
Floodless in SEATTLE: A Scalable Ethernet Architecture
for Large Enterprises

Changhoon Kim
Princeton University

Princeton, NJ
chkim@cs.princeton.edu

Matthew Caesar
University of Illinois

Urbana-Champaign, IL
caesar@cs.uiuc.edu

Jennifer Rexford
Princeton University

Princeton, NJ
jrex@cs.princeton.edu

ABSTRACT
IP networks today require massive effort to configure and man-
age. Ethernet is vastly simpler to manage, but does not scale be-
yond small local area networks. This paper describes an alterna-
tive network architecture called SEATTLE that achieves the best
of both worlds: The scalability of IP combined with the simplicity
of Ethernet. SEATTLE provides plug-and-play functionality via
flat addressing, while ensuring scalability and efficiency through
shortest-path routing and hash-based resolution of host informa-
tion. In contrast to previous work on identity-based routing, SEAT-
TLE ensures path predictability and stability, and simplifies net-
work management. We performed a simulation study driven by
real-world traffic traces and network topologies, and used Emulab
to evaluate a prototype of our design based on the Click and XORP
open-source routing platforms. Our experiments show that SEAT-
TLE efficiently handles network failures and host mobility, while
reducing control overhead and state requirements by roughly two
orders of magnitude compared with Ethernet bridging.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Network]: Network Archi-
tecture and Design; C.2.2 [Computer-Communication Net-
work]: Network Protocols; C.2.5 [Computer-Communication
Network]: Local and Wide-Area Networks

General Terms
Design, Experimentation, Management

Keywords
Enterprise network, Routing, Scalablity, Ethernet

1. INTRODUCTION
Ethernet stands as one of the most widely used networking tech-

nologies today. Due to its simplicity and ease of configuration,
many enterprise and access provider networks utilize Ethernet as
an elementary building block. Each host in an Ethernet is as-
signed a persistent MAC address, and Ethernet bridges automat-
ically learn host addresses and locations. These “plug-and-play”

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

semantics simplify many aspects of network configuration. Flat
addressing simplifies the handling of topology changes and host
mobility, without requiring administrators to reassign addresses.

However, Ethernet is facing revolutionary challenges. Today’s
layer-2 networks are being built on an unprecedented scale and with
highly demanding requirements in terms of efficiency and avail-
ability. Large data centers are being built, comprising hundreds
of thousands of computers within a single facility [1], and main-
tained by hundreds of network operators. To reduce energy costs,
these data centers employ virtual machine migration and adapt to
varying workloads, placing additional requirements on agility (e.g.,
host mobility, fast topology changes). Additionally, large metro
Ethernet deployments contain over a million hosts and tens of thou-
sands of bridges [2]. Ethernet is also being increasingly deployed in
highly dynamic environments, such as backhaul for wireless cam-
pus networks, and transport for developing regions [3].

While an Ethernet-based solution becomes all the more impor-
tant in these environments because it ensures service continuity and
simplifies configuration, conventional Ethernet has some critical
limitations. First, Ethernet bridging relies on network-wide flood-
ing to locate end hosts. This results in large state requirements and
control message overhead that grows with the size of the network.
Second, Ethernet forces paths to comprise a spanning tree. Span-
ning trees perform well for small networks which often do not have
many redundant paths anyway, but introduce substantial inefficien-
cies on larger networks that have more demanding requirements for
low latency, high availability, and traffic engineering. Finally, crit-
ical bootstrapping protocols used frequently by end hosts, such as
Address Resolution Protocol (ARP) and Dynamic Host Configura-
tion Protocol (DHCP), rely on broadcasting. This not only con-
sumes excessive resources, but also introduces security vulnerabil-
ities and privacy concerns.

Network administrators sidestep Ethernet’s inefficiencies today
by interconnecting small Ethernet LANs using routers running the
Internet Protocol (IP). IP routing ensures efficient and flexible use
of networking resources via shortest-path routing. It also has con-
trol overhead and forwarding-table sizes that are proportional to
the number of subnets (i.e., prefixes), rather than the number of
hosts. However, introducing IP routing breaks many of the desir-
able properties of Ethernet. For example, network administrators
must now subdivide their address space to assign IP prefixes across
the topology, and update these configurations when the network de-
sign changes. Subnetting leads to wasted address space, and labo-
rious configuration tasks. Although DHCP automates host address
configuration, maintaining consistency between DHCP servers and
routers still remains challenging. Moreover, since IP addresses are
not persistent identifiers, ensuring service continuity across loca-
tion changes (e.g., due to virtual machine migration or physical

3

mobility) becomes more challenging. Additionally, access-control
policies must be specified based on the host’s current position, and
updated when the host moves.

Alternatively, operators may use Virtual LANs (VLANs) to build
IP subnets independently of host location. While the overhead of
address configuration and IP routing may be reduced by provision-
ing VLANs over a large number of, if not all, bridges, doing so
reduces benefits of broadcast scoping, and worsens data-plane effi-
ciency due to larger spanning trees. Efficiently assigning VLANs
over bridges and links must also consider hosts’ communication
and mobility patterns, and hence is hard to automate. Moreover,
since hosts in different VLANs still require IP to communicate with
one another, this architecture still inherits many of the challenges
of IP mentioned above.

In this paper, we address the following question: Is it possible to
build a protocol that maintains the same configuration-free proper-
ties as Ethernet bridging, yet scales to large networks? To answer,
we present a Scalable Ethernet Architecture for Large Enterprises
(SEATTLE). Specifically, SEATTLE offers the following features:

A one-hop, network-layer DHT: SEATTLE forwards packets
based on end-host MAC addresses. However, SEATTLE does not
require each switch to maintain state for every host, nor does it re-
quire network-wide floods to disseminate host locations. Instead,
SEATTLE uses the global switch-level view provided by a link-
state routing protocol to form a one-hop DHT [4], which stores the
location of each host. We use this network-layer DHT to build
a flexible directory service which also performs address resolu-
tion (e.g., storing the MAC address associated with an IP address),
and more flexible service discovery (e.g., storing the least loaded
DNS server or printer within the domain). In addition, to provide
stronger fault isolation and to support delegation of administrative
control, we present a hierarchical, multi-level one-hop DHT.

Traffic-driven location resolution and caching: To forward pack-
ets along shortest paths and to avoid excessive load on the direc-
tory service, switches cache responses to queries. In enterprise
networks, hosts typically communicate with a small number of
other hosts [5], making caching highly effective. Furthermore,
SEATTLE also provides a way to piggyback location information
on ARP replies, which eliminates the need for location resolution
when forwarding data packets. This allows data packets to directly
traverse the shortest path, making the network’s forwarding behav-
ior predictable and stable.

A scalable, prompt cache-update protocol: Unlike Ethernet which
relies on timeouts or broadcasts to keep forwarding tables up-to-
date, SEATTLE proposes an explicit and reliable cache update pro-
tocol based on unicast. This ensures that all packets are delivered
based on up-to-date state while keeping control overhead low. In
contrast to conventional DHTs, this update process is directly trig-
gered by network-layer changes, providing fast reaction times. For
example, by observing link-state advertisements, switches deter-
mine when a host’s location is no longer reachable, and evict those
invalid entries. Through these approaches, SEATTLE seamlessly
supports host mobility and other dynamics.

Despite these features, our design remains compatible with ex-
isting applications and protocols running at end hosts. For exam-
ple, SEATTLE allows hosts to generate broadcast ARP and DHCP
messages, and internally converts them into unicast queries to a di-
rectory service. SEATTLE switches can also handle general (i.e.,
non-ARP and non-DHCP) broadcast traffic through loop-free mul-
ticasting. To offer broadcast scoping and access control, SEATTLE
also provides a more scalable and flexible mechanism that allows
administrators to create VLANs without trunk configuration.

1.1 Related work
Our quest is to design, implement, and evaluate a practical re-

placement for Ethernet that scales to large and dynamic networks.
Although there are many approaches to enhance Ethernet bridg-
ing, none of these are suitable for our purposes. RBridges [6,
7] leverage a link-state protocol to disseminate information about
both bridge connectivity and host state. This eliminates the need
to maintain a spanning tree and improves forwarding paths. CMU-
Ethernet [8] also leverages link-state and replaces end-host broad-
casting by propagating host information in link-state updates.
Viking [9] uses multiple spanning trees for faster fault recovery,
which can be dynamically adjusted to conform to changing load.
SmartBridges [10] allows shortest-path forwarding by obtaining
the network topology, and monitoring which end host is attached to
each switch. However, its control-plane overheads and storage re-
quirements are similar to Ethernet, as every end host’s information
is disseminated to every switch. Though SEATTLE was inspired by
the problems addressed in these works, it takes a radically different
approach that eliminates network-wide dissemination of per-host
information. This results in substantially improved control-plane
scalability and data-plane efficiency. While there has been work on
using hashing to support flat addressing conducted in parallel with
our work [11, 12], these works do not promptly handle host dy-
namics, require some packets to be detoured away from the shortest
path or be forwarded along a spanning tree, and do not support hi-
erarchical configurations to ensure fault/path isolation and the del-
egation of administrative control necessary for large networks.

