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ABSTRACT
Understanding the Internet’s structure through empirical
measurements is important in the development of new topol-
ogy generators, new protocols, traffic engineering, and trou-
bleshooting, among other things. While prior studies of In-
ternet topology have been based on active (traceroute-like)
measurements, passive measurements of packet traffic offer
the possibility of a greatly expanded perspective of Internet
structure with much lower impact and management over-
head. In this paper we describe a methodology for inferring
network structure from passive measurements of IP packet
traffic. We describe algorithms that enable 1) traffic sources
that share network paths to be clustered accurately without
relying on IP address or autonomous system information,
2) topological structure to be inferred accurately with only
a small number of active measurements, 3) missing infor-
mation to be recovered, which is a serious challenge in the
use of passive packet measurements. We demonstrate our
techniques using a series of simulated topologies and empir-
ical data sets. Our experiments show that the clusters es-
tablished by our method closely correspond to sources that
actually share paths. We also show the trade-offs between
selectively applied active probes and the accuracy of the in-
ferred topology between sources. Finally, we characterize
the degree to which missing information can be recovered
from passive measurements, which further enhances the ac-
curacy of the inferred topologies.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network
Operations—Network Monitoring
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1. INTRODUCTION
Discovering and characterizing Internet structure and

topology through empirical measurements has been an ac-
tive research area for some time (e.g., [2, 15, 17, 22, 31]).
These studies have helped to shed light on the huge size,
intricate interconnection characteristics and complicated in-
terplay between underlying physical topology and the traffic
that flows over the infrastructure. Most prior work on mea-
suring the Internet’s structure has been based on active mea-
surement techniques that use traceroute-like tools or tomo-
graphic probing, and there are several large on-going topol-
ogy discovery projects based on active probe-based tools
(e.g., [5, 29, 21]).

There are three important limitations in the use of active
probe-based tools for Internet topology discovery. First, the
vast size of the Internet means that a set of measurement
hosts M and target hosts N where N À M must be estab-
lished in order for the resultant measurements to capture
the diverse features of the infrastructure (especially on the
edges of the network [4]). Second, active probes sent from
monitors to the large set of target hosts result in a signif-
icant traffic load and complex management issues. Third,
service providers frequently attempt to thwart structure dis-
covery by e.g., filtering ICMP packets, which renders stan-
dard topology discovery tools like traceroute ineffective.

In this paper we investigate the problem of Internet-
wide structure and topology discovery from passive measure-
ments. Our objective is to develop techniques for inferring
meaningful structural characteristics such as client groups
and shared paths using only very simple passive measure-
ments – specifically the source IP address and TTL fields
from IP packet headers. We argue that these simple mea-
surements can be widely collected without significant man-
agement overhead, and offer an opportunity to greatly ex-
pand the perspective of Internet structure due to the diver-
sity of traffic observed in passive monitors [9, 10].

There are significant challenges in using passive packet
measurements for discovering Internet structure. First, and
most importantly, the individual measurements themselves
would seem to convey almost no information about network
structure. Second, source IP addresses are often considered
sensitive and are typically subject to privacy constraints.
We address the latter, to an extent, by only using source
IP addresses as unique identifiers of hosts (i.e., source IP
addresses could be anonymized, as long as anonymization
is consistent across measurements and monitors). Unfortu-
nately, this further complicates the structure discovery prob-
lem. Despite these severe limitations, we demonstrate two
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surprising capabilities in this paper:

1. Internet sources1 can be automatically and accurately
clustered into meaningful groups corresponding to
shared network topology;

2. Network topology can be accurately recovered from
large volumes of passive data when coupled with a very
small number of additional active measurements.

Our methodology for inferring network structure from
passive measurements begins by using a standard technique
to determine the hop-count distance between sending hosts
and passive monitors [18]. It is not uncommon to observe
packets from an individual source in several of the passive
monitors, resulting in a hop-count distance vector for that
source. These vectors provide an indication of the topologi-
cal location of the source relative to the monitors. Consid-
ering all such sources and hop-count vectors places a large
number of constraints on the underlying topology relating
sources and monitors.

