
DisCarte: A Disjunctive Internet Cartographer∗

Rob Sherwood
University of Maryland

capveg@cs.umd.edu

Adam Bender
University of Maryland

bender@cs.umd.edu

Neil Spring
University of Maryland

nspring@cs.umd.edu

ABSTRACT
Internet topology discovery consists of inferring the inter-router
connectivity (“links”) and the mapping from IP addresses to routers
(“alias resolution”). Current topology discovery techniques use
TTL-limited “traceroute” probes to discover links and use direct
router probing to resolve aliases. The often-ignored record route
(RR) IP option provides a source of disparate topology data that
could augment existing techniques, but it is difficult to properly
align with traceroute-based topologies because router RR imple-
mentations are under-standardized. Correctly aligned RR and trace-
route topologies have fewer false links, include anonymous and
hidden routers, and discover aliases for routers that do not respond
to direct probing. More accurate and feature-rich topologies ben-
efit overlay construction and network diagnostics, modeling, and
measurement.

We present DisCarte, a system for aligning and cross-validating
RR and traceroute topology data using observed engineering prac-
tices. DisCarte uses disjunctive logic programming (DLP), a logi-
cal inference and constraint solving technique, to intelligently merge
RR and traceroute data. We demonstrate that the resultant topol-
ogy is more accurate and complete than previous techniques by
validating its internal consistency and by comparing to publicly-
available topologies. We classify irregularities in router implemen-
tations and introduce a divide-and-conquer technique used to scale
DLP to Internet-sized systems.

Categories and Subject Descriptors
C.2.1 [Communication Networks]: Network Architecture and De-
sign — Network Topology

General Terms
Measurement, Experimentation, Verification

Keywords
Network Topology Discovery, DisCarte, Disjunctive Logic Pro-
gramming, Record Route, Alias Resolution
∗This work was supported by grants ANI 0092806 and CNS-
0435065 from the National Science Foundation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

1. INTRODUCTION
Knowledge of the global topology of the Internet allows network

operators and researchers to determine where losses, bottlenecks,
failures, and other undesirable and anomalous events occur. Yet
this topology remains largely unknown: individual operators may
know their own networks, but neighboring networks are amorphous
clouds. The lack of precise global topology information hinders
network diagnostics [42, 24, 15, 17], inflates IP path lengths [10,
39, 36, 43], reduces the accuracy of Internet models [46, 25, 16],
and encourages overlay networks to ignore the underlay [2, 27].

Because network operators rarely publish their topologies, and
the IP protocols have little explicit support for exposing the In-
ternet’s underlying structure, researchers must infer the topology
from measurement and observation. A router-level network topol-
ogy consists of two types of features: links and aliases. A link
connects two IP addresses on distinct routers, and an alias identi-
fies two IP addresses on the same router. The goal is to discover
a router-level map that is both accurate—all inferred features re-
flect the actual topology—and complete—features are inferred for
as many pairs of IP addresses as possible.

The problem is that topology discovery techniques are error-
prone. The current state-of-the-art [40, 21] uses TTL-limited probes,
i.e., traceroute (TR), to infer links, and direct router probing [40,
12] to discover aliases. However, topologies inferred from these
techniques are known to inflate the number of observed routers [44],
record incorrect links [3], and bias router degree distributions [18].
These errors result from routers that do not respond to alias reso-
lution techniques, anonymous routers [45], mid-measurement path
instabilities [30], MPLS [35], and insufficient measurement van-
tage points. The Passenger tool [38] demonstrates that the record
route (RR) IP option discovers aliases for unresponsive routers and
exposes MPLS tunnels, anonymous routers, and mid-measurement
path instabilities. However, RR’s accuracy depends on correctly
aligning RR and TR discovered IPs, itself an error-prone procedure.
Passenger’s preliminary work reports that almost 40% of their data
could not be aligned and was unusable. Of the usable data, almost
11% of the inferred aliases were incorrect.

Unfortunately, accuracy and completeness can be at odds: for
example, measuring more path data can help complete the map,
but may also contribute inaccurate links. This is because topology
errors accumulate—adding additional correct facts cannot “aver-
age away” a falsely asserted link. Similarly, alias inferences are
transitive—a single false alias causes a cascading transitive closure
of false aliases. We make the observation that if all topology data
has error, then the vast data required for a complete map must have
a great deal of accumulated error. Thus, in order to achieve both
accuracy and completeness at the same time, a topology inference
system must actively identify and remove error.

303

Our insight is that the overall error can be reduced by cross-
validating both TR and RR inference techniques against observed
network engineering practices. For example, a correctly imple-
mented router would never forward packets directly back to itself,
so any topology that asserts a link and an alias between the same
pair of IP addresses must be inaccurate. Thus, by carefully merg-
ing three disparate sources of information, the resultant topology is
both more accurate and more complete.

We present DisCarte, a novel topology data cross-validation sys-
tem. DisCarte formulates topology inference and cross-validation
as a constraint solving problem using disjunctive logic program-
ming (DLP). DisCarte inputs traces from TR and RR, and, using
observed network engineering practices as constraints, outputs a
single merged topology. Compared to Rocketfuel-based [40] tech-
niques, topologies produced with DisCarte find 11% more aliases
from unresponsive routers, and expose additional topology features
such as MPLS, router manufacturer, equal cost multi-pathing, and
hidden and anonymous routers. Compared to Passenger [38], Dis-
Carte correctly aligns 96% of RR and TR addresses, and reduces
the false alias rate to approximately 3%. The effect of the improved
topology is visually evident: we compare the topology of the pop-
ular Abilene network as inferred by Rocketfuel and DisCarte to the
actual published topology (Figure 1).

In this paper, we describe the qualitative benefits of DisCarte in-
ferred topologies (Section 2) and the difficulties in achieving accu-
rate topologies (Section 3). We then discuss the individual elements
of the DisCarte system (Section 4) and a novel divide-and-conquer
scheme (Section 5) we implement to scale DLP to the 1.3 billion
facts in our system. We detail our data collection process (Sec-
tion 6), quantify the benefit of DisCarte inferred topologies (Sec-
tion 7), and show DisCarte’s effect on bias (Section 8). We then
conclude how one might redesign record route (Section 10) to aid
topology discovery and describe our future work (Section 11).

2. CROSS-VALIDATING WITH DISCARTE
In this section, we describe the benefits of correctly merged trace-

route-inferred and RR-inferred topologies. Traceroute (TR) uses
TTL-limited probes to generate ICMP time-exceeded responses from
each router on a path. The source IP address of each time-exceeded
message exposes an IP address for the corresponding router. The
record route (RR) IP option is an array in the IP header into which
each router on the path inserts an IP address. The array can store
at most nine addresses, bound by the size limit of the IP header.
Because of how they are implemented (Section ??), TR and RR
discover distinct IP addresses for a given router. TR discovers the
IP address for the incoming interface whereas RR can discover the
outgoing or internal routing interface depending on implementa-
tion. We say that a TR-trace and RR-trace have been correctly
address aligned if each TR-discovered address has been correctly
mapped to the RR-discovered address of the same router.

TR and RR can be combined into a single TTL-limited probe
with the RR option set. Because an ICMP unreachable error mes-
sage includes the entire IP header of the failed message, we can
recover the RR array from the responses to TTL-limited probes:
RR packets need not reach the destination of the probe. Thus, RR
does not require the packet destination to return the RR probe, i.e.,
“ping -R” is not the only means of collecting RR data.

2.1 Benefits of Cross-Validation
Cross-validating TR and RR information against observed net-

work engineering practices results in higher quality address align-
ment. Correct address alignment discovers aliases for routers that

do not respond to direct probing, hidden and anonymous routers,
and multi-path load balancing.
Alias resolution does not require direct probing.

In our survey, 193,192 of 602,136 (32.1%) IP addresses do not
respond to probes addressed directly to them, preventing both IP-
identifier-based matching (“ally” [40]) and source-address match-
ing [29, 12] alias resolution techniques. Six years ago, approxi-
mately 10% were unresponsive [40], suggesting that techniques for
alias resolution without direct probing will be increasingly impor-
tant. We further characterize the aliases RR allows us to discover
in Section 7.
RR exposes hidden and anonymous routers.