The design we propose is also substantially different from re-
cent work on identity-based routing (ROFL [13], UIP [14], and
VRR [15]). Our solution is suitable for building a practical and
easy-to-manage network for several reasons. First, these previous
approaches determine paths based on a hash of the destination’s
identifier (or the identifier itself), incurring a stretch penalty (which
is unbounded in the worst case). In contrast, SEATTLE does not
perform identity-based routing. Instead, SEATTLE uses resolution
to map a MAC address to a host’s location, and then uses the loca-
tion to deliver packets along the shortest path to the host. This re-
duces latency and makes it easier to control and predict network be-
havior. Predictability and controllability are extremely important in
real networks, because they make essential management tasks (e.g.,
capacity planning, troubleshooting, traffic engineering) possible.
Second, the path between two hosts in a SEATTLE network does
not change as other hosts join and leave the network. This substan-
tially reduces packet reordering and improves constancy of path
performance. Finally, SEATTLE employs traffic-driven caching of
host information, as opposed to the traffic-agnostic caching (e.g.,
finger caches in ROFL) used in previous works. By only caching
information that is needed to forward packets, SEATTLE signif-
icantly reduces the amount of state required to deliver packets.
However, our design also consists of several generic components,
such as the multi-level one-hop DHT and service discovery mech-
anism, that could be adapted to the work in [13, 14, 15].

Roadmap: We summarize how conventional enterprise networks
are built and motivate our work in Section 2. Then we describe
our main contributions in Sections 3 and 4 where we introduce a
very simple yet highly scalable mechanism that enables shortest-
path forwarding while maintaining the same semantics as Ethernet.
In Section 5, we enhance existing Ethernet mechanisms to make
our design backwards-compatible with conventional Ethernet. We
then evaluate our protocol using simulations in Section 6 and an im-
plementation in Section 7. Our results show that SEATTLE scales
to networks containing two orders of magnitude more hosts than
a traditional Ethernet network. As compared with ROFL, SEAT-

4

TLE reduces state requirements required to achieve reasonably low
stretch by a factor of ten, and improves path stability by more than
three orders of magnitude under typical workloads. SEATTLE also
handles network topology changes and host mobility without sig-
nificantly increasing control overhead.

2. TODAY’S ENTERPRISE AND ACCESS
NETWORKS

To provide background for the remainder of the paper, and to
motivate SEATTLE, this section explains why Ethernet bridging
does not scale. Then we describe hybrid IP/Ethernet networks and
VLANs, two widely-used approaches which improve scalability
over conventional Ethernet, but introduce management complexity,
eliminating the “plug-and-play” advantages of Ethernet.

2.1 Ethernet bridging
An Ethernet network is composed of segments, each comprising

a single physical layer 1. Ethernet bridges are used to interconnect
multiple segments into a multi-hop network, namely a LAN, form-
ing a single broadcast domain. Each host is assigned a unique 48-
bit MAC (Media Access Control) address. A bridge learns how to
reach hosts by inspecting the incoming frames, and associating the
source MAC address with the incoming port. A bridge stores this
information in a forwarding table that it uses to forward frames
toward their destinations. If the destination MAC address is not
present in the forwarding table, the bridge sends the frame on all
outgoing ports, initiating a domain-wide flood. Bridges also flood
frames that are destined to a broadcast MAC address. Since Ether-
net frames do not carry a TTL (Time-To-Live) value, the existence
of multiple paths in the topology can lead to broadcast storms,
where frames are repeatedly replicated and forwarded along a loop.
To avoid this, bridges in a broadcast domain coordinate to compute
a spanning tree [16]. Administrators first select and configure a
single root bridge; then, the bridges collectively compute a span-
ning tree based on distances to the root. Links not present in the
tree are not used to carry traffic, causing longer paths and ineffi-
cient use of resources. Unfortunately, Ethernet-bridged networks
cannot grow to a large scale due to following reasons.

Globally disseminating every host’s location: Flooding and
source-learning introduce two problems in a large broadcast do-
main. First, the forwarding table at a bridge can grow very large
because flat addressing increases the table size proportionally to the
total number of hosts in the network. Second, the control overhead
required to disseminate each host’s information via flooding can be
very large, wasting link bandwidth and processing resources. Since
hosts (or their network interfaces) power up/down (manually, or dy-
namically to reduce power consumption), and change location rela-
tively frequently, flooding is an expensive way to keep per-host in-
formation up-to-date. Moreover, malicious hosts can intentionally
trigger repeated network-wide floods through, for example, MAC
address scanning attacks [17].

Inflexible route selection: Forcing all traffic to traverse a single
spanning tree makes forwarding more failure-prone and leads to
suboptimal paths and uneven link loads. Load is especially high on
links near the root bridge. Thus, choosing the right root bridge is
extremely important, imposing an additional administrative burden.
Moreover, using a single tree for all communicating pairs, rather
than shortest paths, significantly reduces the aggregate throughput
of a network.
1In modern switched Ethernet networks, a segment is just a point-
to-point link connecting an end host and a bridge, or a pair of
bridges.

Dependence on broadcasting for basic operations: DHCP and
ARP are used to assign IP addresses and manage mappings be-
tween MAC and IP addresses, respectively. A host broadcasts a
DHCP-discovery message whenever it believes its network attach-
ment point has changed. Broadcast ARP requests are generated
more frequently, whenever a host needs to know the MAC address
associated with the IP address of another host in the same broad-
cast domain. Relying on broadcast for these operations degrades
network performance. Moreover, every broadcast message must be
processed by every end host; since handling of broadcast frames
is often application or OS-specific, these frames are not handled by
the network interface card, and instead must interrupt the CPU [18].
For portable devices on low-bandwidth wireless links, receiving
ARP packets can consume a significant fraction of the available
bandwidth, processing, and power resources. Moreover, the use of
broadcasting for ARP and DHCP opens vulnerabilities for mali-
cious hosts as they can easily launch ARP or DHCP floods [8].

2.2 Hybrid IP/Ethernet architecture
One way of dealing with Ethernet’s limited scalability is to build

enterprise and access provider networks out of multiple LANs in-
terconnected by IP routing. In these hybrid networks, each LAN
contains at most a few hundred hosts that collectively form an IP
subnet. Communication across subnets is handled via certain fixed
nodes called default gateways. Each IP subnet is allocated an IP
prefix, and each host in the subnet is then assigned an IP address
from the subnet’s prefix. Assigning IP prefixes to subnets, and as-
sociating subnets with router interfaces is typically a manual pro-
cess, as the assignment must follow the addressing hierarchy, yet
must reduce wasted namespace, and must consider future use of
addresses to minimize later reassignment. Unlike a MAC address,
which functions as a host identifier, an IP address denotes the host’s
current location in the network.

The biggest problem of the hybrid architecture is its massive con-
figuration overhead. Configuring hybrid networks today represents
an enormous challenge. Some estimates put 70% of an enterprise
network’s operating cost as maintenance and configuration, as op-
posed to equipment costs or power usage [19]. In addition, in-
volving human administrators in the loop increases reaction time
to faults and increases potential for misconfiguration.

Configuration overhead due to hierarchical addressing: An IP
router cannot function correctly until administrators specify sub-
nets on router interfaces, and direct routing protocols to advertise
the subnets. Similarly, an end host cannot access the network un-
til it is configured with an IP address corresponding to the sub-
net where the host is currently located. DHCP automates end-host
configuration, but introduces substantial configuration overhead for
managing the DHCP servers. In particular, maintaining consistency
between routers’ subnet configuration and DHCP servers’ address
allocation configuration, or coordination across distributed DHCP
servers are not simple. Finally, network administrators must con-
tinually revise this configuration to handle network changes.

Complexity in implementing networking policies: Administrators
today use a collection of access controls, QoS (Quality of Ser-
vice) controls [20], and other policies to control the way packets
flow through their networks. These policies are typically defined
based on IP prefixes. However, since prefixes are assigned based on
the topology, changes to the network design require these policies
to be rewritten. More significantly, rewriting networking policies
must happen immediately after network design changes to prevent
reachability problems and to avoid vulnerabilities. Ideally, admin-
istrators should only need to update policy configurations when the
policy itself, not the network, changes.

5

Limited mobility support: Supporting seamless host mobility is
becoming increasingly important. In data centers, migratable vir-
tual machines are being widely deployed to improve power effi-
ciency by adapting to workload, and to minimize service disruption
during maintenance operations. Large universities or enterprises
often build campus-wide wireless networks, using a wired back-
haul to support host mobility across access points. To ensure ser-
vice continuity and minimize policy update overhead, it is highly
desirable for a host to retain its IP address regardless of its loca-
tion in these networks. Unfortunately, hybrid networks constrain
host mobility only within a single, usually small, subnet. In a data
center, this can interfere with the ability to handle load spikes seam-
lessly; in wireless backhaul networks, this can cause service disrup-
tions. One way to deal with this is to increase the size of subnets
by increasing broadcast domains, introducing the scaling problems
mentioned in Section 2.1.

