DFA, Intrusion Prevention, Deep Packet Inspection, Regu-
lar Expressions, Packet Classification

1. INTRODUCTION
Many important services in current networks are based on

payload inspection, in addition to headers processing. Intru-
sion Detection/Prevention Systems as well as traffic moni-
toring and layer-7 filtering require an accurate analysis of
packet content in search of matching with a predefined data
set of patterns. Such patterns characterize specific classes of
applications, viruses or protocol definitions, and are continu-
ously updated. Traditionally, the data sets were constituted
of a number of signatures to be searched with string match-
ing algorithms, but nowadays regular expressions are used,
due to their increased expressiveness and ability to describe
a wide variety of payload signatures [22]. They are adopted
by well known tools, such as Snort [23] and Bro [3], and in
firewalls and devices by different vendors such as Cisco[26].

Typically, finite automata are employed to implement reg-
ular expression matching. Nondeterministic FAs (NFAs)
are representations which require more state transitions per
character, thus having a time complexity for lookup ofO(m),

where m is the number of states in the NFA; on the other
hand, they are very space-efficient structures. Instead, De-
terministic FAs (DFAs) require only one state traversal per
character, but for the current regular expression sets they
need an excessive amount of memory. For these reasons,
such solutions do not seem to be proper for implementation
in real deep packet inspection devices, which require to per-
form on line packet processing at high speeds. Therefore,
many works have been recently presented with the goal of
memory reduction for DFAs, by exploiting the intrinsic re-
dundancy in regular expression sets [14, 13, 5, 21].

This paper focuses in memory savings for DFAs, by in-
troducing a novel compact representation scheme (named
δFA) which is based on the observation that, since most ad-
jacent states share several common transitions, it is possible
to delete most of them by taking into account the different
ones only. The δ in δFA just emphasizes that it focuses on
the differences between adjacent states. Reducing the re-
dundancy of transitions appears to be very appealing, since
the recent general trend in the proposals for compact and
fast DFAs construction (see sec.2) suggests that the infor-
mation should be moved towards edges rather than states.
Our idea comes from D2FA [14], which introduces default
transitions (and a “path delay”) for this purpose.

Unlike the other proposed algorithms, this scheme exam-
ines one state per character only, thus reducing the num-
ber of memory accesses and speeding up the overall lookup
process. Moreover, it is ortoghonal to several previous al-
gorithms (even the most recent XFAs [21, 20] and H-cFA
[13]), thus allowing for higher compression rates. Finally, a
new encoding scheme for states is proposed (which we will
refer to as Char-State compression), which exploits the as-
sociation of many states with a few input characters. Such
a compression scheme can be efficiently integrated into the
δFA algorithm, allowing a further memory reduction with a
negligible increase in the state lookup time.

We also test the integration of δFA and Char-State com-
pression in the packet classification area, by representing
the classification rule set through regular expressions.

In summary, the main contributions of this paper are:

• a novel compact representation of DFA states (δFA)
which allows for iterative reduction of the number of
states and for faster string matching;

• a new state encoding scheme (Char-State compression)
based on input characters;

• the application of both schemes to classification algo-
rithms to increase search speed.

ACM SIGCOMM Computer Communication Review 31 Volume 38, Number 5, October 2008

The remainder of the paper is organized as follows. In sec-
tion 2 related works about pattern matching and DFAs are
discussed. Sec.3 describes our algorithm, by starting from a
motivating example and sec.4 proves the integration of our
scheme with the previous ones. Then in sec.5 the encoding
scheme for states is illustrated and in the subsequent section
the integration with δFA is shown. Finally, sec.8 presents
the experimental results, while sec.9 proves the applicability
of δFA to packet classification.

2. RELATED WORK
Deep packet inspection consists of processing the entire

packet payload and identifying a set of predefined patterns.
Many algorithms of standard pattern matching have been
proposed [1, 9, 27], and also several improvements to them.
In [24] the authors apply two techniques to Aho-Corasick
algorithm to reduce its memory consumption. In details, by
borrowing an idea from Eatherton’s Tree Bitmap [10], they
use a bitmap to compress the space near the root of the
state machine, where the nodes are very dense, while path
compressed nodes and failure pointers are exploited for the
remaining space, where the nodes become long sequential
strings with only one next state each.

Nowadays, state-of-the-art systems replace string sets with
regular expressions, due to their superior expressive power
and flexibility, as first shown in [22]. Typically, regular ex-
pressions are searched through DFAs, which have appealing
features, such as one transition for each character, which
means a fixed number of memory accesses. However, it has
been proved that DFAs corresponding to a large set of regu-
lar expressions can blow up in space, and many recent works
have been presented with the aim of reducing their memory
footprint. In [28] the authors develop a grouping scheme
that can strategically compile a set of regular expressions
into several DFAs evaluated by different engines, resulting
in a space decrease, while the required memory bandwidth
linearly increases with the number of active engines.

In [14], Kumar et al. introduce the Delayed Input DFA
(D2FA), a new representation which reduces space require-
ments, by retrieving an idea illustrated in [2]. Since many
states have similar sets of outgoing transitions, redundant
transitions can be replaced with a single default one, this
way obtaining a reduction of more than 95%. The draw-
back of this approach is the traversal of multiple states when
processing a single input character, which entails a memory
bandwidth increase to evaluate regular expressions.

To address this issue, Becchi and Crowley [6] introduce
an improved yet simplified algorithm (we will call it BEC-
CRO) which results in at most 2N state traversals when
processing a string of length N . This work is based on the
observation that all regular expression evaluations begin at
a single starting state, and the vast majority of transitions
among states lead back either to the starting state or its near
neighbors. From this consideration and by leveraging, dur-
ing automaton construction, the concept of state distance
from the starting state, the algorithm achieves comparable
levels of compression with respect to D2FA, with lower prov-
able bounds on memory bandwidth and greater simplicity.