Sources can then be clustered by examining similarities
in hop-count vectors. Sources within a client group [20] or
(stub) autonomous systems will have similar hop-count vec-
tors. Thus, two sources with identical hop-count vectors
are likely to be topologically close together. We also ob-
serve that sources from a common topological location may
have hop-count vectors that differ only by a constant off-
set, owing to the fact that they may have different paths
to network egress points, but then share routes to passive
monitors. These offsets can be eliminated by removing the
average value of each hop-count vector, resulting in what we
call a hop-count contrast. The hop-count contrasts of two
sources from the same area of the Internet should be nearly
identical. Slight variations will, of course, persist due to finer
scale routing variations. The resulting hop-count contrasts
will therefore tend to be clustered about nominal values as-
sociated with local areas of the Internet. We use a set of
simulated topologies [24] to show that clustering methods
applied to the hop-counts reliably reveal such structure.

Next, we develop a lightweight method for discovering the
network topology connecting sources and monitors by aug-
menting the passively collected data with a very small num-
ber of active measurements. Roughly speaking, the clus-
tering process described above enables topology discovery
from a number of active measurements proportional to the
number of discovered clusters (i.e., we need only make O(1)
traceroute measurements from each cluster to each passive
monitor site). Since the number of clusters is expected to be
drastically smaller than the number of sources, the burden
of active measurements is almost inconsequential. The ac-
tive measurements provide ground-truth assessments of the
number of shared hops between pairs of sources and a passive
monitor or pairs of monitors and a source. This knowledge
of shared hops, coupled with the clustering inferred from
the passive data, suffices to reconstruct the logical network
topology. We use simulated topologies and Skitter data [5]
to show the trade-offs between active probe budget and ac-
curacy for our approach.

1In this paper, we equate source IP addresses with individual
hosts (which we refer to as “sources”), understanding that
this could introduce some error in the accuracy of topology
estimation.

Source clustering and topology discovery both depend on
the quality of the hop-count data. Due to the passive na-
ture of the data collection process, typically packets from
a source will only be observed at a (small) subset of the
passive monitors. The resulting hop-count vector will be
incomplete, with missing entries corresponding to the mon-
itors that did not observe packets from the source. The
missing data greatly confounds the clustering process and
subsequent topology discovery. To cope with this serious
issue, we adopt a probabilistic model for the hop-count con-
trasts. Since we expect the contrasts to cluster, a mixture of
Gaussian densities is used to approximate the distribution
of contrasts. Each component of the mixture is intended to
represent one of the clusters. The parameters of the mix-
ture density can be fitted to the (incomplete) hop-count data
using a clever iterative procedure due to Ghahramani and
Jordan [13]. Moreover, the resulting mixture density then
provides a principled mechanism for imputing the missing
data and accurately clustering sources. We use simulated
and empirical data to show the relationship between the ac-
curacy of our method and the quantity of missing data.

The remainder of this paper is organized as follows. In
Section 2, we review prior work related to our study. In
Section 3 we describe the data sets used in our experiments.
In Section 4, we describe our source clustering algorithm.
In Section 5, we show how a very modest number of ac-
tive measurements provides enough additional information
to recover the topology relating sources and passive moni-
tors. In Section 6 we tackle the issue of missing data and
demonstrate that accurate clustering is still possible even
when the passive data are highly incomplete. We conclude
and describe future work in Section 7.

2. RELATED WORK
Internet structure can be considered in a number of

ways including connectivity (e.g., between autonomous sys-
tems, between IP addresses, between routers or between
POP’s [32]), distance related properties (e.g., geography [16,
19], packet latency [11, 12]), or behavioral characteristics
(e.g., social network membership). The focus of our work
is on identifying Internet structure in terms of clusters of
clients [20] and shared paths [6] toward the goal of full
router-level connectivity identification [15]. Our work differs
from prior studies of client clusters in that we do not rely on
IP address details. Prior studies of shared paths and router
topologies have used active probe-based measurements ex-
clusively while our work is focused on using primarily pas-
sive measurements. While passive measurements of rout-
ing updates can be used to establish intra-domain network
maps [26], our goal is to discovery Internet-wide structure
with much more simple measures.