2.3 Virtual LANs
VLANs address some of the problems of Ethernet and IP net-

works. VLANs allow administrators to group multiple hosts shar-
ing the same networking requirements into a single broadcast do-
main. Unlike a physical LAN, a VLAN can be defined logically,
regardless of individual hosts’ locations in a network. VLANs can
also be overlapped by allowing bridges (not hosts) to be config-
ured with multiple VLANs. By dividing a large bridged network
into several appropriately-sized VLANs, administrators can reduce
the broadcast overhead imposed on hosts in each VLAN, and also
ensure isolation among different host groups. Compared with IP,
VLANs simplify mobility, as hosts may retain their IP addresses
while moving between bridges in the same VLAN. This also re-
duces policy reconfiguration overhead. Unfortunately, VLANs in-
troduces several problems:

Trunk configuration overhead: Extending a VLAN across multi-
ple bridges requires the VLAN to be trunked (provisioned) at each
of the bridges participating in the VLAN. Deciding which bridges
should be in a given VLAN must consider traffic and mobility pat-
terns to ensure efficiency, and hence is often done manually.

Limited control-plane scalability: Although VLANs reduce the
broadcast overhead imposed on a particular end host, bridges pro-
visioned with multiple VLANs must maintain forwarding-table
entries and process broadcast traffic for every active host in ev-
ery VLAN visible to themselves. Unfortunately, to enhance re-
source utilization and host mobility, and to reduce trunk config-
uration overhead, VLANs are often provisioned larger than neces-
sary, worsening this problem. A large forwarding table complicates
bridge design, since forwarding tables in Ethernet bridges are typi-
cally implemented using Content-Addressable Memory (CAM), an
expensive and power-intensive technology.

Insufficient data-plane efficiency: Larger enterprises and data cen-
ters often have richer topologies, for greater reliability and perfor-
mance. Unfortunately, a single spanning tree is used in each VLAN
to forward packets, which prevents certain links from being used.
Although configuring a disjoint spanning tree for each VLAN [9,
21] may improve load balance and increase aggregate throughput,
effective use of per-VLAN trees requires periodically moving the
roots and rebalancing the trees, which must be manually updated
as traffic shifts. Moreover, inter-VLAN traffic must be routed via
IP gateways, rather than shortest physical paths.

3. NETWORK-LAYER ONE-HOP DHT
The goal of a conventional Ethernet is to route packets to a des-

tination specified by a MAC address. To do this, Ethernet bridges

collectively provide end hosts with a service that maps MAC ad-
dresses to physical locations. Each bridge implements this service
by maintaining next-hop pointers associated with MAC addresses
in its forwarding table, and relies on domain-wide flooding to keep
these pointers up to date. Additionally, Ethernet also allows hosts
to look up the MAC address associated with a given IP address by
broadcasting Address Resolution Protocol (ARP) messages.

In order to provide the same interfaces to end hosts as conven-
tional Ethernet, SEATTLE also needs a mechanism that maintains
mappings between MAC/IP addresses and locations. To scale to
large networks, SEATTLE operates a distributed directory service
built using a one-hop, network-level DHT. We use a one-hop DHT
to reduce lookup complexity and simplify certain aspects of net-
work administration such as traffic engineering and troubleshoot-
ing. We use a network-level approach that stores mappings at
switches, so as to ensure fast and efficient reaction to network fail-
ures and recoveries, and avoid the control overhead of a separate
directory infrastructure. Moreover, our network-level approach al-
lows storage capability to increase naturally with network size, and
exploits caching to forward data packets directly to the destination
without needing to traverse any intermediate DHT hops [22, 23].

3.1 Scalable key-value management with
a one-hop DHT

Our distributed directory has two main parts. First, running
a link-state protocol ensures each switch can observe all other
switches in the network, and allows any switch to route any other
switch along shortest paths. Second, SEATTLE uses a hash func-
tion to map host information to a switch. This host information is
maintained in the form of (key, value). Examples of these key-value
pairs are (MAC address, location), and (IP address, MAC address).

3.1.1 Link-state protocol maintaining switch topology
SEATTLE enables shortest-path forwarding by running a link-

state protocol. However, distributing end-host information in link-
state advertisements, as advocated in previous proposals [8, 6, 10,
7], would lead to serious scaling problems in the large networks we
consider. Instead, SEATTLE’s link-state protocol maintains only
the switch-level topology, which is much more compact and sta-
ble. SEATTLE switches use the link-state information to compute
shortest paths for unicasting, and multicast trees for broadcasting.

To automate configuration of the link-state protocol, SEATTLE
switches run a discovery protocol to determine which of their links
are attached to hosts, and which are attached to other switches.
Distinguishing between these different kinds of links is done by
sending control messages that Ethernet hosts do not respond to.
This process is similar to how Ethernet distinguishes switches from
hosts when building its spanning tree. To identify themselves in the
link-state protocol, SEATTLE switches determine their own unique
switch IDs without administrator involvement. For example, each
switch does this by choosing the MAC address of one of its inter-
faces as its switch ID.

3.1.2 Hashing key-value pairs onto switches
Instead of disseminating per-host information in link-state ad-

vertisements, SEATTLE switches learn this information in an on-
demand fashion, via a simple hashing mechanism. This informa-
tion is stored in the form of (key= k,value= v) pairs. A publisher
switch sa wishing to publish a (k, v) pair via the directory service
uses a hash function F to map k to a switch identifier F(k) = rk,
and instructs switch rk to store the mapping (k, v). We refer to rk

as the resolver for k. A different switch sb may then look up the
value associated with k by using the same hash function to iden-
tify which switch is k’s resolver. This works because each switch

6

Figure 1: Keys are consistently hashed onto resolver switches (si).

knows all the other switches’ identifiers via link-state advertise-
ments from the routing protocol, and hence F works identically
across all switches. Switch sb may then forward a lookup request
to rk to retrieve the value v. Switch sb may optionally cache the
result of its lookup, to reduce redundant resolutions. All control
messages, including lookup and publish messages, are unicast with
reliable delivery.

Reducing control overhead with consistent hashing: When the
set of switches changes due to a network failure or recovery, some
keys have to be re-hashed to different resolver switches. To mini-
mize this re-hashing overhead, SEATTLE utilizes Consistent Hash-
ing [24] for F . This mechanism is illustrated in Figure 1. A con-
sistent hashing function maps keys to bins such that the change of
the bin set causes minimal churn in the mapping of keys to bins. In
SEATTLE, each switch corresponds a bin, and a host’s information
corresponds to a key. Formally, given a set S = {s1, s2, ..., sn} of
switch identifiers, and a key k,

F(k) = argmin∀si∈S{D(H(k),H(si))}
where H is a regular hash function, and D(x, y) is a simple met-
ric function computing the counter-clockwise distance from x to y
on the circular hash-space of H. This means F maps a key to the
switch with the closest identifier not exceeding that of the key on
the hash space of H. As an optimization, a key may be addition-
ally mapped to the next m closest switches along the hash ring, to
improve resilience to multiple failures. However, in our evaluation,
we will assume this optimization is disabled by default.

Balancing load with virtual switches: The scheme described so
far assumes that all switches are equally powerful, and hence low-
end switches will need to service the same load as more powerful
switches. To deal with this, we propose a new scheme based on
running multiple virtual switches on each physical switch. A single
switch locally creates one or more virtual switches. The switch may
then increase or decrease its load by spawning/destroying these
virtual switches. Unlike techniques used in traditional DHTs for
load balancing [23], it is not necessary for our virtual switches to
be advertised to other physical switches. To reduce size of link-
state advertisements, instead of advertising every virtual switch in
the link-state protocol, switches only advertise the number of vir-
tual switches they are currently running. Each switch then locally
computes virtual switch IDs using the following technique. All
switches use the same function R(s, i) that takes as input a switch
identifier s and a number i, and outputs a new identifier unique to
the inputs. A physical switch w only advertises in link-state adver-
tisements its own physical switch identifier sw and the number L
of virtual switches it is currently running. Every switch can then
determine the virtual identifiers of w by computing R(sw, i) for
1 ≤ i ≤ L. Note that it is possible to automate determining a
desirable number of virtual switches per physical switch [25].

Enabling flexible service discovery: This design also enables more
flexible service discovery mechanisms without the need to perform
network-wide broadcasts. This is done by utilizing the hash func-
tion F to map a string defining the service to a switch. For example,
a printer may hash the string “PRINTER” to a switch, at which it

Figure 2: Hierarchical SEATTLE hashes keys onto regions.

may store its location or address information. Other switches can
then reach the printer using the hash of the string. Services may
also encode additional attributes, such as load or network location,
as simple extensions. Multiple servers can redundantly register
themselves with a common string to implement anycasting. Ser-
vices can be named using techniques shown in previous work [26].

3.2 Responding to topology changes
The switch-level topology may change if a new switch/link is

added to the network, an existing switch/link fails, or a previously
failed switch/link recovers. These failures may or may not partition
the network into multiple disconnected components. Link failures
are typically more common than switch failures, and partitions are
very rare if the network has sufficient redundancy.

In the case of a link failure/recovery that does not partition a
network, the set of switches appearing in the link-state map does
not change. Since the hash function F is defined with the set of
switches in the network, the resolver a particular key maps to will
not change. Hence all that needs to be done is to update the link-
state map to ensure packets continue to traverse new shortest paths.
In SEATTLE, this is simply handled by the link-state protocol.