Also, the work presented in [4] focuses on the memory
problem of DFAs, by proposing a technique that allows non-
equivalent states to be merged, thanks to a scheme where
the transitions in the DFA are labeled. In particular, the
authors merge states with common destinations regardless

of the characters which lead those transitions (unlike D2FA),
creating opportunities for more merging and thus achieving
higher memory reduction. Moreover the authors regain the
idea of bitmaps for compression purposes.

Run-Length-Encoding is used in [7] to compress the tran-
sition table of DFAs. The authors show how to increase the
characters processed per state traversal and present heuris-
tics to reduce the number of memory accesses. Their work
is specifically focused on an FPGA implementation.

The work in [5] is based on the usual observation that
DFAs are infeasible with large sets of regular expressions (es-
pecially for those which present wildcards) and that, as an
alternative, NFAs alleviate the memory storage problem but
lead to a potentially large memory bandwidth requirement.
The reason is that multiple NFA states can be active in
parallel and each input character can trigger multiple tran-
sitions. Therefore the authors propose a hybrid DFA-NFA
solution bringing together the strengths of both automata:
when constructing the automaton, any nodes that would
contribute to state explosion retain an NFA encoding, while
the others are transformed into DFA nodes. As shown by
the experimental evaluation, the data structure presents a
size nearly that of an NFA, but with the predictable and
small memory bandwidth requirements of a DFA.

Kumar et al. [15] also showed how to increase the speed
of D2FAs by storing more information on the edges. This
appears to be a general trend in the literature even if it has
been proposed in different ways: in [15] transitions carry
data on the next reachable nodes, in [4] edges have different
labels, and even in [13] and [21, 20] transitions are no more
simple pointers but a sort of “instructions”.

In a further comprehensive work [13], Kumar et al. ana-
lyze three main limitations of the traditional DFAs. First,
DFAs do not take advantage of the fact that normal data
streams rarely match more than a few initial symbols of any
signature; the authors propose to split signatures such that
only one portion needs to remain active, while the remaining
portions can be “put to sleep” (in an external memory) un-
der normal conditions. Second, the DFAs are extremely in-
efficient in following multiple partially matching signatures
and this yields the so-called state blow-up: a new improved
Finite State Machine is proposed by the authors in order
to solve this problem. The idea is to construct a machine
which remembers more information, such as encountering
a closure, by storing them in a small and fast cache which
represents a sort of history buffer. This class of machines is
called History-based Finite Automaton (H-FA) and shows a
space reduction close to 95%. Third, DFAs are incapable of
keeping track of the occurrencies of certain sub-expressions,
thus resulting in a blow-up in the number of state: the au-
thors introduce some extensions to address this issue in the
History-based counting Finite Automata (H-cFA).

The idea of adding some information to keep the transition
history and, consequently, reduced the number of states, has
been retrieved also in [21, 20], where another scheme, named
extended FA (XFA), is proposed. In more details, XFA
augments traditional finite automata with a finite scratch
memory used to remember various types of information rel-
evant to the progress of signature matching (e.g., counters
of characters and other instructions attached to edges and
states). The experimental tests performed with a large class
of NIDS signatures showed time complexity similar to DFAs
and space complexity similar to or better than NFAs.

ACM SIGCOMM Computer Communication Review 32 Volume 38, Number 5, October 2008

1

2

5

3

4

a

b

d

c

a

b

c

d
b

a

c

d

d

b

a

c

c

a

b

d

(a) The DFA

1

2

5

3

4

a

b

d

c

c

(b) The D2FA

1

2

5

3

4

a

b

d

c

c

c

c

c

(c) The δFA

Figure 1: Automata recognizing (a+),(b+c) and (c∗d+).

3. DELTA FINITE AUTOMATON: δFA
As above discussed, several works in the recent years have

focused on memory reduction of DFAs to improve the speed
of regular expression engines. Most of these methods trade
size for number of memory accesses: at the cost of a few
further memory references per input character, the DFAs
can become significantly smaller and take advantage of the
speed of smaller fast memories. The most important and
cited example of such a technique is D2FA [14], where an
input character (hereafter simply ”input char”) can require
a (configurable) number of additional steps through the au-
tomaton before reaching the right state.

3.1 A motivating example
In this section we introduce δFA, a D2FA-inspired au-

tomaton that preserves the advantages of D2FA and requires
a single memory access per input char. To clarify the ratio-
nale behind δFA and the differences with D2FA, we analyze
the same example brought by Kumar et al. in [14]: fig.1(a)
represents a DFA on the alphabet {a, b, c, d} that recognizes
the regular expressions (a+),(b+c) and (c∗d+).

Figure 1(b) shows the D2FA for the same regular expres-
sions set. The main idea is to reduce the memory footprint
of states by storing only a limited number of transitions for
each state and a default transition to be taken for all input
char for which a transition is not defined. When, for exam-
ple, in fig.1(b) the D2FA is in state 3 and the input is d, the
default transition to state 1 is taken. State 1 “knows” which
state to go to upon input d, therefore we jump to state 4. In
this example, taking a default transition costs 1 more hop
(1 more memory access) for a single input char. However,
it may happen that also after taking a default transition,
the destination state for the input char is not specified and
another default transition must be taken, and so on. The
works in [14] and [6] show how we can limit the number of
hops in default paths and propose refined algorithms to de-
fine the best choice for default paths. In the example, the
total number of transitions was reduced to 9 in the D2FA
(less than half of the equivalent DFA which has 20 edges),
thus achieving a remarkable compression.

However, observing the graph in fig.1(a), it is evident that
most transitions for a given input lead to the same state,
regardless of the starting state; in particular, adjacent states
share the majority of the next-hop states associated with the
same input chars. Then if we jump from state 1 to state 2
and we “remember” (in a local memory) the entire transition
set of 1, we will already know all the transitions defined in
2 (because for each character they lead to the same set of
states as 1). This means that state 2 can be described with
a very small amount of bits. Instead, if we jump from state
1 to 3, and the next input char is c, the transition will not
be the same as the one that c produces starting from 1; then
state 3 will have to specify its transition for c.