We call routers hidden if they do not decrement TTL and do not
appear inside a traceroute; some implementations of MPLS [35]
cause hidden routers. Anonymous routers [45] are routers that decre-
ment TTL but do not send the corresponding ICMP time-exceeded
messages: they appear as a ’*’ in traceroute. The absence of in-
formation from these routers is a significant source of error [45].
Out of 100,256 routers observed in our study, RR discovered IP
addresses for 2,440 (2.4%) distinct anonymous routers that would
have been missed by TR-only techniques. Additionally, we dis-
cover 329 (0.3%) distinct hidden routers.
RR discovers multi-path load balancing.

Internet Service Providers (ISPs) use multiple routes across equal-
cost paths to load balance traffic. To prevent out-of-order packet
arrival, load balancing routers attempt to map packets in the same
flow to the same path. However, due to implementation decisions [6]
in some routers, packets with IP options, including RR, break this
flow-to-path mapping and traverse multiple equal-cost paths. Thus,
probes with RR detect load balancing routers and enumerate addi-
tional paths more correctly than TR alone.
RR exposes mid-measurement path instability.

Mid-measurement path instabilities cause TR to infer incorrect
links: TR assumes that sequential probes traverse the same paths.
Recent techniques (Paris traceroute [3] and TCP Sidecar [37, 38])
mitigate this concern by preventing a specific class of instabilities:
five-tuple load balancing multi-path. Because RR has per-packet
path information, we can detect all forms of mid-measurement path
changes in the first nine hops. Thus, links discovered via RR exist
with higher confidence than links discovered by TR alone.

A trace between Zhengzhou University, China to SUNY Stony
Brook, USA (Figure 2) is an example of the differences between
topology discovery with and without DisCarte. Each box repre-
sents a router, and each rectangle within a router represents an in-
terface. Lines between interfaces indicate links. We resolve DNS
names of IP addresses when available, and show only the first four
hops of the trace then a dotted line to the destination. The trace
without RR discovers at most one interface on each router, and
fails to discover any interfaces on router 3 (because it is anony-
mous). Adding RR to the probes and performing address alignment
(Section 3) discovers many interfaces on each router and exposes
many connections between routers, presumably for load balancing.
Router labels (S1, R2, etc.) are annotated with their inferred RR
implementation type (Section 3.1).

2.2 Cross Validation Limitations: RR
Many of the benefits of cross-validation rely on the RR option

which has two limitations: RR includes only nine hops of data and
packets with RR may be dropped or filtered. We describe each in
turn.

Because the IP header can hold at most 60 bytes, RR can record
only nine IP addresses. We believe the nine-hop limit is why RR
has been passed over for topology discovery. Yet, there is reason

304

snvang

wash

newy32aoa

chic

atla

sttlng

atla

chic

atla

chic

kans

atla

chic

sttlng

chic

chic

sttlng

chic

salt

kans

newy32aoa

atlasttlng

hstnng

dnvrng

hstnng

snvang

wash

chicwash

wash

chic

dnvrng

dnvrng

losang

newy32aoa

chic

hstnng

chic

atla

losang

chic

losang

chic

newy32aoa

chic

hstnng

snvang

losang

salt

chic

dnvrng wash

sttlng

wash

losang

kans

chic

newy32aoa

chic

kans

snvang

wash

wash

atla-m5

kans

newy32aoa

hstnng

hstnng

snvang chic

chic

chic

chic

atla

newy32aoa

losang

atla

sttlng

wash

dnvrng newy32aoa

salt

newy32aoa

losang

kans

wash

sttlng

hstnng

atla-m5

chic

dnvrng

snvang

atla

salt

newy32aoa

losang

kans

wash

sttlng

hstnng

atla-m5

chic

dnvrng

snvang

atla

Figure 1: Abilene topology: inferred by Rocketfuel (left, routers unresponsive to direct alias resolution), DisCarte (middle), and
actual topology (right). Rectangles are routers with interior ovals representing interfaces.

to revisit this concern. PlanetLab makes available a geographically
diverse set of vantage points; these may be within nine hops of
much of the network. Further, our experiments use TR probes with
and without RR set, so any information gained from RR strictly
increases our understanding of the topology.

Second, routers might choose to drop or filter packets with IP
options. Of the 602,136 IP addresses of routers we observed within
nine hops of our vantage points (that could have dropped RR), only
8,441 (1%) dropped packets with record route. We mitigate this
limitation by running all traces with and without RR set.

3. ADDRESS ALIGNMENT
In order to achieve the benefits of cross-validation (Section 2),

addresses discovered by TR and RR must be correctly aligned.
Address alignment is the process of matching the IP addresses dis-
covered by RR to the corresponding addresses discovered by TR.
Accurate address alignment requires classifying the RR implemen-
tation type of each router in a trace and correctly handling tricky
topology features.

3.1 Under-Standardized RR Implementations
The record route IP option [33] tells routers to record their IP

address into a buffer in a packet’s IP header. The interface that is
recorded is the first source of implementation variation. Although
RFC 791 states that a router should record “its own Internet ad-
dress as known in the environment into which this data-gram is
being forwarded,” we have observed that routers record the address
corresponding to the incoming, outgoing, or internal interface de-
pending on implementation. The second implementation variation
we have observed is whether the address is recorded for an expiring
packet, that is, when a packet arrives with TTL=1.

We observe six different RR implementations. We describe each
implementation, sorted in order of popularity, along with our best

estimate of its manufacturer. An implementation’s popularity is a
function of the total number of routers we were able to classify.

Departing: 61.9% This implementation updates the RR array as
packets leave the router, and thus does not update the RR
array for expiring packets. That is, when a TTL=1 packet ar-
rives at a router, the router does not add an address to the RR
array. When a packet with TTL>1 passes through the router,
the outgoing interface address is recorded. We associate this
behavior with Cisco routers due to its popularity and private
communications with Cisco engineers.

MPLS: 13.3% This implementation behaves like a Departing router
(above), except for interfaces with MPLS [35] enabled. A
packet that exits an MPLS-enabled interface does not mod-
ify the RR array (similar to NotImpl, below). We know that
these interfaces use MPLS because they also implement the
ICMP unreachable MPLS trailers protocol [4] that returns
MPLS tunnel identifiers.

NotImpl: 9.1% Some routers disable or do not implement RR.
These routers pass RR probes through without modification.
We believe that RR may have been previously overlooked as
a measurement technique due to inflated expectation of the
number of NotImpl routers.

Arriving: 7.1% In this implementation, the RR array is updated
when the packet arrives so TTL expiring packets are up-
dated. Some routers record the outgoing interface, while oth-
ers record the internal loopback interface. Internal loopback
addresses can be distinguished from outgoing addresses by
hand, for example, if the reverse DNS look-up of the ad-
dress contains the string “lo-”. We believe this RR-type cor-
responds to Juniper due to its appearance in the Abilene net-
work which uses Juniper routers [1].

Lazy: 5.8% These routers do not decrement TTL for packets with
the RR option set, and instead allow the packet to continue

305

E16

planetlab4.mnl.cs.sunysb.edu
(130.245.145.153)

R5 (Lazy)

bjcd3.cernet.net
(202.112.46.161)

?? (202.112.53.181)

R3 (Departing)

?? (202.112.62.86)

?? (202.112.62.82)

?? (202.112.62.210)

?? (202.112.53.217)

?? (202.112.53.213)

?? (202.112.38.33)

?? (202.112.38.29)

?? (202.112.38.25)

R4 (Departing)

?? (202.112.62.85)

?? (202.112.62.81)

?? (202.112.62.209)

cdbj3.cernet.net
 (202.112.46.162)

R2 (Arriving)

?? (219.243.200.38)

?? (202.112.53.218)

?? (202.112.53.214)

?? (202.112.38.34)

?? (202.112.38.30)

?? (202.112.38.26)

S1

zzu1.6planetlab.edu.cn
(219.243.200.37)

E16

planetlab4.mnl.cs.sunysb.edu
 (130.245.145.153)

R5

bjcd3.cernet.net
 (202.112.46.161)

R4

?? (202.112.62.81)

R2

?? (219.243.200.38)

Anonymous

??