However, if a switch fails or recovers, the set of switches in the
link-state map changes. Hence there may be some keys k whose
old resolver rold

k differs from a new resolver rnew
k . To deal with

this, the value (k, v) must be moved from rold
k to rnew

k . This is
handled by having the switch sk that originally published k mon-
itor the liveness of k’s resolver through link-state advertisements.
When sk detects that rnew

k differs from rold
k , it republishes (k, v)

to rnew
k . The value (k, v) is eventually removed from rold

k after a
timeout. Additionally, when a value v denotes a location, such as a
switch id s, and s goes down, each switch scans the list of locally-
stored (k, v) pairs, and remove all entries whose value v equals s.
Note this procedure correctly handles network partitions because
the link-state protocol ensures that each switch will be able to see
only switches present in its partition.

3.3 Supporting hierarchy with a multi-level,
one-hop DHT

The SEATTLE design presented so far scales to large, dynamic
networks [27]. However, since this design runs a single, network-
wide link-state routing protocol, it may be inappropriate for net-
works with highly dynamic infrastructure, such as networks in de-
veloping regions [3]. A single network-wide protocol may also be
inappropriate if network operators wish to provide stronger fault
isolation across geographic regions, or to divide up administrative
control across smaller routing domains. Moreover, when a SEAT-
TLE network is deployed over a wide area, the resolver could lie
far both from the source and destination. Forwarding lookups over
long distances increases latency and makes the lookup more prone
to failure. To deal with this, SEATTLE may be configured hier-
archically, by leveraging a multi-level, one-hop DHT. This mecha-
nism is illustrated in Figure 2.

A hierarchical network is divided into several regions, and a
backbone providing connectivity across regions. Each region is
connected to the backbone via its own border switch, and the back-

7

Figure 3: Packet forwarding and lookup in SEATTLE.

bone is composed of the border switches of all regions. Information
about regions is summarized and propagated in a manner similar to
areas in OSPF. In particular, each switch in a region knows the
identifier of the region’s border switch, because the border switch
advertises its role through the link-state protocol. In such an en-
vironment, SEATTLE ensures that only inter-region lookups are
forwarded via the backbone while all regional lookups are handled
within their own regions, and link-state advertisements are only
propagated locally within regions. SEATTLE ensures this by defin-
ing a separate regional and backbone hash ring. When a (k, v) is
inserted into a region P and is published to a regional resolver rP

k

(i.e., a resolver for k in region P), rP
k additionally forwards (k, v)

to one of the region P ’s border switches bP . Then bP hashes k
again onto the backbone ring and publishes (k, v) to another back-
bone switch bQ

k , which is a backbone resolver for k and a border
switch of region Q at the same time. Switch bQ

k stores k’s informa-
tion. If a switch in region R wishes to lookup (k, v), it forwards
the lookup first to its local resolver rR

k , which in turn forwards it to
bR, and bR forwards it to bQ

k . As an optimization to reduce load on
border switches, bQ

k may hash k and store (k, v) at a switch within
its own region Q, rather than storing (k, v) locally. Since switch
failures are not propagated across regions, each publisher switch
periodically sends probes to backbone resolvers that lie outside of
its region. To improve availability, (k, v) may be stored at multi-
ple backbone resolvers (as described in Section 3.1.2), and multiple
simultaneous lookups may be sent in parallel.

4. SCALING ETHERNET WITH
A ONE-HOP DHT

The previous section described the design of a distributed
network-level directory service based on a one-hop DHT. In this
section, we describe how the directory service is used to provide
efficient packet delivery and scalable address resolution. We first
briefly describe how to forward data packets to MAC addresses in
Section 4.1. We then describe our remaining contributions: an opti-
mization that eliminate the need to look up host location in the DHT
by piggy-backing that information on ARP requests in Section 4.2,
and a scalable dynamic cache-update protocol in Section 4.3.

4.1 Host location resolution
Hosts use the directory service described in Section 3 to pub-

lish and maintain mappings between their MAC addresses and their
current locations. These mappings are used to forward data pack-
ets, using the procedure shown in Figure 3. When a host a with
MAC address maca first arrives at its access switch sa, the switch
must publish a’s MAC-to-location mapping in the directory ser-
vice. Switch sa does this by computing F(maca) = ra, and in-
structing ra to store (maca, sa). We refer to ra as the location re-
solver for a. Then, if some host b connected to switch sb wants to
send a data packet to maca, b forwards the data packet to sb, which
in turn computes F(maca) = ra. Switch sb then and forwards the

packet to ra. Since ra may be several hops away, sb encapsulates
the packet with an outer header with ra’s address as the destination.
Switch ra then looks up a’s location sa, and forwards the packet
on towards sa. In order to limit the number of data packets travers-
ing the resolver, ra also notifies sb that a’s current location is sa.
Switch sb then caches this information. While forwarding the first
few packets of a flow via a resolver switch increases path lengths,
in the next section we describe an optimization that allows data
packets to traverse only shortest paths, by piggy-backing location
information on ARP replies.

Note SEATTLE manages per-host information via reactive reso-
lution, as opposed to the proactive dissemination scheme used in
previous approaches [8, 6, 10]. The scaling benefits of this re-
active resolution increase in enterprise/data-center/access provider
networks because most hosts communicate with a small number
of popular hosts, such as mail/file/Web servers, printers, VoIP gate-
ways, and Internet gateways [5]. To prevent forwarding tables from
growing unnecessarily large, the access switches can apply various
cache-management policies. For correctness, however, the cache-
management scheme must not evict the host information of the
hosts that are directly connected to the switch or are registered with
the switch for resolution. Unlike Ethernet bridging, cache misses
in SEATTLE do not lead to flooding, making the network resistant
to cache poisoning attacks (e.g., forwarding table overflow attack)
or a sudden shift in traffic. Moreover, those switches that are not
directly connected to end hosts (i.e., aggregation or core switches)
do not need to maintain any cached entries.

4.2 Host address resolution
In conventional Ethernet, a host with an IP packet first broadcasts

an ARP request to look up the MAC address of the host owning
the destination IP address contained in the request. To enhance
scalability, SEATTLE avoids broadcast-based ARP operations. In
addition, we extend ARP to return both the location and the MAC
address of the end host to the requesting switch. This allows data
packets following an ARP query to directly traverse shortest paths.

SEATTLE replaces the traditional broadcast-based ARP with
an extension to the one-hop DHT directory service. In particu-
lar, switches use F with an IP address as the key. Specifically,
when host a arrives at access switch sa, the switch learns a’s IP ad-
dress ipa (using techniques described in Section 5.1), and computes
F(ipa) = va. The result of this computation is the identifier of an-
other switch va. Finally, sa informs va of (ipa, maca). Switch va,
the address resolver for host a, then uses the tuple to handle future
ARP requests for ipa redirected by other remote switches. Note
that host a’s location resolver (i.e., F(maca)) may differ from a’s
address resolver (i.e., F(ipa)).

Optimizing forwarding paths via ARP: For hosts that issue an ARP
request, SEATTLE eliminates the need to perform forwarding via
the location resolver as mentioned in Section 4.1. This is done by
having the address resolver switch va also maintain the location of
a (i.e., sa) in addition to maca. Upon receiving an ARP request
from some host b, the address resolver va returns both maca and
sa back to b’s access switch sb. Switch sb then caches sa for future
packet delivery, and returns maca to host b. Any packets sent by b
to a are then sent directly along the shortest path to a.

It is, however, possible that host b already has maca in its ARP
cache and immediately sends data frames destined to maca with-
out issuing an ARP request in advance. Even in such a case, as long
as the sb also maintains a’s location associated with maca, sb can
forward those frames correctly. To ensure access switches cache
the same entries as hosts, the timeout value that an access switch
applies to the cached location information should be larger than the

8

ARP cache timeout used by end hosts 2. Note that, even if the cache
and the host become out of sync (due to switch reboot, etc.), SEAT-
TLE continues to operate correctly because switches can resolve
a host’s location by hashing the host’s MAC address to the host’s
location resolver.

4.3 Handling host dynamics
Hosts can undergo three different kinds of changes in a SEAT-

TLE network. First, a host may change location, for example if it
has physically moved to a new location (e.g., wireless handoff), if
its link has been plugged into a different access switch, or if it is a
virtual machine and has migrated to a new hosting system that al-
lows the VM to retain its MAC address. Second, a host may change
its MAC address, for example if its NIC card is replaced, if it is a
VM and has migrated to a new hosting system that requires the VM
to use the host’s MAC address, or if multiple physical machines
collectively acting as a single server or router (to ensure high avail-
ability) experience a fail-over event [28]. Third, a host may change
its IP address, for example if a DHCP lease expires, or if the host is
manually reconfigured. In practice, multiple of these changes may
occur simultaneously. When these changes occur, we need to keep
the directory service up-to-date, to ensure correct packet delivery.

SEATTLE handles these changes by modifying the contents of
the directory service via insert, delete, and update operations. An
insert operation adds a new (k, v) pair to the DHT, a delete opera-
tion removes a (k, v) pair from the DHT, and the update operation
updates the value v associated with a given key k. First, in the case
of a location change, the host h moves from one access switch sold

h

to another snew
h . In this case, snew

h inserts a new MAC-to-location
entry. Since h’s MAC address already exists in the DHT, this action
will update h’s old location with its new location. Second, in the
case of a MAC address change, h’s access switch sh inserts an IP-
to-MAC entry containing h’s new MAC address, causing h’s old
IP-to-MAC mapping to be updated. Since a MAC address is also
used as a key of a MAC-to-location mapping, sh deletes h’s old
MAC-to-location mapping and inserts a new mapping, respectively
with the old and new MAC addresses as keys. Third, in the case of
an IP address change, we need to ensure that future ARP requests
for h’s old IP address are no longer resolved to h’s MAC address.
To ensure this, sh deletes h’s old IP-to-MAC mapping and insert
the new one. Finally, if multiple changes happen at once, the above
steps occur simultaneously.