The result of what we have just described is depicted in
fig.1(c) (except for the local transition set), which is the δFA
equivalent to the DFA in fig.1(a). We have 8 edges in the
graph (as opposed to the 20 of a full DFA) and every input
char requires a single state traversal (unlike D2FA).

3.2 The main idea of δFA
As shown in the previous section, the target of δFA is to

obtain a similar compression as D2FA without giving up the
single state traversal per character of DFA. The idea of δFA
comes from the following observations:

• as shown in [6], most default transitions are directed
to states closer to the initial state;

• a state is defined by its transition set and by a small
value that represents the accepted rule (if it is an ac-
cepting state);

• in a DFA, most transitions for a given input char are
directed to the same state.

By elaborating on the last observation, it becomes evident
that most adjacent states share a large part of the same tran-
sitions. Therefore we can store only the differences between
adjacent (or, better, “parent-child”1) states.

1here the terms parent and child refer to the depth of adja-
cent states

ACM SIGCOMM Computer Communication Review 33 Volume 38, Number 5, October 2008

This requires, however, the introduction of a supplemen-
tary structure that locally stores the transition set of the
current state. The main idea is to let this local transition
set evolve as a new state is reached: if there is no difference
with the previous state for a given character, then the cor-
responding transition defined in the local memory is taken.
Otherwise, the transition stored in the state is chosen. In
all cases, as a new state is read, the local transition set is
updated with all the stored transitions of the state. The
δFA shown in fig.1(c) only stores the transitions that must
be defined for each state in the original DFA.

3.3 Construction
In alg.1 the pseudo-code for creating a δFA from a N -

states DFA (for a character set of C elements) is shown.
The algorithm works with the transition table t[s, c] of the
input DFA (i.e.: a N×C matrix that has a row per state and
where the i-th item in a given row stores the state number
to reach upon the reading of input char i). The final result
is a “compressible” transition table tc[s, c] that stores, for
each state, the transitions required by the δFA only. All the
other cells of the tc[s, c] matrix are filled with the special
LOCAL TX symbol and can be simply eliminated by using
a bitmap, as suggested in [24] and [4]. The details of our
suggested implementation can be found in section 7.

Algorithm 1 Pseudo-code for the creation of the transition
table tc of a δFA from the transition table t of a DFA.

1: for c← 1, C do
2: tc[1, c]← t[1, c]
3: end for
4: for s← 2, N do
5: for c← 1, C do
6: tc[s, c]← EMPTY
7: end for
8: end for
9: for sparent ← 1, N do

10: for c← 1, C do
11: schild ← t[sparent, c]
12: for y ← 1, C do
13: if t[sparent, y] 6= t[schild, y] then
14: tc[schild, y]← t[schild, y])
15: else
16: if tc[schild, y] == EMPTY then
17: tc[schild, y]← LOCAL TX
18: end if
19: end if
20: end for
21: end for
22: end for

The construction requires a step for each transition (C) of
each pair of adjacent states (N ×C) in the input DFA, thus
it costs O(N × C2) in terms of time complexity. The space
complexity is O(N × C) because the structure upon which
the algorithm works is another N×C matrix. In details, the
construction algorithms first initializes the tc matrix with
EMPTY symbols and then copies the first (root) state of
the original DFA in the tc. It acts as base for subsequently
storing the differences between consecutive states.

Then, the algorithm observes the states in the original
DFA one at a time. It refers to the observed state as parent.
Then it checks the child states (i.e.: the states reached in
1 transition from parent state). If, for an input char c, the
child state stores a different transition than the one asso-
ciated with any of its parent nodes, we cannot exploit the

knowledge we have from the previous state and this transi-
tion must be stored in the tc table. On the other hand, when
all of the states that lead to the child state for a given char-
acter share the same transition, then we can omit to store
that transition. In alg.1 this is done by using the special
symbol LOCAL TX.

3.3.1 Equivalent states
After the construction procedure shown in alg.1, since the

number of transitions per state is significantly reduced, it
may happen that some of the states have the same identical
transition set. If we find j identical states, we can simply
store one of them, delete the other j − 1 and substitute all
the references to those with the single state we left. Notice
that this operation creates again the opportunity for a new
state-number reduction, because the substitution of state
references makes it more probable for two or more states to
share the same transition set. Hence we iterate the process
until the number of duplicate states found is 0.

3.4 Lookup

Algorithm 2 Pseudo-code for the lookup in a δFA. The
current state is s and the input char is c.

procedure Lookup(s, c)
1: read(s)
2: for i← 1, C do
3: if tc[s, i] 6= LOCAL TX then
4: tloc[i]← tc[s, i]
5: end if
6: end for
7: snext ← tloc[c]
8: return snext

The lookup in a δFA is computed as shown in alg.2. First,
the current state must be read with its whole transition set
(step 1). Then it is used to update the local transition set
tloc: for each transition defined in the set read from the
state, we update the corresponding entry in the local stor-
age. Finally the next state snext is computed by simply
observing the proper entry in the local storage tloc. While
the need to read the whole transition set may imply more
than 1 memory access, we show in sec.6 how to solve this
issue by means of a compression technique we propose. The
lookup algorithm requires a maximum of C elementary op-
erations (such as shifts and logic AND or popcounts), one
for each entry to update. However, in our experiments, the
number of updates per state is around 10. Even if the ac-
tual processing delay strictly depends on many factors (such
as clock speed and instruction set), in most cases, the com-
putational delay is negligible with respect to the memory
access latency.