S1

zzu1.6planetlab.edu.cn
 (219.243.200.37)

Figure 2: Partial Trace from Zhengzhou University, China to SUNY Stony Brook, USA; inferred by DisCarte (top) and Rocket-
fuel techniques (bottom). DisCarte finds many load-balanced paths through an anonymous router (R3) and helps determine the
implementation class of each device along the path.

to the next hop. This caused significant confusion in our
initial experiments using interleaved packets with and with-
out RR set. Publicly available router configurations at Na-
tional LambdaRail (NLR) suggest that Cisco’s Carrier line
of routers are Lazy. Of all RR implementations we have
observed, this is the only one that would seem to violate
RFC 791.

Mixed: 2.7% Some routers have mixed behavior for arriving and
departing packets. If the packet arrives and expires, the router
updates the RR array with the incoming interface address.
Else, if the packet does not expire, the router updates the RR
array with the outgoing interface address. We believe that
Linux-based IP stacks implement this behavior.

With the exception of the Lazy RR implementation, we believe
that these implementation variations correctly implement the RR
specification as described in RFC 791. The variations in implemen-
tation arise because RR is underspecified, and we recommend ad-
ditions to the specification (Section 10). Also, note that the “Flaky”
RR implementation, first identified by Sherwood and Spring [38],
does not appear to exist. We believe that Flaky is a combination of
the Lazy implementation type above and equal-cost path routing of
different hop counts.

3.2 Topology Traps
We identify six topology features that complicate accurate topol-

ogy discovery. In this section, we catalog these features to show the
complexity inherent in topology discovery and motivate the need
for an automated inference tool.
Hidden routers do not decrement TTL and thus are not detected

by TTL-limited topology discovery. Hidden routers are caused
by certain configurations of multi-protocol label switching [35]
(MPLS) and result in missing nodes and incorrect link infer-
ences. As with anonymous routers, the RR IP options can be
used to detect hidden routers if supported. Also, the use of
MPLS can be detected by an optional MPLS tag attached as
a footer in TTL-exceeded messages [4]. We discovered 329
hidden routers in our experiments.

Non-standard firewall policies introduce varied sources of error.
In one case, a firewall in China forges TTL-exceeded mes-
sages from the destination [38] for packets with the RR op-
tion set. Also, we have observed firewalls that send ICMP
source quench, ICMP parameter problem, and ICMP admin-
istratively prohibited messages. Each of these behaviors must
be identified and removed from the data before processing.

Enabling IP options breaks load-balancing, spreading a single flow
across multiple equal-cost paths. Five-tuple load-balancing
uses the source and destination IP and port fields along with
the IP protocol to identify a flow and maps all packets in
the same flow to the same path [3]. However, adding IP op-
tions to packets with the same five-tuple signature breaks this
scheme. We hypothesize that some router implementations
fail to account for IP options when calculating the packet off-
set to the TCP/UDP source and destination port fields when
computing the 5-tuple. In other implementations, packets
with IP options are routed on arbitrary equal-cost paths. Both
behaviors add to the complexity of address alignment.

Different-length equal-cost paths can create false links and aliases.
Equal-cost paths may have different hop-count lengths, which
results in multiple sets of probes, offset in TTL, between the
same source and destination. Comparing probes from dif-
ferent paths may cause false topology assertions, e.g., not all
routers at TTL=3 have a link to routers at TTL=4. We use RR
to partition probes by the path they traversed, and only com-
pare probes that take the same path. By partitioning probes
by the paths that they traverse, we remove one source of self-
loops common to traceroute-inferred topologies [3]. Traces
from Cornell University to PlanetLab nodes in Amsterdam
have this behavior (Figure 3).

RR fills. The address alignment algorithm monitors hop-by-hop
increases in the size of the RR array to classify each router’s
RR type (Section 4). Because a given hop may add more
than one entry into the RR array when the RR array fills up—
reaches nine entries—the information about the true number
of RR entries for this hop is lost. For example, a packet with
eight RR entries that transitions from a Departing RR-type
router to a Arriving RR-type router, would normally receive
two new RR entries. However, since there is only space for
one more IP address, the second entry is lost. The address
alignment algorithm has to consider more possibilities when
the RR array fills. DisCarte’s DLP code base doubles in size
to handle this seemingly simple case.

Persistent Routing Loops can prevent naïve trace collection from
terminating. Our data collection scripts had to be rewritten
to detect loops. We revisited the looping paths three weeks
later and found that approximately half still persisted. In Sec-
tion 6.3, we further characterize the routing loops we discov-
ered.

306

 (141.149.218.1) (141.149.218.208)
planetlab3−dsl.cs.cornell.edu

S1 (NotImpl)

R2 (Cisco)

?? (130.81.18.177)

 (130.81.8.237)
at−1−1−0−1711.CORE−RTR2.SYR.verizon−gni.net

R3 (Juniper)

?? (130.81.20.101)

 (130.81.8.233)
at−1−1−0−1710.CORE−RTR1.SYR.verizon−gni.net

R5 (Juniper)

?? (130.81.18.176)

R4 (NotImpl, MPLS trailer)

 (130.81.8.234)

L201.DSL−RTR1.SYR.verizon−gni.net

 (130.81.8.238)
A4−0−0−1711.DSL−RTR1.SYR.verizon−gni.net

?? (130.81.20.100)

 (213.19.160.195)

E16

R6 (NotImpl, MPLS trailer)

A3−0−0−1710.DSL−RTR1.SYR.verizon−gni.net

planetlab−2.amst.nodes.planet−lab.org

Figure 3: Partial trace from Cornell to Amsterdam where probes that take different-length paths: bottom path is one hop shorter.

BGP
Prefixes

Set .1
In each

/24 Prefix

DST
IPs

TR,RR
Traces
From

All P-Lab
Nodes All

IPs

All
Traces

ally

Pre-
Process

Probed
Aliases

Probe
Pairs

Models

Good
Facts

Conflict
Facts

Hints

Union
Models

Resolve
Conflicts

DLP

Make
Stoplist

Stop
Lists

6.1 6.2
4.2

4.3,4.4
5.1

5.2

Data Collection Phase Fact Generation Phase

Fact
Processing

Phase

Final
Topology

§ §
§

§
§

§

Figure 5: Overview of the DisCarte Topology Inference System.

3.3 Ambiguity in classification
The variety of RR implementations make router classification

ambiguous. Because different topologies and router implementa-
tions can generate the same trace (Figure 4), a router may be mis-
classified, leading to mismatched addresses and aliases. Thus, in
the same trace, IP X might be an alias for IP A or B depending
on the RR implementation. Further, the third probe discovers two
new RR addresses (Y, Z) and it is ambiguous whether IP address
Y belongs to a hidden router. We depict two of 15 possible inter-
pretations of the trace.

A single mismatched pair of addresses causes cascading errors
as each subsequent RR address in a trace is misaligned. However,
using observed network engineering practices it is possible to cor-
rectly match RR and traceroute discovered addresses (Section 4.4).
For example, network engineers tend to allocate IP addresses on
either end of a link out of a /30 or /31 network [14, 21], so the
topology that best matches this pattern is most likely correct.

S A X B Y C Z

Departing Departing Arriving

S XB ZCY

Arriving ArrivingHidden

A

NotImpl

Probe ttl ICMP source IP RR Array

1 A -
2 B X
3 C X, Y, Z

Figure 4: Varied RR implementations create ambiguous align-
ments between IP addresses discovered by TR (A, B, C) and
those discovered by RR (X, Y, Z). We show two of 15 possible
topologies inferred from a hypothetical trace from source S:
rectangles represent routers and letters are IP interfaces.

4. DISCARTE
Large-scale cross-validation and address alignment is difficult

and error-prone, not only because of the need to infer the different
RR implementations of routers, but also due to complex network
topology features (Section 3).