A related perspective is afforded by coordinate systems,
which have been proposed as a means for estimating latency
between arbitrary hosts in the Internet [25, 33, 7]. Coor-
dinate systems rely on latency measurements between a set
of landmark nodes to create an embedding in a high dimen-
sional space. Hosts can then use estimates of their latency to
points in the coordinate space to predict the latency to hosts
in the Internet. The challenges in creating coordinate sys-
tems are in making them scalable, robust and accurate. One
of our topology discovery techniques is based on the idea of
establishing a topology framework via active measurements,
which is similar to landmarks. Another study that bears
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some similarity to ours is by Shavitt and Tankel who de-
velop the idea of a hyperbolic embedding which includes the
idea of Internet structure in distance estimation [30].

Passive measurements of packet traffic can be gathered
by deploying specialized hardware on TAP’ed links (e.g., [9,
10]). While measurements from TAP’ed links could be
used in our work, publicly available data sets almost always
anonymize source IP addresses making it impossible to re-
late measurements from multiple sites. An alternative form
of passive packet measurements are those collected in net-
work honeypots [1, 3, 28, 34]). Honeypots monitor routed
but otherwise unused address space, so all traffic directed
to these monitors is unwanted and almost always malicious.
Honeypots do not solicit traffic, however low interaction sen-
sors will respond to incoming connection requests in order to
distinguish spoofed addresses. In this way they are not com-
pletely passive. However, monitors of large address segments
can receive millions of connections per day from systems all
over the world and therefore offer an incredibly unique and
valuable perspective [27]. The unsolicited nature of hon-
eynet traffic coupled with the volume and wide deployment
of monitors make it an attractive source of data for our work.

Finally, we proposed the idea of using passive measure-
ments as the basis for network discovery and present initial
results on imputing missing data in an extended abstract
in [8]. We expand and generalize that work by developing
an algorithm for client clustering, by developing methods to
infer topology and shared paths that use a small number of
active probes, and evaluate our algorithms with simulated
and empirically derived maps of the Internet.

3. PASSIVE HOP-COUNT DISTANCE
MEASUREMENTS

We use three different data sets to evaluate the algorithms
that are described in this paper. The first are a set of topolo-
gies generated by Orbis [24]. Orbis is one of the latest and
most realistic network topology generators. It creates graphs
that have properties that are consistent with many of those
observed in the Internet. The Orbis-generated synthetic net-
works enable us to analyze the capabilities of methods with
full ground truth and over a range of sizes.

The second data set that we use in this paper is an router-
level connectivity map of the Internet based on data col-
lected by Skitter [5]. Measurements in Skitter are based
on traceroute-like active probes sent from a set of 24 moni-
tors to a set of nearly 1M target hosts distributed through-
out the Internet. We use the openly available router-level
map create from data collected between April 21 and May
8, 2003. This map consists of 192,224 unique nodes and
609,066 undirected links. It is important to note that the
goal of the Skitter target host list is to have one respond-
ing node in each /24 prefix. Thus, the characteristics of the
Skitter graph with respect to destination subnets is different
from Orbis generated topologies, which reflect collections of
nodes in subnets.

The third data set used in our study was collected over
a 24 hour period starting at 00:00 on December 22, 2006
from 15 topologically diverse honeypot sensors. These sen-
sors are located in 11 distinct /8 prefixes that are managed
by 10 different organizations. The segments of IP address
space monitored by the honeypots varied from /25 to /21
plus one /16. Over 37,000,000 total packets were collected

Table 2: Counts of occurrences of common source
IP addresses in multiple honeypots

Num. Honeypots Num. Sources

2 8680
3 4051
4 2816
5 2156
6 1570
7 1583
8 1574
9 55
10 4

and evaluated in our study. The packets do not contain
spoofed source IP addresses since they were the responses
to SYN/ACKs from the honeynet [3]. Details of the data set
can be found in Table 1. In order to preserve the integrity
of the honeypots, we cannot disclose their locations in IPv4
address space.