Ensuring seamless mobility: As an example, consider the case of a
mobile host h moving between two access switches, sold

h and snew
h .

To handle this, we need to update h’s MAC-to-location mapping to
point to its new location. As described in Section 4.1, snew

h inserts
(mach, snew

h) into rh upon arrival of h. Note that the location re-
solver rh selected by F(mach) does not change when h’s location
changes. Meanwhile, sold

h deletes (mach, sold
h) when it detects h

is unreachable (either via timeout or active polling). Additionally,
to enable prompt removal of stale information, the location resolver
rh informs sold

h that (mach, sold
h) is obsoleted by (mach, snew

h).
However, host locations cached at other access switches must

be kept up-to-date as hosts move. SEATTLE takes advantage of
the fact that, even after updating the information at rh, sold

h may
receive packets destined to h because other access switches in the
network might have the stale information in their forwarding tables.
Hence, when sold

h receives packets destined to h, it explicitly noti-
fies ingress switches that sent the misdelivered packets of h’s new
location snew

h . To minimize service disruption, sold
h also forwards

those misdelivered packets snew
h .

2The default setting of the ARP cache timeout in most common
operating systems ranges 10 to 20 minutes.

Updating remote hosts’ caches: In addition to updating con-
tents of the directory service, some host changes require inform-
ing other hosts in the system about the change. For example, if a
host h changes its MAC address, the new mapping (iph, macnew

h)
must be immediately known to other hosts who happened to store
(iph, macold

h) in their local ARP caches. In conventional Ethernet,
this is achieved by broadcasting a gratuitous ARP request origi-
nated by h [29]. A gratuitous ARP is an ARP request contain-
ing the MAC and IP address of the host sending it. This request
is not a query for a reply, but is instead a notification to update
other end hosts’ ARP tables and to detect IP address conflicts on
the subnet. Relying on broadcast to update other hosts clearly
does not scale to large networks. SEATTLE avoids this problem
by unicasting gratuitous ARP packets only to hosts with invalid
mappings. This is done by having sh maintain a MAC revocation
list. Upon detecting h’s MAC address change, switch sh inserts
(iph, macold

h , macnew
h) in its revocation list. From then on, when-

ever sh receives a packet whose source or destination (IP, MAC)
address pair equals (iph, macold

h), it sends a unicast gratuitous
ARP request containing (iph, macnew

h) to the source host which
sent those packets. Note that, when both h’s MAC address and
location change at the same time, the revocation information is cre-
ated at h’s old access switch by h’s address resolver vh = F(iph).

To minimize service disruption, sh also informs the source host’s
ingress switch of (macnew

h , sh) so that the packets destined to
macnew

h can then be directly delivered to sh, avoiding an addi-
tional location lookup. Note this approach to updating remote ARP
caches does not require sh to look up each packet’s IP and MAC
address pair from the revocation list because sh can skip the lookup
in the common case (i.e., when its revocation list is empty). Entries
from the revocation list are removed after a timeout set equal to the
ARP cache timeout of end hosts.

5. PROVIDING ETHERNET-LIKE
SEMANTICS

To be fully backwards-compatible with conventional Ethernet,
SEATTLE must act like a conventional Ethernet from the perspec-
tive of end hosts. First, the way that hosts interact with the network
to bootstrap themselves (e.g., acquire addresses, allow switches to
discover their presence) must be the same as Ethernet. Second,
switches have to support traffic that uses broadcast/multicast Eth-
ernet addresses as destinations. In this section, we describe how to
perform these actions without incurring the scalability challenges
of traditional Ethernet. For example, we propose to eliminate
broadcasting from the two most popular sources of broadcast traf-
fic: ARP and DHCP. Since we described how SEATTLE switches
handle ARP without broadcasting in Section 4.2, we discuss only
DHCP in this section.

5.1 Bootstrapping hosts
Host discovery by access switches: When an end host arrives at a
SEATTLE network, its access switch needs to discover the host’s
MAC and IP addresses. To discover a new host’s MAC address,
SEATTLE switches use the same MAC learning mechanism as con-
ventional Ethernet, except that MAC learning is enabled only on
the ports connected to end hosts. To learn a new host’s IP address
or detect an existing host’s IP address change, SEATTLE switches
snoop on gratuitous ARP requests. Most operating systems gen-
erate a gratuitous ARP request when the host boots up, the host’s
network interface or links comes up, or an address assigned to the
interface changes [29]. If a host does not generate a gratuitous
ARP, the switch can still learn of the host’s IP address via snoop-
ing on DHCP messages, or sending out an ARP request only on

9

the port connected to the host. Similarly, when an end host fails or
disconnects from the network, the access switch is responsible for
detecting that the host has left, and deleting the host’s information
from the network.

Host configuration without broadcasting: For scalability, SEAT-
TLE resolves DHCP messages without broadcasting. When an ac-
cess switch receives a broadcast DHCP discovery message from an
end host, the switch delivers the message directly to a DHCP server
via unicast, instead of broadcasting it. SEATTLE implements this
mechanism using the existing DHCP relay agent standard [30].
This standard is used when an end host needs to communicate with
a DHCP server outside the host’s broadcast domain. The standard
proposes that a host’s IP gateway forward a DHCP discovery to a
DHCP server via IP routing. In SEATTLE, a host’s access switch
can perform the same function with Ethernet encapsulation. Access
switches can discover a DHCP server using a similar approach to
the service discovery mechanism in Section 3.1.2. For example, the
DHCP server hashes the string “DHCP_SERVER” to a switch, and
then stores its location at that switch. Other switches then forward
DHCP requests using the hash of the string.

5.2 Scalable and flexible VLANs
SEATTLE completely eliminates flooding of unicast packets.

However, to offer the same semantics as Ethernet bridging, SEAT-
TLE needs to support transmission of packets sent to a broadcast
address. Supporting broadcasting is important because some appli-
cations (e.g., IP multicast, peer-to-peer file sharing programs, etc.)
rely on subnet-wide broadcasting. However, in large networks to
which our design is targeted, performing broadcasts in the same
style as Ethernet may significantly overload switches and reduce
data plane efficiency. Instead, SEATTLE provides a mechanism
which is similar to, but more flexible than, VLANs.

In particular, SEATTLE introduces a notion of group. Similar
to a VLAN, a group is defined as a set of hosts who share the
same broadcast domain regardless of their location. Unlike Eth-
ernet bridging, however, a broadcast domain in SEATTLE does not
limit unicast layer-2 reachability between hosts because a SEAT-
TLE switch can resolve any host’s address or location without rely-
ing on broadcasting. Thus, groups provide several additional ben-
efits over VLANs. First, groups do not need to be manually as-
signed to switches. A group is automatically extended to cover a
switch as soon as a member of that group arrives at the switch3.
Second, a group is not forced to correspond to a single IP subnet,
and hence may span multiple subnets or a portion of a subnet, if
desired. Third, unicast reachability in layer-2 between two differ-
ent groups may be allowed (or restricted) depending on the access-
control policy — a rule set defining which groups can communicate
with which — between the groups.

The flexibility of groups ensures several benefits that are hard to
achieve with conventional Ethernet bridging and VLANs. When
a group is aligned with a subnet, and unicast reachability between
two different groups is not permitted by default, groups provide
exactly the same functionality as VLANs. However, groups can
include a large number of end hosts and can be extended to any-
where in the network without harming control-plane scalability and
data-plane efficiency. Moreover, when groups are defined as sub-
sets of an IP subnet, and inter-group reachability is prohibited, each
group is equivalent to a private VLAN (PVLAN), which are popu-

3The way administrators associate a host with corresponding group
is beyond the scope of this paper. For Ethernet, management sys-
tems that can automate this task (e.g., mapping an end host or flow
to a VLAN) are already available [31], and SEATTLE can employ
the same model.

larly used in hotel/motel networks [32]. Unlike PVLANs, however,
groups can be extended over multiple bridges. Finally, when uni-
cast reachability between two groups is allowed, traffic between the
groups takes the shortest path, without traversing default gateways.

Multicast-based group-wide broadcasting: Some applications
may rely on subnet-wide broadcasting. To handle this, all broad-
cast packets within a group are delivered through a multicast tree
sourced at a dedicated switch, namely a broadcast root, of the
group. The mapping between a group and its broadcast root is
determined by using F to hash the group’s identifier to a switch.
Construction of the multicast tree is done in a manner similar to
IP multicast, inheriting its safety (i.e., loop freedom) and efficiency
(i.e., to receive broadcast only when necessary). When a switch
first detects an end host that is a member of group g, the switch
issues a join message that is carried up to the nearest graft point on
the tree toward g’s broadcast root. When a host departs, its access
switch prunes a branch if necessary. When an end host in g sends
a broadcast packet, its access switch marks the packet with g and
forwards it along g’s multicast tree.