Our system, DisCarte, uses disjunctive logic programming (DLP) [5,
34, 19], a constraint solving technique that, to the best of our knowl-
edge, has not been used for topology discovery. DLP has the ability
to describe a low-level set of inter-dependent interactions while si-
multaneously shaping the solution to match high-level constraints.
For example, we instruct DLP to find the set of RR implementations
such that the link and alias assignments do not cause routers to have
self-loops. The DisCarte process (Figure 5) consists of fact gener-
ation (Section 4.2) and fact processing (Section 4.3 – 5) phases.
We describe our data collection phase in Section 6. In this section,
we provide a brief description of the DLP technique, describe how
we transform raw topology data into DLP facts, and present the
DisCarte address alignment algorithm and its corresponding cost
function.

4.1 DLP Introduction
DLP is a formalism representing indefinite information. Super-

ficially similar to Prolog, language statements consist of facts, in-
ference rules, and weak and strong constraints. Inference rules are
disjunctive—they are of the form:

fact1 or fact2 or . . . or factn ⇐ fact0 (1)

indicating that fact0 implies exactly one fact in the set of facts
fact1 . . . factn. Because each inference rule can potentially imply
many different facts, a disjunctive logic program has many possible
solutions, or models. Potential models are then pruned by strong
and weak constraints. Any model that violates a strong constraint
is removed from the solution set, and the remaining models are as-
signed a numeric cost based on the weak constraints they violate.
The output from a DLP is the lowest cost model of inferred facts
generated from input facts and inference rules.

The specific DLP implementation we use is DLV [19]. The lan-
guage restricts how constraints are specified, to preserve the mono-

307

tonicity property of the cost function: that adding new facts can
only increase that cost of a model. DLV uses this property to prune
high cost sub-trees from the solution space. DLP can efficiently
represent complex problems, for example, the formulation for the
graph 3-color-ability problem [11] is two lines long [8].

4.2 Data Pre-processing
Raw trace data must be converted into facts for DLP. These

facts consist of both straightforward parsing of the data, deriving
facts more easily computed without DLP, and probe pairs. Here,
we describe the facts computed in the pre-processing step.

Some network topology features can be identified statically with-
out DLP. Routers with the Mixed RR implementation have a sim-
ple signature: the response to a TTL-limited probe comes from
router X , and the last entry in the RR array is also X . Similarly,
we declare a router X to be Lazy if all non-RR probes with TTL=t
return ICMP time-exceeded responses from X , all RR probes with
TTL=t return responses from a different router Y , and all non-RR
probes with TTL=t + 1 return from router Y . Responses to RR
probes from non-standard firewalls have the source address set to
the probe’s destination, instead of the router’s interface. Once these
network features have been detected, we correct for them as we
identify probe pairs.

Two TTL-limited probes form a “probe pair” if one probe ex-
pires at router X , and the other probe goes through X and expires
at the next TTL. Each probe pair fact is of the following form:
“probePair(p1,p2,delta)”, where p1 and p2 are unique probe iden-
tifiers, and delta is the difference between the size of the two RR
arrays. By convention, p2 is the probe that went one TTL farther.
Identifying probe pairs in non-RR (traceroute-only) data is trivial
but error prone: mid-measurement path instabilities (Section 2) can
cause sequential probes to take different paths. When adding RR
to probes, probe pair identification becomes more accurate—RR
probes record the traversed path—but more complicated. Lazy RR
implementations and multi-path routing with different length paths
complicate probe pair identification. For example, after passing
through a Lazy router, TTL-limited probes with RR set go one hop
farther then intended. Before we can try to identify probe pairs in
the presence of a Lazy router, all probes with RR that pass through
that router must be re-normalized as if they were sent from the sub-
sequent TTL. Also, if there is evidence of multi-path routing with
different length paths, we must be careful to only compare probes
that took the same length path. Last, if a trace has both Lazy routers
and different length paths, we can only identify Lazy routers on the
path taken by the non-RR probes, so information on the other path
must be discarded.

4.3 Address Alignment with DLP
Though an exotic choice, DLP lends itself well to the address

alignment problem. For each trace, the pre-processor will output a
set of potentially over-lapping probe pairs: probePair(X, Y, delta1)
and probePair(Y, Z, delta2). The job of the DLP is to infer the
most likely RR implementation type assignments that are globally
consistent: router Y must have the same RR type in all of its probe
pairs. Then, based on the type assignments, DLP outputs link and
alias facts that form a topology.

To constrain the assignment of implementation types to those
consistent with the probe pair facts, we express DLP inference rules
that describe each possible transition from router to router for each
delta in a probe pair. The delta is the number of additional RR
entries in the second probe of the pair, and may be any number
from 0 to 9, though we have not observed a delta greater than 4.
An RR entry will be added when (a) leaving a Departing router, (b)

arriving at an Arriving or Mixed router, or (c) traversing a Hidden
router. Traversing a NotImpl router (or entering an MPLS tunnel,
which has the same effect) does not add to the delta. The inference
rule is the list of possible RR-type transitions that would result in a
probe pair with the same delta. For example:

transition(X, Y, Departing, Departing) or

transition(X, Y, Arriving, Arriving) or

transition(X, Y, Departing, NotImpl) or

transition(X, Y, NotImpl, Arriving) or

transition(X, Y, NotImpl, Hidden, Departing) or

transition(X, Y, NotImpl, Hidden, NotImpl) or

⇐probePair(X, Y, delta),

delta = 1. (2)

indicates that if we find a probe pair with delta = 1, then the transi-
tion between the router corresponding to the first probe (X) and the
router corresponding to the second probe (Y) is a transition from a
Departing-type RR router to another Departing-type RR router or
from a Arriving-type RR type router to another Arriving-type RR
router, etc. We must include more atypical transitions, such as from
a router that does not implement RR (NotImpl), through a router
that does not show up in traceroute but implements RR (Hidden),
to another router that does not implement RR (NotImpl). We wrote
DLP inference rules for delta=0 . . . 4, and show the possible tran-
sitions from 0 through 2 in Table 1. We also implement a duplicate
set of all rules where the RR array is full (Section 3.2). Thus for
a probe with full RR array and delta = X , all possible transitions
for delta ≥ X must be considered.

Multiple possible transitions per probe pair and independent com-
putation of probe pairs imply that there are potentially exponen-
tially many models relative to the number of probe pairs. We dis-
cuss the cost function for intelligently pruning this set to produce
the best model (Section 4.4) and our divide-and-conquer technique
for scaling this algorithm (Section 5).

4.4 Engineering Practices and Cost Function
Recall from Section 4.1 that DLP supports strong and weak con-

straints: models that violate strong constraints are removed and the
rest are ordered by degree of weak constraints violated. DLP out-
puts the lowest cost model.

The only strong constraint in the DisCarte system is that a router’s
RR implementation must be consistent across all its interfaces. In
other words, it is never the case that the same router uses the De-
parting RR behavior for one interface and Arriving RR behavior
for another interface. A potential issue with this rule is the MPLS
RR type, where individual interfaces might appear to be of RR type
Departing or NotImpl. The strong constraints are carefully written
to handle this exception.

Weak constraints are chosen based on observed patterns which
we believe correspond to network engineering practices. Each prac-
tice should hold as a general rule of thumb, but may be violated
in an individual solution. Thus the model that violates the fewest
practices is likely to be the closest approximation of reality. Here
we list weak constraints in order of importance.

1. There should be no self-loops: a correctly-implemented router
would never route packets directly back to itself. Avoiding
this condition prevents situations where two distinct routers
are merged by a single bad alias, and conversely when a link
is incorrectly added between interfaces on the same router [3].