In fig.3 we show the transitions taken by the δFA in fig.1(c)
on the input string abc: a circle represents a state and its
internals include a bitmap (as in [24] to indicate which tran-
sitions are specified) and the transition set. The bitmap and
the transition set have been defined during construction. It
is worth noticing that the “duplicate” definition of transi-
tions for character c. We have to specify the c-transition for
state 2 even if it is the same as the one defined in state 1,
because state 2 can be reached also from state 3 which has
a different next state for c. We start (t = 0) in state 1 that
has a fully-specified transition set. This is copied into the
local transition set (below). Then we read the input char a

ACM SIGCOMM Computer Communication Review 34 Volume 38, Number 5, October 2008

and move (t = 1) to state 2 that specifies a single transition
toward state 1 on input char c. This is also an accepting
state (underlined in figure). Then we read b and move to
state 3. Note that the transition to be taken now is not
specified within state 2 but it is in our local transition set.
Again state 3 has a single transition specified, that this time
changes the corresponding one in the local transition set. As
we read c we move to state 5 which is again accepting.

Local
transition set

1

d
c
b
a

1
1
1
1

4
1
3
2

4
1
3
2

t = 0

a

2

0
1
0
0

1

4
1
3
2

t = 1

b

3

0
1
0
0

5

4
5
3
2

t = 2

c

5

0
1
0
0

1

4
1
3
2

t = 3

Figure 3: δFA internals: a lookup example.

4. APPLICATION TO H-CFA AND XFA
One of the main advantage of our δFA is that it is or-

thogonal to many other schemes. Indeed, very recently,
two major DFA compressed techniques have been proposed,
namely H-cFA [13] and XFA [21, 20]. Both these schemes
address, in a very similar way, the issue of state blow-up in
DFA for multiple regular expressions, thus candidating to
be adopted in platforms which provide a limited amount of
memory, as network processors, FPGAs or ASICs. The idea
behind XFAs and H-cFA is to trace the traversal of some
certain states that corresponds to closures by means of a
small scratch-memory. Normally those states would lead to
state blow-up; in XFAs and H-cFA flags and counters are
shown to significantly reduce the number of states.

Since our main concern is to show the wide extent of the
possible applications for our δFA, we report in fig.2(a) a
simple example (again taken from a previous paper [13]). In
the example, the aim is to recognize the regular expressions
.*ab[ˆa]*c and .*def, and labels include also conditions and
operations that operate on a flag (set/reset with +/-1) and a
counter n (for more details refer to [13]). A DFA would need
20 states and a total of 120 transitions, the corresponding
H-cFA (fig.2(a)) uses 6 states and 38 transitions, while the
δFA representation of the H-cFA (fig.2(b)) requires only 18
transitions. Specifically, the application of δFA to H-cFA
and XFA (which is tested in sec.8) is obtained by storing
the “instructions” specified in the edge labels only once per
state. Moreover edges are considered different also when
their specified “instructions” are different.

5. COMPRESSING CHAR-STATE PAIRS
In a δFA, the size of each state is not fixed because an

arbitrary number of transitions can be present, and there-
fore state pointers are required, which generally are standard
memory addresses. They constitute a significant part of the
memory occupation associated with the DFA data structure,
so we propose here a compression technique which remark-
ably reduces the number of bits required for each pointer.

Such an algorithm is fully compatible with δFA and most of
the other solutions for DFA compression already shown in
section 2. Our algorithm (hereafter referred to as char-state
compression or simply C-S) is based on a heuristic which
is verified by several standard rule sets: in most cases, the
edges reaching a given state are labelled with the same char-
acter. Table 1 shows, for different available data sets (see
section 8 for more details on sets) the percentage of nodes
which are reached only by transitions corresponding to a
single character over the total number of nodes.

Data set p1char (%) rcomp (%) ηacc TS (KB)
Snort34 96 59 1.52 27
Cisco30 89 67 1.62 7
Cisco50 83 61 1.52 13
Cisco100 78 59 1.58 36
Bro217 96 80 1.13 11

Table 1: Percentage of states reached by edges with
the same one label (p1char), C-S compression (rcomp),
average number of scratchpad accesses per lookup
(ηacc) and indirection-table size (TS).

As a consequence, a consistent number of states in the
DFA can be associated with a single character and can be
referred to by using a “relative” address. More precisely, all
the states reached by a transition labelled with character c
will be given a “relative” identifier (hereafter simply relative-
id); since the number of such states will be smaller than
the number of total states, a relative-id will require a lower
number of bits than an absolute address. In addition, as the
next state is selected on the basis of the next input char,
only its relative-id has to be included in the state transition
set, thus requiring less memory space.

In a D2FA, where a default transition accounts for sev-
eral characters, we can simply store it as a relative-id with
respect to the first character associated with it. The ab-
solute address of the next state will be retrieved by using
a small indirection table, which, as far as our experimental
results show, will be small enough to be kept in local (or
in a scratchpad) memory, thus allowing for fast lookup. It
is clear that such a table will suffer from a certain degree
of redundancy: some states will be associated with several
relative-ids and their absolute address will be reported more
than once. In the next subsection we then propose a method
to cope with such a redundancy, in the case it leads to an
excessive memory occupation.

Figure 4 shows the distribution of the number of bits that
may be used for a relative-id when applying our compression
scheme to standard rule sets. As it can be noticed, next
state pointers are represented in most cases with very few
bits (less than five); even in the worst case, the number of
bits is always below ten. In the second column of table 1, we
show the compression rate achieved by C-S with respect to
a naive implementation of DFA for the available data sets.
As it appears from the table, the average compression is
between 60% and 80%.

5.1 Indirection Table Compression
As claimed above, the implementation of Char-State com-

pression requires a lookup in an indirection table which
should be small enough to be kept in local memory. If several

ACM SIGCOMM Computer Communication Review 35 Volume 38, Number 5, October 2008

0

1

2 3 4

5
c|(0 or n = 0)

d

a

b,+1, n = 4

d

a

d

d

e

c,−1|(1 and n = 0)

d

a,−1

f

d

e

(a) The H-cFA. Dashed and dotted edges have same labels,
respectively c,−1|(1 and n = 0) and a,−1. Not all edges
are shown to keep the figure readable. The real number of
transitions is 38.

0

1

2 3 4

5

a,−1

c,−1|(1 and n = 0)

b,e,f ,c|(0 or n = 0)

d

e,c,f ,b,+1, n = 4

e,f

e

f

f

e,c f

(b) The δH-cFA. Here all the 18 transitions are
shown.