Separating unicast reachability from broadcast domains: In addi-
tion to handling broadcast traffic, groups in SEATTLE also provide
a namespace upon which reachability policies for unicast traffic are
defined. When a host arrives at an access switch, the host’s group
membership is determined by its access switch and published to the
host’s resolvers along with its location information. Access control
policies are then applied by a resolver when a host attempts to look
up a destination host’s information.

6. SIMULATIONS
In this section, we start by describing our simulation environ-

ment. Next, we describe SEATTLE’s performance under work-
loads collected from several real operational networks. We then
investigate SEATTLE’s performance in dynamic environments by
generating host mobility and topology changes.

6.1 Methodology
To evaluate the performance of SEATTLE, we would ideally like

to have several pieces of information, including complete layer-two
topologies from a number of representative enterprises and access
providers, traces of all traffic sent on every link in their topologies,
the set of hosts at each switch/router in the topology, and a trace
of host movement patterns. Unfortunately, network administrators
(understandably) were not able to share this detailed information
with us due to privacy concerns, and also because they typically do
not log events on such large scales. Hence, we leveraged real traces
where possible, and supplemented them with synthetic traces. To
generate the synthetic traces, we made realistic assumptions about
workload characteristics, and varied these characteristics to mea-
sure the sensitivity of SEATTLE to our assumptions.

In our packet-level simulator, we replayed packet traces col-
lected from the Lawrence Berkeley National Lab campus network
by Pang et. al. [33]. There are four sets of traces, each collected
over a period of 10 to 60 minutes, containing traffic to and from
roughly 9,000 end hosts distributed over 22 different subnets. The
end hosts were running various operating systems and applications,
including malware (some of which engaged in scanning). To evalu-
ate sensitivity of SEATTLE to network size, we artificially injected
additional hosts into the trace. We did this by creating a set of vir-
tual hosts, which communicated with a set of random destinations,
while preserving the distribution of destination-level popularity of
the original traces. We also tried injecting MAC scanning attacks
and artificially increasing the rate at which hosts send [17].

We measured SEATTLE’s performance on four representative

10

1 30 60 120 180 240 300
Time-out values for ingress caching (sec)

0

4

8

12

16

C
tr

l m
sg

s
pe

r
sw

itc
h

pe
r

se
c

Ctrl overhead (right)

1e-05

1e-04

0.001

0.01

Fr
ac

. o
f

pk
ts

 r
eq

ui
ri

ng
 lo

ca
tio

n
re

so
lu

tio
n

(l
og

)

Location resolution prob. (left)

100

200

300

400

500

T
ab

le
 s

iz
eTable size (right axis)

(a)

10K 20K 30K 40K 50K
Number of hosts

100

500

1K

5K

10K

T
ab

le
 s

iz
e

(l
og

)

Eth-max
Eth-avg
SEA_CA-max
SEA_CA-avg
SEA_NOCA-max
SEA_NOCA-avg

(b)

10K 20K 30K 40K 50K
Number of hosts

0.01

0.1

1

10

100

1000

C
on

tr
ol

 o
ve

rh
ea

d
pe

r
sw

itc
h

pe
r

se
co

nd
 (

lo
g)

Eth (Num. of flooded packets)
SEA_CA (# of control messages)
SEA_NOCA (# of control messages)

(c)
Figure 4: (a) Effect of cache timeout in AP-large with 50K hosts (b) Table size increase in DC (b) Control overhead in AP-large. These figures contain
error bars showing confidence intervals for each data point. A sufficient number of simulation runs reduced these intervals.

topologies. Campus is the campus network of a large (roughly
40,000 students) university in the United States, containing 517
routers and switches. AP-small (AS 3967) is a small access
provider network consisting of 87 routers, and AP-large (AS 1239)
is a larger network with 315 routers [34]. Because SEATTLE
switches are intended to replace both IP routers and Ethernet
bridges, the routers in these topologies are considered as SEATTLE
switches in our evaluation. To investigate a wider range of environ-
ments, we also constructed a model topology called DC, which rep-
resents a typical data center network composed of four full-meshed
core routers each of which is connected to a mesh of twenty one ag-
gregation switches. This roughly characterizes a commonly-used
topology in data centers [1].

Our topology traces were anonymized, and hence lack infor-
mation about how many hosts are connected to each switch. To
deal with this, we leveraged CAIDA Skitter traces [35] to roughly
characterize this number for networks reachable from the Internet.
However, since the CAIDA skitter traces form a sample represen-
tative of the wide-area, it is not clear whether they apply to the
smaller-scale networks we model. Hence for DC and Campus, we
assume that hosts are evenly distributed across leaf-level switches.

Given a fixed topology, the performance of SEATTLE and Eth-
ernet bridging can vary depending on traffic patterns. To quantify
this variation we repeated each simulation run 25 times, and plot
the average of these runs with 99% confidence intervals. For each
run we vary a random seed, causing the number of hosts per switch,
and the mapping between hosts and switches to change. Addition-
ally for the cases of Ethernet bridging, we varied spanning trees by
randomly selecting one of the core switches as a root bridge. Our
simulations assume that all switches are part of the same broadcast
domain. However, since our traffic traces are captured in each of
the 22 different subnets (i.e., broadcast domains), the traffic pat-
terns among the hosts preserve the broadcast domain boundaries.
Thus, our simulation network is equivalent to a VLAN-based net-
work where a VLAN corresponds to an IP subnet, and all non-leaf
Ethernet bridges are trunked with all VLANs to enhance mobility.

6.2 Control-plane Scalability
Sensitivity to cache eviction timeout: SEATTLE caches host in-
formation to route packets via shortest paths and to eliminate re-
dundant resolutions. If a switch removes a host-information en-
try before a locally attached host does (from its ARP cache), the
switch will need to perform a location lookup to forward data pack-
ets sent by the host. To eliminate the need to queue data packets
at the ingress switch, those packets are forwarded through a loca-
tion resolver, leading to a longer path. To evaluate this effect, we
simulated a forwarding table management policy for switches that
evicts unused entries after a timeout. Figure 4a shows performance
of this strategy across different timeout values in the AP-large net-

work. First, the fraction of packets that require data-driven location
lookups (i.e., lookups not piggy-backed on ARPs) is very low and
decreases quickly with larger timeout. Even for a very small time-
out value of 60 seconds, over 99.98% of packets are forwarded
without a separate lookup. We also confirmed that the number of
data packets forwarded via location resolvers drops to zero when
using timeout values larger than 600 seconds (i.e., roughly equal
to the ARP cache timeout at end hosts). Also control overhead
to maintain the directory decreases quickly, whereas the amount
of state at each switch increases moderately with larger timeout.
Hence, in a network with properly configured hosts and reasonably
small (e.g., less than 2% of the total number of hosts in this topol-
ogy) forwarding tables, SEATTLE always offers shortest paths.

Forwarding table size: Figure 4b shows the amount of state per
switch in the DC topology. To quantify the cost of ingress caching,
we show SEATTLE’s table size with and without caching (SEA_CA
and SEA_NOCA respectively). Ethernet requires more state than
SEATTLE without caching, because Ethernet stores active hosts’
information entries at almost every bridge. In a network with s
switches and h hosts, each Ethernet bridge must be provisioned
to store an entry for each destination, resulting in O(sh) state re-
quirements across the network. SEATTLE requires only O(h) state
since only the access and resolver switches need to store location
information for each host. In this particular topology, SEATTLE
reduces forwarding-table size by roughly a factor of 22. Although
not shown here due to space constraints, we find that these gains
increase to a factor of 64 in AP-large because there are a larger
number of switches in that topology. While the use of caching
drastically reduces the number of redundant location resolutions,
we can see that it increases SEATTLE’s forwarding-table size by
roughly a factor of 1.5. However, even with this penalty, SEAT-
TLE reduces table size compared with Ethernet by roughly a factor
of 16. This value increases to a factor of 41 in AP-large.

Control overhead: Figure 4c shows the amount of control over-
head generated by SEATTLE and Ethernet. We computed this
value by dividing the total number of control messages over all
links in the topology by the number of switches, then dividing by
the duration of the trace. SEATTLE significantly reduces control
overhead as compared to Ethernet. This happens because Ethernet
generates network-wide floods for a significant number of pack-
ets, while SEATTLE leverages unicast to disseminate host loca-
tion. Here we again observe that use of caching degrades perfor-
mance slightly. Specifically, the use of caching (SEA_CA) increases
control overhead roughly from 0.1 to 1 packet per second as com-
pared to SEA_NOCA in a network containing 30K hosts. However,
SEA_CA’s overhead still remains a factor of roughly 1000 less than
in Ethernet. In general, we found that the difference in control over-
head increased roughly with the number of links in the network.