2. Many IP addresses on either end of a link are adjacent in
IP space: they are “off-by-one.” We expect that network ar-

308

delta=0 delta=1 delta=2
NotImpl → NotImpl NotImpl → Hidden → NotImpl NotImpl → Hidden → Hidden → NotImpl

NotImpl → Departing NotImpl → Hidden → Departing NotImpl → Hidden → Hidden → Departing
Arriving or Mixed → NotImpl Arriving or Mixed → Hidden → NotImpl Arriving or Mixed → Hidden → Hidden → NotImpl

Arriving or Mixed → Departing Arriving or Mixed → Hidden → Departing Arriving or Mixed → Hidden → Hidden → Departing
NotImpl → Arriving or Mixed NotImpl → Hidden → Arriving or Mixed

Departing → NotImpl Departing → Hidden → NotImpl
Departing → Departing Departing → Hidden → Departing

Arriving or Mixed → Arriving or Mixed Arriving or Mixed → Hidden → Arriving or Mixed
Departing → Arriving or Mixed

Table 1: Possible router RR implementation transitions arranged by RR delta; deltas 3 and 4 are not shown. Arriving and Mixed
are written together to save space.

chitects try to conserve address space by using the smallest
network blocks available, either /30 or /31. The implication
is that models where the IP addresses of links are off-by-one
should be preferred over those without. Gunes et al. use this
technique to infer aliases directly [14]. Figures 2 and 3 show
this behavior.

3. Aliases inferred by direct probing (ally [40]) are often cor-
rect. The validity of direct probing techniques [41, 12] has
been independently demonstrated, so that information should
be used when available. However, due to temporal changes
in topology or potential for inaccuracies in the technique, in-
formation from direct probing remains a weak constraint.

4. Hidden routers are rare, so of two equally-likely models, the
solution with the fewest hidden routers should be preferred.
We derive this rule from observation of out-of-band data,
such as DNS naming conventions and /30 and /31 IP address-
ing in links.

5. Routers supporting RR are more common than those that do
not (NotImpl). We verify this empirically by observing that
with each new TTL, subsequent probes in a trace typically
record new RR entries.

The cost for a model is assigned based on the number of prac-
tices violated, weighted by the importance of the practice. We ex-
perimented with different weight assignments, but as long as the
relative importance of practices remained as above, the weight as-
signment did not affect the final solution. Also, it is possible for
DLP to output multiple equal-cost models, if there is insufficient
information to make an alignment, or no model at all, if there is an
error in the data or flaw in our model. We next address both points
further.

5. SCALING AND CONFLICTS
DLP alone does not scale to Internet-sized topologies, as the

number of possible RR implementation assignments grows expo-
nentially with the number of probe pairs. Our top-level approach
is to process the data in pieces large enough to provide the correct
solutions, yet small enough that they are solved quickly—divide
and conquer. Merging processed pieces back together can expose
conflicts: that the same pair of IP addresses are believed to be both
aliased and linked. In this section, we describe a data partitioning
method that reduces conflicts and engineer a technique to resolve
conflicts once they occur.

Two-Clique

S1 S2 S1 S2

D

Triangle Subset

Overlap
for

Cross-
Validation

Figure 6: We first align addresses in two-cliques (left) between
all sources and then subset triangles (right) to all destinations
increasing overlap and decreasing errors.

5.1 Divide and Conquer
Dividing the data is easy; dividing the data while preserving

enough information for DLP to produce meaningful results is diffi-
cult. Our first approaches at partitioning the data produced a scal-
able execution—one trace per run, or many traces from the same
source—but they resulted in many incorrect inferences. Because
each run interpreted only the data from probes leaving the source,
the DLP solver missed potentially conflicting data from measuring
the return path.

To provide a core of correct, reliable address alignments and
router implementation inferences, we start by computing all two-
cliques—the trace from site X to Y with the trace from Y to X—as
shown in Figure 6, left.

Atop this core, we process triangle-like subsets of all traces be-
tween pairs of sources and a destination (Figure 6, right). The
insight is that the path between the source pair has already been
computed and found to be free of conflicts, so it is reliable. By us-
ing this approach, we reduce the number of unresolved conflicts—
those conflicting inferences that remained after all processing—
from 1,547 to 28 in the PlanetLab data set.

We hoped to process all possible triangle subsets for maximum
overlap and thus maximum cross-validation, but with 379 sources
and 376,408 destinations, this task is intractable. Instead, we pro-
cessed the 71 million non-overlapping triangle subsets on a 341
processor (heterogeneous) Condor [20] cluster. Triangle subsets
typically take a second to process, though the execution time is
highly variable. The Condor scheduler estimates that we have used
96,225 hours or approximately 11 CPU years on this project (in-
cluding time spent debugging).

5.2 Unions and Conflicts
We extract the facts in the models produced by the divide and

309

conquer phase and search for contradictions. A contradiction ap-
pears when two addresses that are thought to be aliases are seen to
be linked in a subset of facts. (Two IP addresses can be assigned to
the same router if they are aliases of aliases, so the alias inference
can result from several sets of facts; a link cannot be synthesized
from different traces–see Section 4).

To resolve conflicts, we pick an arbitrary model from each fac-
tion (those indicating link and those indicating alias) and run both
input subsets together through DLP. If the result contains exactly
one model, then the conflict is resolved, and we record whether
the IP addresses are linked or aliased as a hint. Once the hint is
recorded, all affected models are recomputed via DLP.

The conflict resolver can fail to resolve a conflict if the DLP out-
puts multiple models with both link and alias facts asserted, or no
model at all. Having multiple models indicates that we have insuf-
ficient information to resolve this conflict, whereas producing no
models indicates an error in the input or a potentially new RR be-
havior. In any case, if the conflict resolver cannot resolve the con-
flict, then all facts associated with the two IP addresses are removed
from the model. In our experiments, 12,731 of 9,793,309 (0.13%)
of subsets produce no valid model, and 22,095 of 1,021,027 (3.7%)
of facts remain unresolved. It is the subject of our future work to
characterize the unresolvable traces and improve the conflict reso-
lution process.

6. DATA COLLECTION
We collect two sets of topology data to validate DisCarte: one

between PlanetLab nodes and the other from PlanetLab nodes to
all advertised BGP prefixes. For both, we perform TTL-limited
traceroute-like probes with and without the RR option set. For the
BGP prefixes data set, we also use the “stoplist” technique to avoid
probing destinations in a way that might appear abusive. We con-
clude by reporting on the distribution of stable routing loops that
we discover in our experiments.

6.1 Data Sets
The PlanetLab [32] data set is an all-pairs trace, from all Planet-

Lab nodes to all other PlanetLab nodes. This repeats the Passen-
ger [38] study. Because some PlanetLab nodes were unavailable,
we were able to collect data from only 387 nodes.

In the BGP data set, we probe 376,408 destinations. To generate
the destinations, we divide each advertised BGP prefix [26] into a
/24 sub-prefix, choose a representative address from each by setting
the last bit, and then remove unresponsive IP addresses. This IP
generation strategy is similar to iPlane [21], except that we dis-
aggregate larger prefixes down to /24-sized sub-nets.

We probe using traceroute’s increasing TTL, alternating probes
with and without the RR option set, three times with each. We
stop probing a destination after probes for six sequential TTLs have
been dropped. Due to firewalls that drop probes and source nodes
rebooting, we do not have data for all sources to all destinations,
but we do collect approximately 1.3 billion probe responses.

6.2 Stoplist Probing
We believe that RR probes are more likely to generate abuse re-

ports then other topology discovery techniques. The RR option
is rare and intrusion detection systems target anomalous events.
However, we note that network mapping need not probe destina-
tion hosts often: careful measurement coordination can avoid re-
ports of abuse. Our insight is that we can avoid probing destination
networks from every source by noticing when the path from a new
source merges with an already-observed path.

The goal of our “stoplist” technique is to give each destination a
red zone: a region close to the destination that will not be probed
from machines outside our control. A stoplist is a per-destination
list of the last k IP addresses on a trace to the destination. We
generate the stoplist from a single host under our administrative
control, so potential abuse reports can be handled locally without
involving PlanetLab support. To generate the stoplist, we run a
reverse traceroute to each destination and record the last k = 3
hops. A reverse traceroute works by guessing the TTL distance to
the end host, sending a probe, and then searching with larger TTL
if the destination was not reached, or with smaller TTL if it was.
Once the TTL distance to the end host is known, the last three hops
are determined by decrementing the TTL.

The stoplist is then distributed among sources. As each node
traces towards a destination, it stops when an IP on the stoplist
is discovered. Using this technique, we received no abuse reports
either in generating or using the stoplist.