Figure 2: Automata recognizing .*ab[ˆa]*c and .*def

Figure 4: Distribution of the number of bits used for
a relative identifier with our compression scheme for
standard rule sets.

states with multiple relative-ids are present in such a table,
this might be an issue. For this reason we present a lookup
scheme which offers an adaptive trade-off between the av-
erage number of memory accesses and the overall memory
occupation of the table.

The table that we use in our scheme encompasses two
kinds of pointers: absolute pointers and local ones. When a
state has a unique relative-id, its absolute address is written
in the table; otherwise, if it has multiple relative-ids, for each
one of them the table reports a pointer to a list of absolute
addresses; such a pointer will require a consistently smaller
number of bytes than the address itself. An absolute address
is then never repeated in the table, thus preventing from
excessive memory occupation. Such a scheme is somewhat
self-adapting since, if few states have multiple identifiers,
most of the translations will require only one memory ac-
cess, while, if a consistent amount of redundancy is present,
the translation will likely require a double indirection, but
the memory occupation will be consistently reduced. No-
tice that the presence of different length elements in the
table poses no severe issues: since the relative address is
arbitrary, it is sufficient to assign lower addresses to nodes
which are accessible with only one lookup and higher ad-

dresses to nodes requiring double indirection, and to keep a
threshold value in the local memory. The results in terms
of memory accesses and size of such a scheme applied to the
available data sets are reported in fig.1.

6. C-S IN δFA
The C-S can be easily integrated within the δFA scheme

and both algorithms can be cross-optimized. Indeed, C-
S helps δFA by reducing the state size thus allowing the
read of a whole transition set in a single memory access on
average. On the other hand, C-S can take advantage of the
same heuristic of δFA: successive states often present the
same set of transitions. As a consequence, it is possible to
parallelize the retrieval of the data structure corresponding
to the next state and the translation of the relative address
of the corresponding next-state in a sort of “speculative”
approach. More precisely, let s and s+1 be two consecutive
states and let us define Ac

s as the relative address of the next
hop of the transition departing from state s and associated
with the character c. According to the previously mentioned
heuristic it is likely that Ac

s = Ac
s+1; since, according to our

experimental data (see sec.8), 90% of the transitions do not
change between two consecutive states, we can consider such
an assumption to be verified with a probability of roughly
0.9. As a consequence, when character c is processed, it is
possible to parallelize two memory accesses:

• retrieve the data structure corresponding to state s+1;

• retrieve the absolute address corresponding to Ac
s+1 in

the local indirection table.

In order to roughly evaluate the efficiency of our implemen-
tation in terms of the state lookup time, we refer to a com-
mon underlying hardware architecture (described in section
7). It is pretty common [25] that the access to a local mem-
ory block to be than twice as faster than that of to an off-chip
memory bank: as a consequence, even if a double indirection
is required, the address translation will be ready when the
data associated with the next state will be available. If, as
it is likely, Ac

s = Ac
s+1, it will be possible to directly access

the next state (say s+ 2) through the absolute pointer that

ACM SIGCOMM Computer Communication Review 36 Volume 38, Number 5, October 2008

has just been retrieved. Otherwise, a further lookup to the
local indirection table will be necessary.

Such a parallelization can remarkably reduce the mean
time needed to examine a new character. As an approximate
estimation of the performance improvement, let us suppose
that our assumption (i.e. Ac

s = Ac
s+1) is verified with prob-

ability p = 0.9, that one access to on-chip memory takes
ton = 4T and to an external memory toff = 10T [25], and
that an address translations requires ntrans = 1.5 memory
accesses (which is reasonable according to the fourth column
of table 1). The mean delay will be then:

tpar = (1− p)(toff + ntrans × ton) + p× toff = 10.6T

This means that even with respect to the implementation of
δFA the C-S scheme increases the lookup time by a limited
6%. On the contrary, the execution of the two tasks serially
would required:

tser = (toff + ntrans × ton) = 16T

The parallelization of tasks results then in a rough 50%
speed up gain.

7. IMPLEMENTATION
The implementation of δFA and C-S should be adapted to

the particular architecture of the hardware platform. How-
ever, some general guidelines for an optimal deployment can
be outlined. In the following we will make some general as-
sumptions on the system architecture; such assumptions are
satisfied by many network processing devices (e.g. the Intel
IXP Network Processors [12]). In particular, we assume our
system to be composed by:

• a standard 32 bit processor provided with a fairly small
local memory (let us suppose a few KBs); we consider
the access time to such a memory block to be of the
same order of the execution time of an assembly level
instruction (less than ten clock cycles);

• an on-chip fast access memory block (which we will
refer to as scratchpad) with higher storage capacity
(in the order of 100 KB) and with an access time of a
few dozens of clock cycles;

• an off-chip large memory bank (which we will refer to
as external memory) with a storage capacity of dozens
of MBs and with an access time in the order of hun-
dreds of clock cycles.

We consider both δFA and Char-State compression algo-
rithms. As for the former, two main kinds of data struc-
tures are needed: a unique local transition set and a set of
data structures representing each state (kept in the external
memory). The local transition set is an array of 256 pointers
(one per character) which refer to the external memory loca-
tion of the data structure associated with the next state for
that input char; since, as reported in table 3.b , the memory
occupation of a δFA is generally smaller than 1 MB, it is
possible to use a 20 bit-long offset with respect to a given
memory address instead of an actual pointer, thus achieving
a consistent compression.

A δFA state is, on the contrary, stored as a variable-length
structure. In its most general form, it is composed by a
256 bit-long bitmap (specifying which valid transition are
already stored in the local transition set and which ones are

instead stored within the state) and a list of the pointers for
the specified transitions, which, again, can be considered as
20 bit offset values.

If the number of specified transitions within a state is
small enough, the use of a fixed size bitmap is not optimal:
in these cases, it is possible to use a more compact structure,
composed by a plain list of character-pointer couples. Note
that this solution allows for memory saving when less than
32 transitions have to be updated in the local table.