11

0 1 10 100 1000 10000
Maximum cache size per switch (entries) (log)

0

2

4

6

8

10

12

14

L
at

en
cy

 s
tr

et
ch

ROFL
SEATTLE

(a)

100 200 500 1000 2000 5000 10000
Num. of host join/leave events during a flow (log)

0

20

40

60

80

100

120

N
um

. o
f

pa
th

 c
ha

ng
es

ROFL (AP_large)
ROFL (DC)
SEATTLE (AP_large)
SEATTLE (DC)

(b)

0.01 0.02 0.1 0.2 1
Switch failure rate (fails/min) (log)

0

10%

20%

30%

40%

50%

Pa
ck

et
 lo

ss
 r

at
e

Eth (loss)
SEA_NOCA (loss)
SEA_CA (loss)

0.1

1

10

100

1K

10K

C
on

tr
ol

 o
ve

rh
ea

d
pe

r
sw

itc
h

pe
r

se
c

(l
og

)

Eth (ctrl ovhd)
SEA_CA (ctrl ovhd)
SEA_NOCA (ctrl ovhd)

(c)
Figure 5: (a) Stretch across different cache sizes in AP-large with 10K hosts (b) Path stability (c) Effect of switch failures in DC.

Comparison with id-based routing approaches: We implemented
the ROFL, UIP, and VRR protocols in our simulator. To ensure a
fair comparison, we used a link-state protocol to construct vset-
paths [15] along shortest paths in UIP and VRR, and created a
UIP/VRR node at a switch for each end host the switch is at-
tached to. Performance of UIP and VRR was quite similar to
performance of ROFL with an unbounded cache size. Figure 5a
shows the average relative latency penalty, or stretch, of SEATTLE
and ROFL [13] in the AP-large topology. We measured stretch
by dividing the time the packet was in transit by the delay along
the shortest path through the topology. Overall, SEATTLE incurs
smaller stretch than ROFL. With a cache size of 1000, SEATTLE
offers a stretch of roughly 1.07, as opposed to ROFL’s 4.9. This
happens because i) when a cache miss occurs, SEATTLE resolves
location via a single-hop rather than a multi-hop lookup, and ii)
SEATTLE’s caching is driven by traffic patterns, and hosts in an
enterprise network typically communicate with only a small num-
ber of popular hosts. Note that SEATTLE’s stretch remains be-
low 5 even when a cache size is 0. Hence, even with worst-case
traffic patterns (e.g., every host communicates with all other hosts,
switches maintain very small caches), SEATTLE still ensures rea-
sonably small stretch. Finally, we compare path stability with
ROFL in Figure 5b. We vary the rate at which hosts leave and
join the network, and measure path stability as the number of times
a flow changes its path (the sequence of switches it traverses) in the
presence of host churn. We find that ROFL has over three orders of
magnitude more path changes than SEATTLE.

6.3 Sensitivity to network dynamics
Effect of network changes: Figure 5c shows performance during
switch failures. Here, we cause switches to fail randomly, with
failure inter-arrival times drawn from a Pareto distribution with
α = 2.0 and varying mean values. Switch recovery times are
drawn from the same distribution, with a mean of 30 seconds. We
found SEATTLE is able to deliver a larger fraction of packets than
Ethernet. This happens because SEATTLE is able to use all links in
the topology to forward packets, while Ethernet can only forward
over a spanning tree. Additionally, after a switch failure, Ethernet
must recompute this tree, which causes outages until the process
completes. Although forwarding traffic through a location resolver
in SEATTLE causes a flow’s fate to be shared with a larger number
of switches, we found that availability remained higher than that of
Ethernet. Additionally, using caching improved availability further.

Effect of host mobility: To investigate the effect of physical or vir-
tual host mobility on SEATTLE performance, we randomly move
hosts between access switches. We drew mobility times from a
Pareto distribution with α = 2.0 and varying means. For high mo-
bility rates, SEATTLE’s loss rate is lower than Ethernet (Figure 6).
This happens because when a host moves in Ethernet, it takes some

0.2 1 2 10 20 100 200
Mobility rate (num. of moving hosts per sec)

0.1%

0.5%

1%

5%

10%

Pa
ck

et
 lo

ss
 r

at
e

(l
og

)

Eth
SEA_CA
SEA_NOCA

Figure 6: Effect of host mobility in Campus.

time for switches to evict stale location information, and learn the
host’s new location. Although some host operating systems broad-
cast a gratuitous ARP when a host moves, this increases broadcast
overhead. In contrast, SEATTLE provides both low loss and broad-
cast overhead by updating host state via unicasts.

7. IMPLEMENTATION
To verify SEATTLE’s performance and practicality through a

real deployment, we built a prototype SEATTLE switch using two
open-source routing software platforms: user-level Click [36] and
XORP [37]. We also implemented a second version of our proto-
type using kernel-level Click [38]. Section 7.1 describes the struc-
ture of our design, and Section 7.2 presents evaluation results.

7.1 Prototype design
Figure 7 shows the overall structure of our implementation.

SEATTLE’s control plane is divided into two functional modules:
i) maintaining the switch-level topology, and ii) managing end-host
information. We used XORP to realize the first functional module,
and used Click to implement the second. We also extended Click
to implement SEATTLE’s data-plane functions, including consis-
tent hashing and packet encapsulation. Our control and data plane
modifications to Click are implemented as the SeattleSwitch ele-
ment shown in Figure 7.

SEATTLE control plane: First, we run a XORP OSPF process at
each switch to maintain a complete switch-level network map. The
XORP RIBD (Routing Information Base Daemon) constructs its
routing table using this map. RIBD then installs the routing table
into the forwarding plane process, which we implement with Click.
Click uses this table, namely NextHopTable, to determine a next
hop. The FEA (Forwarding Engine Abstraction) in XORP han-
dles inter-process communication between XORP and Click. To
maintain host information, a SeattleSwitch utilizes a HostLocTable,
which is populated with three kinds of host information: (a) the out-
bound port for every local host; (b) the location for every remote
host for which this switch is a resolver; and (c) the location for ev-

12

Figure 7: Implementation architecture.

ery remote host cached via previous lookups. For each insertion
or deletion of a locally-attached host, the switch generates a corre-
sponding registration or deregistration message. Additionally, by
monitoring the changes of the NextHopTable, the switch can de-
tect whether the topology has changed, and host re-registration is
required accordingly. To maintain IP-to-MAC mappings to support
ARP, a switch also maintains a separate table in the control plane.
This table contains only the information of local hosts and remote
hosts that are specifically hashed to the switch. When our prototype
switch is first started up, a simple neighbor-discovery protocol is
run to determine which interfaces are connected to other switches,
and over each of these interfaces it initiates an OSPF session. The
link weight associated with the OSPF adjacency is by default set to
be the link latency. If desired, another metric may be used.

SEATTLE data plane: To forward packets, an ingress switch first
learns an incoming packet’s source MAC address, and if necessary,
adds the corresponding entry in HostLocTable. Then the switch
looks up the destination MAC address in the HostLocTable and
checks to see if i) the host is locally attached, ii) the host is remote,
and its location is cached, or iii) the host is explicitly registered
with the switch. In the case of iii) the switch needs to send a host
location notification to the ingress. In all cases, the switch then
forwards the packet either to the locally attached destination, or en-
capsulates the packet and forwards it to the next hop toward the
destination. Intermediate switches can then simply forward the en-
capsulated packet by looking up the destination in their NextHopT-
ables. In addition, if the incoming packet is an ARP request, the
ingress switch executes the hash function F to look up the corre-
sponding resolver’s id, and re-writes the destination to that id, and
delivers the packet to the resolver for resolution.

7.2 Experimental results
Next, we evaluate a deployment of our prototype implementa-

tion on Emulab. To ensure correctness, we cross-validated the sim-
ulator and implementation with various traces and topologies, and
found that average stretch, control overhead, and table size from
implementation results were within 3% of the values given by the
simulator. We first present a set of microbenchmarks to evaluate
per-packet processing overheads. Then, to evaluate dynamics of a
SEATTLE network, we measure control overhead and switch state
requirements, and evaluate switch fail-over performance.

Packet processing overhead: Table 1 shows per-packet processing
time for both SEATTLE and Ethernet. We measure this as the time
from when a packet enters the switch’s inbound queue, to the time
it is ready to be moved to an outbound queue. We break this time
down into the major components. From the table, we can see that
an ingress switch in SEATTLE requires more processing time than
in Ethernet. This happens because the ingress switch has to encap-
sulate a packet and then look up the next-hop table with the outer
header. However, SEATTLE requires less packet processing over-
head than Ethernet at non-ingress hops, as intermediate and egress
switches do not need to learn source MAC addresses, and consis-

tent hashing (which takes around 2.2 us) is required only for ARP
requests. Hence, SEATTLE requires less overall processing time
on paths longer than 3.03 switch-level hops. In comparison, we
found the average number of switch-level hops between hosts in a
real university campus network (Campus) to be over 4 for the vast
majority of host pairs. Using our kernel-level implementation of
SEATTLE, we were able to fully saturate a 1 Gbps link.