6.3 Routing Loops
Routing loops are a symptom of network misconfiguration and

can frustrate topology inference. DisCarte found a surprisingly
high number of routing loops: 8,550 source-destination pairs con-
tained a persistent routing loop which prevented packets from reach-
ing the destination. These pairs were re-tested three weeks later.
We were not able to retest 2,071 (24.1%) of these pairs, because the
configuration of the source nodes had changed. At the later date,
4,501 (52.6%) of the loops were resolved, while 1,976 (23.1%) re-
mained.

Of the routing loops that persisted through both tests, 689 unique
routers appear 4,544 times in some part of a loop. China Railway
Internet (CRNET, AS 9394) has more of these routers (61) than
any other AS. Korea Telecom follows with 47 routers, and Level
3 with 35. When weighted by the number of traces that contain
these loops, almost 10% of the routers again belong to CRNET,
almost twice as many as the next-most frequent location, Frontier
Communications of America (AS 5650).

7. VALIDATION
In this section, we validate the output of DisCarte in terms of

accuracy and completeness. We first compare the aliases produced
by DisCarte to those produced by Rocketfuel’s ally tool [40]. Then,
we compare the routers, links, and degree distribution of topologies
inferred by DisCarte and the Rocketfuel and Passenger techniques
against four published topologies.

Of course, any active IP-probing methodology will suffer from
inherent shortcomings: that backup paths and link-layer redun-
dancy are not visible, and that multiple-access network links are
not differentiated from point-to-point links. DisCarte does not ad-
dress these problems, so we do not consider them further.

7.1 RR Aliases
We use the IP-identifier [21, 40] and source-address matching [29,

12] alias resolution techniques to verify the aliases inferred by Dis-
Carte. DisCarte over the BGP-prefixes data set found 374,337
aliases, 42,284 (11.2%) of which were not found by direct probe-
based techniques in Rocketfuel’s ally.

We then re-applied ally to confirm the aliases asserted by Dis-
Carte: 88.3% were confirmed to be correct, 3.8% were claimed
to not be aliases by the IP-identifier technique, and the remaining
7.8% were from unresponsive routers and could not be confirmed.
91.2% of the aliases found by DisCarte involved IP addresses dis-
covered only by adding the RR option.

310

7.2 Comparison to Published Topologies
Research networks including Abilene1, Géant2, National Lamb-

daRail (NLR)3, and Canarie (CANET)4 publish the configuration
files of their routers, which makes determining a “correct” topology
possible. We compare DisCarte’s inferred map to these true topolo-
gies as well as the topologies produced by the Rocketfuel [40] and
Passenger [38] techniques. To build the correct topology, we parse
the “show interfaces” information available for each router from
each network’s web site. We use publicly available software to
generate Rocketfuel5 and Passenger6 topologies. In each network,
we consider the number and accuracy of discovered routers, the
degree distribution, and completeness of the discovered links.

For each network, we classify each inferred router into one of
four accuracy categories: good, merged, split, and missed.
Good: There is a one-to-one mapping between this inferred router

and a router in the correct topology. All of this router’s dis-
covered interfaces are correctly aliased. In a perfectly in-
ferred topology, all routers would be good.

Merged: There is a one-to-many mapping between this inferred
router and routers in the correct topology. In this case, mul-
tiple real-world routers are incorrectly inferred as a single
router. Merged routers result from inaccurate alias resolu-
tion, artificially deflate the router count, and inflate the node
degree distribution.

Split: There is a many-to-one mapping between routers in the
inferred topology and a single router in the correct topol-
ogy. In this case, a single router from the correct topology
appears split into multiple routers in the inferred topology.
Split routers result from incomplete alias information, inflate
the router count, and deflate the node degree distribution.

Missed: This router was not found: none of the router’s interfaces
were discovered by the inferred topology. Missing routers
result from insufficient vantage points or from data discarded
due to unresolved conflicts (Section 5.2). Missing routers
deflate the router count and bias the node degree distribution
towards observed routers.

Classifying the number of inferred routers by accuracy (Figure 7)
illustrates three interesting characteristics. First, although all three
inference schemes tend to have substantial numbers of “split” routers,
Rocketfuel has so many split routers that it incorrectly over-estimates
the router count by as much as seven times the true value. This is a
result of routers that are unresponsive to direct alias probing, so no
aliases are found (recall Figure 1). So, although aliases from Dis-
Carte result in a more accurate topology, more complete alias reso-
lution techniques are still required. Second, for each topology, Dis-
Carte has more “good” nodes than other techniques, except for Pas-
senger in the Géant network. In this exception, Passenger finds two
more “good” nodes than DisCarte, at the cost of four incorrectly
merged nodes. We demonstrate below that the presence of merged
routers alters the topology’s degree distribution. Third, DisCarte-
inferred topologies have no merged routers and fewer split routers
than Rocketfuel.

Next, we consider the degree distribution of inferred topologies.
Degree distribution affects the accuracy of Internet-modeling [22]
and path diversity studies [44], and has been studied in its own
right [9]. We plot the degree distribution of the topologies inferred
1http://vn.grnoc.iu.edu/xml/abilene/show_interfaces.xml
2http://stats.geant2.net/lg/process.jsp
3http://routerproxy.grnoc.iu.edu
4http://dooka.canet4.net
5http://www.cs.washington.edu/research/networking/rocketfuel/
6http://www.cs.umd.edu/projects/sidecar

Abilene CANET4 Géant NLR
Links: Found 21 11 45 21

Total 33 16 62 22
(%) 63% 69% 72% 95%

False Links 0 0 0 0

Table 2: Completeness of DisCarte-inferred links.

by Rocketfuel, Passenger, and DisCarte along with the actual de-
gree distribution for each published topology (Figure 8). In all net-
works, the DisCarte inferred topology most closely tracks the ac-
tual degree distribution relative to the other two techniques. Also,
the effect of merged routers on the degree distribution is apparent:
Passenger deviates significantly from reality in the Géant data set
due to the four merged routers it infers.

Of four published topologies, our inferred topology has no false
links (Table 2), and discovers at least 63% of existing links. We
believe the only way to improve the completeness of the link cov-
erage is to increase the number of measurement vantage points and
their network diversity.

Comparison to research networks at first does not appear inher-
ently challenging: their openness, homogeneity, and proximity to
most PlanetLab vantage points make them relatively easy valida-
tion cases. However, each research network is distant from several
vantage points, which are often behind interesting configurations
(specifically those sites in China and Israel) that can introduce false
links and aliases. Further, routers of specific research networks
(Abilene, NLR, CANET) do not respond to alias resolution probes,
which confounds topology inference.

8. TOPOLOGY ANALYSIS
In this section, we consider the degree distribution and sampling

bias apparent in our DisCarte-inferred topology. We chose these
properties because they could be affected by the missing or erro-
neous aliases.

Lakhina et al. [18] introduce a method for evaluating measured
network topologies to see sampling bias in the degree distributions
of routers. The fundamental assumption is that high-degree routers
are equally likely to be anywhere in the topology, and specifically,
are no more likely to be near to the sources than farther away. A bi-
ased sample would tend to see many of the links incident to nearby
routers, because the shortest path tree from a source is more likely
to include the links of nearby routers, and less likely to include
more than two links on distant routers.

We repeat the analysis of Lakhina et al. and find sampling bias
in both DisCarte- and Rocketfuel-inferred topologies. We show the
complementary cumulative distribution of the router out-degrees
(Figures 9 and 10) in the near set (those within the median distance
from a vantage point), in the far set (those of median or greater
distance), and overall. That the near set has somewhat higher de-
gree demonstrates sampling bias in the topology. This suggests that
more data rather than higher-quality topologies are required to re-
move bias.

We expect sampling bias to be present in the topology we mea-
sure. The best approach to eliminating such a bias is most likely
to wildly increase the number of vantage points relative to the des-
tinations as performed in Rocketfuel [40]. Even when doing so,
sampling bias is not eliminated: Lakhina’s test found bias in all
studied topologies.