Since in a state data structure a pointer is associated with
a unique character, in order to integrate Char-State com-
pression in this scheme it is sufficient to substitute each ab-
solute pointer with a relative-id. The only additional struc-
ture consists of a character-length correspondence list, where
the length of the relative-ids associated with each charac-
ter is stored; such an information is necessary to parse the
pointer lists in the node and in the local transition set. How-
ever, since the maximum length for the identifiers is gener-
ally lower than 16 bits (as it is evident from figure 4), 4 bits
for each character are sufficient. The memory footprint of
the character-length table is well compensated by the corre-
sponding compression of the local transition set, composed
by short relative identifiers (our experimental results show
a compression of more than 50%). Furthermore, if a dou-
ble indirection scheme for the translation of relative-ids is
adopted, a table indicating the number of unique identifiers
for each character (the threshold value we mentioned in sec-
tion 5.1) will be necessary, in order to parse the indirection
table. This last table (that will be at most as big as the com-
pressed local transition table) can be kept in local memory,
thus not affecting the performance of the algorithm.

8. EXPERIMENTAL RESULTS
This section shows a performance comparison among our

algorithm and the original DFA, D2FA and BEC-CRO. The
experimental evaluation has been performed on some data
sets of the Snort and Bro intrusion detection systems and
Cisco security appliances [26]. In details, such data sets,
presenting up to hundreds of regular expressions, have been
randomly reduced in order to obtain a reasonable amount of
memory for DFAs and to observe different statistical proper-
ties. Such characteristics are summarized in table 2, where
we list, for each data set, the number of rules, the ascii
length range and the percentage of rules including “wild-
cards symbols” (i.e. *, +, ?). Moreover, the table shows the
number of states and transitions and the amount of memory
for a standard DFA which recognizes such data sets, as well
as the percentage of duplicated states. The choice of such
data sets aims to mimic the size (in terms of DFA states and
regular expressions) of other sets used in literature [4, 14, 5,
6] in order to obtain fair comparisons.

Tables 3 illustrate the memory compression achieved by
the different algorithms. We have implemented the code for
our algorithm, while the code for D2FA and BEC-CRO is the
regex-tool [18] from Michela Becchi (for the D2FA the code
runs with different values of the diameter bound, namely
the diameter of the equivalent maximum weight spanning
tree found in the space reduction graph [14]; this param-
eter affects the structure size and the average number of
state-traversals per character). By means of these tools, we
build a standard DFA and then reduce states and transi-
tions through the different algorithms. The compression in
tab.3.a is simply expressed as the ratio between the num-

ACM SIGCOMM Computer Communication Review 37 Volume 38, Number 5, October 2008

Dataset
of regex ASCII % Regex w/ Original DFA

length range wildcards (*,+,?) # of states # of transitions
Snort24 24 6-70 83.33 13886 3554816
Cisco30 30 4-37 10 1574 402944
Cisco50 50 2-60 10 2828 723968
Cisco100 100 2-60 7 11040 2826240
Bro217 217 5-76 3.08 6533 1672448

Table 2: Characteristics of the rule sets used for evaluation.

(a) Transitions reduction (%). For δFA also the percentage of duplicate states is reported.

Dataset
D2FA

BEC-CRO
δFA

DB =∞ DB = 14 DB = 10 DB = 6 DB = 2 trans. dup. states
Snort24 98.92 98.92 98.91 98.48 89.59 98.71 96.33 0
Cisco30 98.84 98.84 98.83 97.81 79.35 98.79 90.84 7.12
Cisco50 98.76 98.76 98.76 97.39 76.26 98.67 84.11 1.1
Cisco100 99.11 99.11 98.93 97.67 74.65 98.96 85.66 11.75
Bro217 99.41 99.40 99.07 97.90 76.49 99.33 93.82 11.99

(b) Memory compression (%).

Dataset
D2FA

BEC-CRO δFA + C-S
DB =∞ DB = 14 DB = 10 DB = 6 DB = 2

Snort24 95.97 95.97 95.94 94.70 67.17 95.36 95.02
Cisco30 97.20 97.20 97.18 95.21 55.50 97.11 91.07
Cisco50 97.18 97.18 97.18 94.23 51.06 97.01 87.23
Cisco100 97.93 97.93 97.63 95.46 51.38 97.58 89.05
Bro217 98.37 98.34 95.88 95.69 53 98.23 92.79

Table 3: Compression of the different algorithms in terms of transitions and memory.

ber of deleted transitions and the original ones (previously
reported in tab.2, while in tab.3.b it is expressed consider-
ing the overall memory saving, therefore taking into account
the different state sizes and the additional structures as well.
Note also, in the last column of tab.3.a, the limited but effec-
tive state-reduction due to the increased similarity of states
obtained by the δFA (as described in sec.3.3.1). Although
the main purpose of our work is to reduce the time complex-
ity of regular expression matching, our algorithm achieves
also a degree of compression comparable to that of D2FA and
BEC-CRO, as shown by tab.3. Moreover, we remark that
our solution is orthogonal to these algorithms (see sec.4),
thus allowing further reduction by combining them.

Figure 5 shows the average number of memory accesses
(ηacc) required to perform pattern matching through the
compared algorithms. It is worth noticing that, while the
integration of C-S into δFA (as described in sec.6) reduces
the average state size, thus allowing for reading a whole
state in slightly more than 1(< 1.05) memory accesses, the
other algorithms require more accesses, thus increasing the
lookup time. We point out that the mean number of ac-
cesses for the integration of δFA and C-S is not included in
the graph in that C-S requires accesses to a local scratchpad
memory, while the accesses the figure refers to are generally
directed to an external, slower memory block; therefore it
is difficult to quantify the additional delay introduced by
C-S. However, as already underlined in section 6, if an ap-
propriate parallelization scheme is adopted, the mean delay
contribution of C-S can be considered nearly negligible on
most architectures.