Table 1: Per-packet processing time in micro-sec.

learn look-up encap look-up Total
src host tbl nexthop tbl

SEA-ingress 0.61 0.63 0.67 0.62 2.53
SEA-egress - 0.63 - - 0.63
SEA-others - - - 0.67 0.67

ETH 0.63 0.64 - - 1.27

Effect of network dynamics: To evaluate the dynamics of SEAT-
TLE and Ethernet, we instrumented the switch’s internal data struc-
tures to periodically measure performance information. Figures 8a
and 8b show forwarding-table size and control overhead, respec-
tively, measured over one-second intervals. We can see that SEAT-
TLE has much lower control overhead when the systems are first
started up. However, SEATTLE’s performance advantages do not
come from cold-start effects, as it retains lower control overhead
even after the system converges. As a side note, the forwarding-
table size in Ethernet is not drastically larger than that of SEAT-
TLE in this experiment because we are running on a small four
node topology. However, since the topology has ten links (includ-
ing links to hosts), Ethernet’s control overhead remains substan-
tially higher. Additionally, we also investigate performance by in-
jecting host scanning attacks [17] into the real traces we used for
evaluation. Figure 8b includes the scanning incidences occurred at
around 300 and 600 seconds, each of which involves a single host
scanning 5000 random destinations that do not exist in the network.
In Ethernet, every scanning packet sent to a destination generates a
network-wide flood because the destination is not existing, result-
ing in sudden peaks on it’s control overhead curve. In SEATTLE,
each scanning packet generates one unicast lookup (i.e., the scan-
ning data packet itself) to a resolver, which then discards the packet.

Fail-over performance: Figure 8c shows the effect of switch fail-
ure. To evaluate SEATTLE’s ability to quickly republish host infor-
mation, here we intentionally disable caching, induce failures of the
resolver switch, and measure throughput of TCP when all packets
are forwarded through the resolver. We set the OSPF hello inter-
val to 1 second, and dead interval to 3 seconds. After the resolver
fails, there is some convergence delay before packets are sent via
the new resolver. We found that SEATTLE restores connectivity
quickly, typically on the order of several hundred milliseconds after
the dead interval. This allows TCP to recover within several sec-
onds, as shown in Figure 8c-i. We found performance during fail-
ures could be improved by having the access switch register hosts
with the next switch along the ring in advance, avoiding an addi-
tional re-registration delay. When a switch is repaired, there is also
a transient outage while routes move back over to the new resolver,
as shown in Figure 8c-ii. In particular, we were able to improve
convergence delay during recoveries by letting switches continue
to forward packets through the old resolver for a grace period. In
contrast, optimizing Ethernet to attain low (a few sec) convergence
delay exposes the network to a high chance of broadcast storms,
making it nearly impossible to realize in a large network.

8. CONCLUSION
Operators today face significant challenges in managing and

configuring large networks. Many of these problems arise from the
complexity of administering IP networks. Traditional Ethernet is

13

0 100 200 300 400 500 600
Time in sec

0

5K

10K

15K

20K
N

um
. o

f
en

tr
ie

s
ac

ro
ss

 a
ll

sw
itc

he
s Eth

SEA_CA
SEA_NOCA

(a)

0 100 200 300 400 500 600
Time in sec

1

10

100

10e3

10e4

N
um

. o
f

m
es

sa
ge

s
ac

ro
ss

 a
ll

sw
itc

he
s

(l
og

)

Eth
SEA_CA
SEA_NOCA

Scans

(b) (c)
Figure 8: Effect of network dynamics: (a) table size (b) control overhead (c) failover performance.

not a viable alternative (except perhaps in small LANs) due to poor
scaling and inefficient path selection. We believe that SEATTLE
takes an important first step towards solving these problems, by
providing scalable self-configuring routing. Our design provides
effective protocols to discover neighbors and operates efficiently
with its default parameter settings. Hence, in the simplest case,
network administrators do not need to modify any protocol settings.
However, SEATTLE also provides add-ons for administrators who
wish to customize network operation. Experiments with our initial
prototype implementation show that SEATTLE provides efficient
routing with low latency, quickly recovers after failures, and han-
dles host mobility and network churn with low control overhead.

Moving forward, we are interested in investigating the deploy-
ability of SEATTLE. We are also interested in ramifications on
switch architectures, and how to design switch hardware to effi-
ciently support SEATTLE. Finally, to ensure deployability, this pa-
per assumes Ethernet stacks at end hosts are not modified. It would
be interesting to consider what performance optimizations are pos-
sible if end host software can be changed.

9. REFERENCES
[1] M. Arregoces and M. Portolani, Data Center Fundamentals. Cisco

Press, 2003.
[2] S. Halabi, Metro Ethernet. Cisco Press, 2003.
[3] H. Hudson, “Extending access to the digital economy to rural and

developing regions.” Understanding the Digital Economy, The MIT
Press, Cambridge, MA, 2002.

[4] A. Gupta, B. Liskov, and R. Rodrigues, “Efficient routing for
peer-to-peer overlays,” in NSDI, March 2004.

[5] W. Aiello, C. Kalmanek, P. McDaniel, S. Sen, O. Spatscheck, and
J. van der Merwe, “Analysis of communities of interest in data
networks,” in Passive and Active Measurement, March 2005.

[6] R. Perlman, “Rbridges: Transparent routing,” in INFOCOM, March
2004.

[7] “IETF TRILL working group.” http://www.ietf.org/html.
charters/trill-charter.html.

[8] A. Myers, E. Ng, and H. Zhang, “Rethinking the service model:
scaling Ethernet to a million nodes,” in HotNets, November 2004.

[9] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh, “Viking: A
multi-spanning-tree Ethernet architecture for metropolitan area and
cluster networks,” in INFOCOM, March 2004.

[10] T. Rodeheffer, C. Thekkath, and D. Anderson, “SmartBridge: A
scalable bridge architecture,” in SIGCOMM, August 2000.

[11] C. Kim and J. Rexford, “Revisiting Ethernet: Plug-and-play made
scalable and efficient,” in IEEE LANMAN, June 2007. invited paper
(short workshop paper).

[12] S. Ray, R. A. Guerin, and R. Sofia, “A distributed hash table based
address resolution scheme for large-scale Ethernet networks,” in
International Conference on Communications, June 2007.

[13] M. Caesar, T. Condie, J. Kannan, et al., “ROFL: Routing on Flat
Labels,” in SIGCOMM, September 2006.

[14] B. Ford, “Unmanaged Internet Protocol: Taming the edge network
management crisis,” in HotNets, November 2003.

[15] M. Caesar, M. Castro, E. Nightingale, et al., “Virtual Ring Routing:
Network routing inspired by DHTs,” in SIGCOMM, September 2006.

[16] R. Perlman, Interconnections: Bridges, routers, switches, and
internetworking protocols. Addison-Wesley, second ed., 1999.

[17] M. Allman, V. Paxson, and J. Terrell, “A brief history of scanning,” in
Internet Measurement Conference, October 2007.

[18] Dartmouth Institute for Security Technology Studies, “Problems with
broadcasts,” http://www.ists.dartmouth.edu/
classroom/crs/arp_broadcast.php.

[19] Z. Kerravala, “Configuration management delivers business
resiliency,” November 2002. The Yankee Group.

[20] R. King, “Traffic management tools fight growing pains,” June 2004.
http://www.thewhir.com/features/
traffic-management.cfm.

[21] “IEEE Std 802.1Q - 2005, IEEE Standard for Local and Metropolitan
Area Network, Virtual Bridged Local Area Networks,” 2005.

[22] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and S. Surana, “Internet
indirection infrastructure,” in SIGCOMM, August 2002.

[23] F. Dabek, M. F. Kaashoek, D. Karger, R. Morris, and I. Stoica,
“Wide-area cooperative storage with CFS,” in SOSP, October 2001.

[24] D. Karger, E. Lehman, T. Leighton, et al., “Consistent hashing and
random trees: Distributed caching protocols for relieving hot spots
on the world wide web,” in ACM STOC, 1997.

[25] B. Godfrey, K. Lakshminarayanan, S. Surana, R. Karp, and I. Stoica,
“Load balancing in dynamic structured P2P systems,” in INFOCOM,
March 2003.

[26] W. Adjie-Winoto, E. Schwartz, H. Balakrishnan, and J. Lilley, “The
design and implementation of an intentional naming system,” in
SOSP, December 1999.

[27] J. Moy, OSPF: Anatomy of an Internet Routing Protocol.
Addison-Wesley, 1998.

[28] R. Hinden, “Virtual Router Redundancy Protocol (VRRP).” RFC
3768, April 2004.

[29] “Gratuitous ARP.”
http://wiki.ethereal.com/Gratuitous_ARP.

[30] R. Droms, “Dynamic Host Configuration Protocol.” Request for
Comments 2131, March 1997.

[31] C. Tengi, J. Roberts, J. Crouthamel, C. Miller, and C. Sanchez,
“autoMAC: A tool for automating network moves, adds, and
changes,” in LISA Conference, 2004.

[32] D. Hucaby and S. McQuerry, Cisco Field Manual: Catalyst Switch
Configuration. Cisco Press, 2002.

[33] R. Pang, M. Allman, M. Bennett, J. Lee, V. Paxson, and B. Tierney,
“A first look at modern enterprise traffic,” in Internet Measurement
Conference, October 2005.

[34] N. Spring, R. Mahajan, and D. Wetherall, “Measuring ISP topologies
with Rocketfuel,” in SIGCOMM, August 2002.

[35] “Skitter.” http:
//www.caida.org/tools/measurement/skitter.

[36] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. Kaashoek, “The
Click modular router,” in ACM Trans. Comp. Sys., August 2000.

[37] M. Handley, E. Kohler, A. Ghosh, O. Hodson, and P. Radoslavov,
“Designing extensible IP router software,” in NSDI, May 2005.

[38] D. Pal, “Faster Packet Forwarding in a Scalable Ethernet
Architecture.” TR-812-08, Princeton University, January 2008.

14

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