311

http://vn.grnoc.iu.edu/xml/abilene/show_interfaces.xml
http://stats.geant2.net/lg/process.jsp
http://routerproxy.grnoc.iu.edu
http://dooka.canet4.net
http://www.cs.washington.edu/research/networking/rocketfuel/
http://www.cs.umd.edu/projects/sidecar

N
LR

G
ea

nt
C

A
N

E
T

A
bi

lie
ne

-20 0 20 40 60 80 100

Missing Good Merged Split

DisCarte

Rocketfuel

Passenger

Reality

DisCarte

Rocketfuel

Passenger

Reality

DisCarte

Rocketfuel

Passenger

Reality

DisCarte

Rocketfuel

Passenger

Reality

Figure 7: Number of discovered routers (partitioned by accuracy classification) compared to published topologies.

9. RELATED WORK
We classify related work into four categories: network map-

ping techniques, measurement-based inferences, error-avoidance in
traceroute, and error characterization in network maps.

9.1 Internet Mapping
Techniques for Internet mapping present various methods for se-

lecting traceroute measurements and resolving aliases. In 1995,
Pansiot and Grad [29] pioneered network mapping by tracerouting
to approximately 3000 destinations and introduced alias resolution
by source address. Mercator [12] revolutionized mapping through
source-routed probes, alias discovery by source routing, and vali-
dation against real-world networks CalREN and Los Nettos. Rock-
etfuel [40] sought fidelity of ten ISP maps by exploiting traceroute
servers and added alias resolution by IP address. Skitter [7] and
iPlane [21] apply many of these techniques continuously, making a
current reference topology available to researchers.

DisCarte is comparable to these projects in that it introduces a
new and more complete technique for improving the correctness
of the network mapping and a novel method for alias resolution.
We approached correctness in the measured topology by measur-
ing each path using two methods (RR and TR) so that we can de-
tect and remove disputed conclusions. These features are crucial to
continued network instrumentation because (a) security concerns
cause administrators to filter traffic destined for routers and (b) the
scale of the network demands such a large scale measurement that
some collected traces are certain to have errors, and unlike in the
natural sciences, these errors are not averaged out by further mea-
surements.

9.2 Learning and Inference Techniques
Techniques to interpret raw network measurements are some-

times required; these often involve learning techniques to manage
the scale of the problem. Padmanabhan used Gibbs sampling and
Bayesian learning to discover lossy links [28]. Mahajan et al. [23]

used linear constraints to model intra-domain link weights: a study
that could imply a means of detecting and removing false links
(those that have too high a cost to be used). Yao et al. [45] present
a technique for merging anonymous routers—those that do not re-
spond to traceroute that might otherwise be ignored in a topology
(potentially partitioning the network) or thought unique on each ob-
servation (wildly inflating the path diversity). Finally, Gunes and
Sarac [14] use the addressing structure of the network to deduce
the prefixes to which interface addresses belong and infer aliases.

9.3 Traceroute Error Avoidance
Although we apply the paired measurement of TR and RR to

bolster uncertain measurements, an alternate, but complementary,
approach is to reduce the likelihood of error in the first place. Au-
gustin et al. [3] observe that router load balancing is typically flow
based: to restrict a traceroute to a single path requires only re-
designing the tool to preserve the five-tuple of protocol with source
and destination address and port.

Our previous work showed that RR had the potential to detect
route changes and could be applied toward a more reliable trace-
route [38]. However, we found that simple methods were intractable
and were unable to process almost 40% of our data.

9.4 Network Map Errors
Some errors in network maps may be avoided through improved

techniques. Teixeira et al. [44] noted a lack of fidelity in Rocketfuel
maps: measurements were incomplete (backup links were missing)
and aliases were missing or erroneous (some addresses were split
and merged). In estimating path diversity, these factors somewhat
canceled each other, but the result was not reliable.

10. RECORD ROUTE REDESIGN
If the record route IP option were designed today, it would bene-

fit from more precise standardization and the ability to sample paths
longer than 9 hops.

312

 1

 10

 100

 1 10 100

P
er

ce
nt

 o
f R

ou
te

rs
 -

 lo
g(

cc
df

)

Abilene Router Degree - log(x)

Passenger
DisCarte

Reality
Rocketfuel

 1

 10

 100

 1 10 100

P
er

ce
nt

 o
f R

ou
te

rs
 -

 lo
g(

cc
df

)

CANET Router Degree - log(x)

Passenger
DisCarte

Reality
Rocketfuel

 1

 10

 100

 1 10 100

P
er

ce
nt

 o
f R

ou
te

rs
 -

 lo
g(

cc
df

)

Geant Router Degree - log(x)

Merged
Routers

Passenger
DisCarte

Reality
Rocketfuel

 1

 10

 100

 1 10 100

P
er

ce
nt

 o
f R

ou
te

rs
 -

 lo
g(

cc
df

)

NLR Router Degree - log(x)

Passenger
DisCarte

Reality
Rocketfuel

Figure 8: Degree distribution by inference technique: DisCarte-inferred topologies best reflect reality.

Address alignment would be trivial if record route implementa-
tions were standardized (and such standards were adhered to). We
believe the implementation diversity in record route (Section 3) ex-
ists because RFC 791 does not specify how to treat options on ex-
piring packets. For topology discovery, Arriving is the most appeal-
ing RR implementation, where addresses are recorded for expiring
packets. If this scheme were universal, an alias could be discovered
with a single packet.

A more powerful record-route option would include the ability to
“skip” a configurable number of addresses before starting to record.
In this way, successive RR probes could record 9 hop subsections
of a path, giving complete RR information from end to end, as op-
posed to the current 9 hop limit. Implementation is simple: routers
need only increment the RR array index pointer even if the RR ar-
ray is full, allowing the index to wrap. Thus, the sender sets the
initial RR pointer value to 4 − (4 × k) mod 256 to skip k hops
before starting to record the route. Recall that a router along the
path only records the route if the pointer value p is in the range
4 ≤ p < l where l is the length of the RR option in the IP header.

11. CONCLUSION
Internet topology measurement faces a continuing problem of

scale: more nodes and links are added, measurement platforms like
PlanetLab grow, and filtering policies and implementations remain
diverse. To capture this topology requires not simply the ability to
collect, store, and query against the 1.3 billion response packets in

our data set, but also the ability to filter this data to discern which
observations and interpretations are valid. Toward this goal, we
adopted disjunctive logic programming to merge our expectations
of network engineering practice—common vendor choice and ad-
dress prefix assignment—to interpret and merge our topology data.

DisCarte provides a novel cross-validation tool for network topol-
ogy discovery—it finds aliases that increasingly cannot be detected
by active probing (30% of addresses we found could not be probed),
it finds routers that do not decrement TTL (329) or generate ICMP
errors (2,440), it verifies that probed paths are consistent during a
measurement—but extracting this information requires significant
effort. Expectations of network engineering practice provide the
hints required to interpret this data accurately, and a divide-and-
conquer approach allows the flexible interpretation to take place
quickly over subsets of the data and resolve contradictions.

Our effort owes its inspiration to Vern Paxson’s Strategies for
Sound Internet Measurement [31]. Our approach that led to Dis-
Carte is to measure the same path and topology using two different
methods so that their consistency can ensure an accurate result (one
of Paxson’s “calibration” strategies). Along the way, we adopted
many of his hints: study small components first (the PlanetLab
topology before the Internet; small cliques before larger ones), in-
vest in visualization (we used neato and dot [13] to compare topolo-
gies), build test suites (our regression tests include 77 difficult-to-
interpret traces and groups of traces), and we make available our
data and analysis scripts.

313

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

F
ra

ct
io

n
of

 n
od

es

Node degree

Near Data
All Data

Far Data

Figure 9: Bias in DisCarte-computed topology.

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 0.1

 1

 1 10 100 1000 10000

F
ra

ct
io

n
of

 n
od

es

Node degree

Near Data
All Data

Far Data

Figure 10: Bias in Rocketfuel-computed topology.

Our future work is to develop two related components: an application-
specific version of our (inefficient but general-purpose) DLP-based
solver, and a more efficient measurement interpretation scheduler
that would choose to study related measurements together to re-
duce the computational requirements of the analysis. In this first
application of record route in topology measurement, getting the
right answer took precedence over performance; making the mea-
surements and analysis efficient enough to be repeated will take
engineering.