Finally, table 4 reports the results we obtained by apply-
ing δFA and C-S to one of the most promising approach for
regular expression matching: XFAs [21, 20] (thus obtaining
a δXFA). The data set (courtesy of Randy Smith) is com-
posed of single regular expressions with a number of closures
that would lead to a state blow-up. The XFA representa-
tion limits the number of states (as shown in the table). By
adopting δFA and C-S we can also reduce the number of
transitions with respect to XFAs and hence achieve a fur-
ther size reduction. In details, the reduction achieved is
more than 90% (except for a single case) in terms of num-
ber of transitions, that corresponds to a rough 90% mem-
ory compression (last column in the table). The memory
requirements, both for XFAs and δXFAs, are obtained by
storing the “instructions” specified in the edge labels only
once per state.

Dataset
of # of trans. # of trans. Compr.
states XFA δXFA %

c2663-2 14 3584 318 92
s2442-6 12 3061 345 74.5
s820-10 23 5888 344 94.88
s9620-1 19 4869 366 92.70

Table 4: Number of transitions and memory com-
pression by applying δFA+C-S to XFA.

Figure 6 resumes all the evaluations by mixing speed per-
formance (in terms of memory accesses) and space require-

ACM SIGCOMM Computer Communication Review 38 Volume 38, Number 5, October 2008

Figure 5: Mean number of memory accesses for δFA,
BEC-CRO and D2FA for different datasets.

speed

size

DFA

D2FA

BEC-CRO

δFA
+C-S

XFA/
H-cFA

δXFA/

δH-cFA

Figure 6: Comparison of speed performance and
space requirements for the different algorithms.

ments in a qualitative graph (proportions are not to be con-
sidered real). It is evident that our solution almost achieves
the compression of D2FA and BEC-CRO, while it proves
higher speed (as that of DFA). Moreover, by combining our
scheme with other ones, a general performance increase is
obtained, as shown by the integration with XFA or H-cFA.

9. PACKET CLASSIFICATION WITH δFA
In the last ten years, a large number of papers on packet

classification have been published. However, such a topic
still represents an open research field: its importance keeps
growing, both at the edge and at the core of network, be-
cause it is necessary to provide QoS and security at high
speeds. Moreover, all existing techniques and algorithms
do not represent a final solution that can be applied to all
scenarios: in most cases they trade memory occupation for
search speed by yielding good results in either one or another
context.

Our proposal is to use δFA to represent classification rule
sets. While such rules generally specify single bits of the
header, we need byte-wise rules to define regular expression;
therefore rules are “exploded” to 8-bits boundaries. Each
rule (defined by the usual 5-tuple SrcIP , DestIP , SrcPort,
DestPort, and L4−Protocol) has then to be translated into
a regular expression and an equivalent DFA has to be built.
Each byte belonging to header fields composing the 5-tuples
is taken in the DFA as a character.

We compare our solution with the most recent and high
performance packet classification algorithms, by using the
code provided by Haoyu Song at [17].

The Parallel Bit Vectors (BV) [16] is a decomposition-
based algorithm, targeted to hardware implementation. It
first performs the parallel lookups on each individual field
(returning a bit vector where a bit representing a filter is set
if the filter is matched on this field) and then shares these
information (with a bitwise AND operation) to find the fi-
nal matching. Instead, HiCuts [11] is a decision tree-based
algorithm, based on a geometric view of the packet classifi-
cation problem; the construction algorithm recursively cuts
the space into smaller non overlapped sub-regions, one di-
mension per step, where a low cost linear search allows for
finding the best matched filter. HyperCuts [19] is another
decision tree structure, very similar to HiCuts; it introduces
several additional refinements and especially allows cutting
on multiple dimensions per step rather than only one. For
HiCuts and HyperCuts we assume two values of the space
factor (2 and 4), a parameter which regulates the trade-off
between memory consumption and number of accesses.

The synthetic filter sets used for the decision structures
construction and the packet traces used for the lookup eval-
uation are both generated by ClassBench [8]. The filters are
real filter sets provided by Internet Service Providers and
network equipment vendors. In particular, three filters of
100 rules have been chosen for the performance evaluation:
an access control list, a NAT list for a firewall and a decision
tree format list for IP Chain.

In this phase, the actual target of our algorithm is a fast
lookup, and the results in tab.5 confirm our ideas: δFA re-
quires for the lookup the least number of memory accesses in
the worst case for all filter sets, for instance with a reduction
up to 60% with respect to BV. Also, our algorithm shows
good performance even in terms of mean number of accesses.
We point out that, since in real implementation the cost of
memory accesses overcomes the cost of actual processing,
the speed of any operations depends almost exclusively on
the number of memory accesses.

Unfortunately, at this stage very preliminary results also
prove a very remarkable memory consumption for δFA if
compared to the standard classification algorithms. This
is mainly due to the wildcards in the rule sets, which lead
to state blow-up in the finite automaton. Some recent im-
provements ([5], [13] and [21, 20]) proved to solve this issue,
obtaining good results, and might be used to decrease mem-
ory consumption of δFA and to make our algorithm available
for packet classification in real network devices.

Algorithm
ACL1 100 FW1 100 IPC1 100
Mem. ref. Mem. ref. Mem. ref.

mean max mean max mean max
HyperCuts–2 12.97 23 12.65 29 6.96 16
Hypercuts–4 10.2 17 11.5 26 5.76 13

HiCuts–2 6.17 17 15.02 28 6.1 17
Hicuts–4 6.47 16 11.5 26 4.85 18

BV 24 31 22 28 26 33
δFA 9.78 13 8.69 13 12.2 13

Table 5: Comparison between packet classification
algorithms in terms of memory accesses.

ACM SIGCOMM Computer Communication Review 39 Volume 38, Number 5, October 2008

10. CONCLUSIONS AND FUTURE WORK
In this paper, we have presented a new compressed rep-

resentation for deterministic finite automata, called Delta
Finite Automata. The algorithm considerably reduces the
number of states and transitions and it is based on the ob-
servation that most adjacent states share several common
transitions, so it is convenient to store only the differences
between them. Furthermore, it is orthogonal to previous so-
lutions, this way allowing for higher compression rates. An-
other fundamental feature of the δFA is that it requires only
a state transition per character (keeping the characteristic
of standard DFAs), thus allowing a fast string matching.