Acknowledgments
We would like to thank the systems administrators at University of
British Columbia and Vrije University of Amsterdam for their help
in mapping unexplained routing behavior back to their manufac-
turer. We would also like to thank Bobby Bhattacharjee, Katrina
LaCurts, David Levin, Justin McCann, Kevin McGehee, and the
anonymous reviewers for their helpful comments.

12. REFERENCES
[1] Abilene router configurations. http://pea.grnoc.iu.edu/Abilene.
[2] D. G. Andersen, H. Balakrishnan, M. F. Kaashoek, and R. Morris.

Resilient overlay networks. In SOSP, 2001.
[3] B. Augustin, et al. Avoiding traceroute anomalies with Paris

traceroute. In IMC, 2006.
[4] R. P. Bonica, D.-H. Gan, and D. C. Tappan. ICMP extensions for

multiprotocol label switching. Internet Draft (work in progress):
draft-ietf-mpls-icmp-05, 2006.

[5] F. Calimeri, W. Faber, N. Leone, and G. Pfeifer. Pruning operators
for disjunctive logic programming systems. Fundamenta
Informaticae, 71(2-3):183–214, 2006.

[6] Personal e-mail from Cisco engineers.
[7] k. claffy, T. E. Monk, and D. McRobb. Internet tomography. Nature,

Web Matters, 1999.
http://www.nature.com/nature/webmatters/tomog/tomog.html.

[8] http://www.dbai.tuwien.ac.at/proj/dlv/examples/3col.
[9] M. Faloutsos, P. Faloutsos, and C. Faloutsos. On power-law

relationships of the Internet topology. In ACM SIGCOMM, 1999.
[10] L. Gao and F. Wang. The extent of AS path inflation by routing

policies. In IEEE GLOBECOM, vol. 3, 2002.
[11] M. R. Garey and D. S. Johnson. Computers and Intractability: A

Guide to the Theory of NP-Completeness. W. H. Freeman, 1979.
[12] R. Govindan and H. Tangmunarunkit. Heuristics for Internet map

discovery. In INFOCOM, 2000.
[13] Graphviz. http://www.graphviz.org.
[14] M. H. Gunes and K. Sarac. Analytical IP alias resolution. In IEEE

International Conference on Communications (ICC), 2006.
[15] N. Hu, O. Spatscheck, J. Wang, and P. Steenkiste. Locating Internet

bottlenecks: Algorithms, measurements, and implications. In ACM
SIGCOMM, 2004.

[16] C. Jin, Q. Chen, and S. Jamin. Inet: Internet topology generator.
Tech. Rep. CSE-TR-433-00, University of Michigan, EECS dept.,
2000. http://topology.eecs.umich.edu/inet/inet-2.0.pdf.

[17] E. Katz-Bassett, et al. Towards IP geolocation using delay and
topology measurements. In IMC, 2006.

[18] A. Lakhina, J. Byers, M. Crovella, and P. Xie. Sampling biases in IP
topology measurements. In INFOCOM, 2003.

[19] N. Leone, et al. The DLV system for knowledge representation and
reasoning. ACM Trans. Computational Logic, 7(3):499–562, 2006.

[20] M. Litzkow, M. Livny, and M. Mutka. Condor: A hunter of idle
workstations. In ICDCS, 1988.

[21] H. V. Madhyastha, et al. iPlane: An information plane for distributed
services. In OSDI, 2006.

[22] P. Mahadevan, D. Kriokov, K. Fall, and A. Vahdat. Systematic
topology analysis and generation using degree correlations. In
SIGCOMM, 2006.

[23] R. Mahajan, N. Spring, D. Wetherall, and T. Anderson. Inferring link
weights using end-to-end measurements. In IMW, 2002.

[24] Z. M. Mao, J. Rexford, J. Wang, and R. Katz. Towards an accurate
AS-level traceroute tool. In ACM SIGCOMM, 2003.

[25] A. Medina, I. Matta, and J. Byers. BRITE: A flexible generator of
Internet toplogies. Tech. Rep. BU-CS-TR-2000-005, Boston
University, 2000.

[26] D. Meyer. University of Oregon Route Views project.
http://www.routeviews.org/.

[27] A. Nakao, L. Peterson, and A. Bavier. A routing underlay for overlay
networks. In ACM SIGCOMM, 2003.

[28] V. N. Padmanabhan, L. Qiu, and H. J. Wang. Passive network
tomography using Bayesian inference. In IMW, 2002.

[29] J.-J. Pansiot and D. Grad. On routes and multicast trees in the
Internet. ACM CCR, 28(1):41–50, 1998.

[30] V. Paxson. End-to-end routing behavior in the Internet. IEEE/ACM
Transactions on Networking, 5(5):601–615, 1997.

[31] V. Paxson. Strategies for sound Internet measurement. In IMC, 2004.
[32] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for

introducing disruptive technology into the Internet. In HotNets,
2002.

[33] J. Postel, editor. Internet protocol. IETF RFC-791, 1981.
[34] F. Ricca, W. Faber, and N. Leone. A backjumping technique for

disjunctive logic programming. The European Journal on Artificial
Intelligence, 19(2):155–172, 2006.

[35] E. C. Rosen, A. Viswanathan, and R. Callon. Multiprotocol label
switching architecture. IETF RFC-3031, 2001.

[36] S. Savage, et al. The end-to-end effects of Internet path selection. In
ACM SIGCOMM, 1999.

[37] R. Sherwood and N. Spring. A platform for unobtrusive
measurement on PlanetLab. In USENIX Workshop on Real, Large
Distributed Systems (WORLDS), 2006.

[38] R. Sherwood and N. Spring. Touring the Internet in a TCP sidecar. In
IMC, 2006.

[39] N. Spring, R. Mahajan, and T. Anderson. Quantifying the causes of
path inflation. In ACM SIGCOMM, 2003.

[40] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP topologies
with Rocketfuel. In ACM SIGCOMM, 2002.

[41] N. Spring, D. Wetherall, and T. Anderson. Scriptroute: A public
Internet measurement facility. In USITS, 2003.

[42] J. Strauss, D. Kitabi, and F. Kaashoek. A Measurement Study of
Available Bandwidth Estimation Tools. In IMC, 2003.

[43] H. Tangmunarunkit, R. Govindan, and S. Shenker. Internet path
inflation due to policy routing. In SPIE ITCOM Workshop on
Scalability and Traffic Control in IP Networks, vol. 4526, 2001.

[44] R. Teixeira, K. Marzullo, S. Savage, and G. Voelker. In search of
path diversity in ISP networks. In IMC, 2003.

[45] B. Yao, R. Viswanathan, F. Chang, and D. Waddington. Topology
inference in the presence of anonymous routers. In INFOCOM,
2003.

[46] E. W. Zegura, K. Calvert, and S. Bhattacharjee. How to model an
internetwork. In INFOCOM, 1996.

314

http://pea.grnoc.iu.edu/Abilene
http://www.nature.com/nature/webmatters/tomog/tomog.html
http://www.dbai.tuwien.ac.at/proj/dlv/examples/3col
http://www.graphviz.org
http://topology.eecs.umich.edu/inet/inet-2.0.pdf
http://www.routeviews.org/

	Introduction
	Cross-Validating with DISCARTE
	Benefits of Cross-Validation
	Cross Validation Limitations: RR

	Address Alignment
	Under-Standardized RR Implementations
	Topology Traps
	Ambiguity in classification

	DISCARTE
	DLP Introduction
	Data Pre-processing
	Address Alignment with DLP
	Engineering Practices and Cost Function

	Scaling and Conflicts
	Divide and Conquer
	Unions and Conflicts

	Data Collection
	Data Sets
	Stoplist Probing
	Routing Loops

	Validation
	RR Aliases
	Comparison to Published Topologies

	Topology Analysis
	Related Work
	Internet Mapping
	Learning and Inference Techniques
	Traceroute Error Avoidance
	Network Map Errors

	Record Route Redesign
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