A new encoding scheme for states has been also proposed
(that we refer to as Char State), which exploits the associ-
ation of many states with a few input chars. Such a com-
pression scheme can be efficiently integrated into the δFA
algorithm, allowing a further memory reduction with a neg-
ligible increase in the state lookup time.

Finally, the integration of both schemes has also been pro-
posed for application in the field of packet classification, by
representing the classification rule set through regular ex-
pressions. The experimental runs have shown good results
in terms of lookup speed as well as the issue of excessive
memory consumption, which we plan to address by exploit-
ing the recent techniques presented in [13] and [21, 20].

Acknowledgements
We would like to thank Michela Becchi for her extensive sup-
port and for her useful regex-tool. We are grateful to Sailesh
Kumar, William Eatherton and John Williams (Cisco) for
having provided the regular expression set used in Cisco de-
vices. We thank Randy Smith for his precious suggestion
and the XFAs used in our tests. Finally we would like to ex-
press gratitude to Haoyu Song for his freely available packet
classifier implementations that helped us in our work and to
the anonymous reviewers for their insightful comments.

11. REFERENCES
[1] A. V. Aho and M. J. Corasick. Efficient string

matching: an aid to bibliographic search. Commun.
ACM, 18(6):333–340, 1975.

[2] A. V. Aho, R. Sethi, and J. D. Ullman. Compilers,
principles, techniques, and tools. Addison Wesley,
1985.

[3] Bro: A system for Detecting Network Intruders in
Real Time, http://bro-ids.org/.

[4] M. Becchi and S. Cadambi. Memory-efficient regular
expression search using state merging. In Proc. of
INFOCOM 2007, May 2007.

[5] M. Becchi and P. Crowley. A hybrid finite automaton
for practical deep packet inspection. In Proc. of
CoNEXT ’07, pages 1–12. ACM, 2007.

[6] M. Becchi and P. Crowley. An improved algorithm to
accelerate regular expression evaluation. In Proc. of
ANCS ’07, pages 145–154, 2007.

[7] B. C. Brodie, D. E. Taylor, and R. K. Cytron. A
scalable architecture for high-throughput
regular-expression pattern matching. In Proc. of
ISCA’06, June 2006.

[8] Classbench, A Packet Classification Benchmark,
http://www.arl.wustl.edu/~det3/ClassBench/.

[9] B. Commentz-Walter. A string matching algorithm
fast on the average. In Proc. of ICALP ’79, pages
118–132. Springer-Verlag.

[10] W. Eatherton, Z. Dittia, and G. Varghese. Tree
bitmap: Hardware/software ip lookups with
incremental updates. ACM SIGCOMM Computer
Communications Review, 34, 2004.

[11] P. Gupta and N. McKeown. Packet classification on
multiple fields. In SIGCOMM, pages 147–160, 1999.

[12] Intel Network Processors,
www.intel.com/design/network/products/npfamily/.

[13] S. Kumar, B. Chandrasekaran, J. Turner, and
G. Varghese. Curing regular expressions matching
algorithms from insomnia, amnesia, and acalculia. In
Proc. of ANCS ’07, pages 155–164. ACM.

[14] S. Kumar, S. Dharmapurikar, F. Yu, P. Crowley, and
J. Turner. Algorithms to accelerate multiple regular
expressions matching for deep packet inspection. In
Proc. of SIGCOMM ’06, pages 339–350. ACM.

[15] S. Kumar, J. Turner, and J. Williams. Advanced
algorithms for fast and scalable deep packet
inspection. In Proc. of ANCS ’06, pages 81–92. ACM.

[16] T. V. Lakshman and D. Stiliadis. High-speed
policy-based packet forwarding using efficient
multi-dimensional range matching. In SIGCOMM,
pages 203–214, 1998.

[17] Haoyu Song, Evaluation of Packet Classification
Algorithms, www.arl.wustl.edu/~hs1/PClassEval.html.

[18] Michela Becchi, regex tool, http://regex.wustl.edu/.

[19] S. Singh, F. Baboescu, G. Varghese, and J. Wang.
Packet classification using multidimensional cutting.
Technical report, 2003.

[20] R. Smith, C. Estan, and S. Jha. Xfa: Faster signature
matching with extended automata. In IEEE
Symposium on Security and Privacy, May 2008.

[21] R. Smith, C. Estan, and S. Jha. Xfas: Fast and
compact signature matching. Technical report,
University of Wisconsin, Madison, August 2007.

[22] R. Sommer and V. Paxson. Enhancing byte-level
network intrusion detection signatures with context.
In Proc. of CCS ’03, pages 262–271. ACM.

[23] Snort: Lightweight Intrusion Detection for Networks,
http://www.snort.org/.

[24] N. Tuck, T. Sherwood, B. Calder, and G. Varghese.
Deterministic memory-efficient string matching
algorithms for intrusion detection. In Proc. of
INFOCOM 2004, pages 333–340.

[25] G. Varghese. Network Algorithmics,: An
Interdisciplinary Approach to Designing Fast
Networked Devices. Morgan Kaufmann Publishers
Inc., San Francisco, CA, USA, 2004.

[26] J. W. Will Eatherton. An encoded version of reg-ex
database from cisco systems provided for research
purposes.

[27] S. Wu and U. Manber. A fast algorithm for
multi-pattern searching. Technical Report TR-94-17,
Dept.of Computer Science, University of Arizona.

[28] F. Yu, Z. Chen, Y. Diao, T. V. Lakshman, and R. H.
Katz. Fast and memory-efficient regular expression
matching for deep packet inspection. In Proc. of
ANCS ’06, pages 93–102.

ACM SIGCOMM Computer Communication Review 40 Volume 38, Number 5, October 2008