Of particular interest and importance in our evaluation
are the occurrences of the same source IP address in multiple
honeypots. We found that 93.5% of the unique IP addresses
in our data set appear in only one of the honeypots. This is
most likely due to the diverse locations of the sensors cou-
pled with the fact that different instances of malware limit
their scans to smaller segments of address space. Neverthe-
less, this left us with over 22,000 unique IP addresses from
which we conducted our analysis. Details of the instances
of multiple occurrences of unique IP addresses are listed in
Table 2 (note that there were virtually no addresses were
seen in more than 10 monitors).

Our analysis assumes that the only data that will be used
to infer network structure is the source IP address (used only
to uniquely identify a host and as an active probe target)
and TTL extracted from the header of each packet. In the
case of the Orbis and Skitter data sets, we synthesize these
values. In the case of the honeynet data we use the clever
technique described in [18] to infer the number of hops be-
tween the honeypot monitor and the host. This inference
is made based on the fact that (i) there are only a few ini-
tial TTL values used in popular operating systems (e.g., 64
for most UNIX variants, 128 for most Microsoft variants
and 255 for several others), and (ii) typical hop counts for
end-to-end paths are far less than the differences between
the standard TTL values. Thus, hop count is inferred by
rounding the TTL up to the next highest initial TTL value
and then subtracting the initial TTL.

3.1 Passive Measurement Infrastructure
We assumed that the ground truth router-level topology

of the Internet will resemble the network in Figure 1-
(left) [4]. In this diagram, packets sent from sources Si will
depart from the edge of the network and eventually enter
the densely-connected core component through a border
router. The packets will traverse the core, exit through
another border router and eventually be intercepted by a
passive monitor Mj . This configuration enables edge and
core mapping, and assumes monitors such as honeynets or
passive collection near e.g., busy web servers.
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Table 1: Details of honeypot data sets used in our study. All data was collected over a one day period on
December 22, 2006.

Node Total Pkts. Uniq. IPs Mean Hops Hop Std. Dev.

1 22,586,386 217,505 13.16 9.35
2 10,533,700 9,554 7.95 7.34
3 100,689 8,431 12.11 7.72
4 4,446 738 11.45 15.34
5 25,062 474 12.07 7.32
6 128,158 6,423 6.87 7.67
7 110,621 11,942 17.23 9.00
8 49,253 6,456 15.49 10.26
9 42,226 6,534 14.31 10.72
10 45,334 6,223 13.93 9.73
11 75,522 8,645 12.45 11.14
12 523,907 8,714 9.82 9.82
13 1,955,100 6,195 19.24 8.46
14 332,986 5,364 8.16 8.68
15 917,894 107,632 12.79 6.42

Assuming this structure of the network, one can partition
the total layer 3 hop count distance values into the distance
(or number of router hops) from the IP source Si to the
first core border router b, and the distance from b to the
measurement node Mj . We define the variables {xi = the
number of layer 3 hops along the path from source Si and
the first core border router b}, and {wi,j = the number of
layer 3 hops between the first core border router b of source
Si and measurement node Mj}. This allows us to partition
the hop count distance values into the two separate paths,
hi,j = xi +wi,j = the number of layer 3 hops between source
Si and measurement node Mj .

S1 S2 S3

M1

M2 M3

M4

S1 S2 S3

M1

M2 M3

M4

Figure 1: (Left) Example Network Topology with
sources Si sending packets through a core com-
ponent to monitors Mj, (Right) Example network
where S1 and S2 share a border router.

Now consider the situation where two sources (Si, Sj) are
connected at the same border router (see Figure 1-(right)).
Given that these two IP sources will share a path through
the core to each measurement node, we can state:

Theorem 1. Given two sources (Si, Sj) sharing a common
core ingress border router, then hi,k − hj,k = C for all mea-
surement nodes Mk with paths through the core (for some
integer constant C).

Proof. Given hop count distance values hi,k = xi + wi,k

and hj,k = xj + wj,k. For any measurement node Mk,

with both Si and Sj having paths through the core to
the measurement node, there will be a common path for
both IP sources from the border router to the measure-
ment, such that wi,k = wj,k. Therefore, hi,k − hj,k =
xi − xj + (wi,k − wj,k) = xi − xj = C : ∀k.

3.2 Hop Count Distance Vectors and Network
Topology

In [8], it was shown that hop count distance vectors that
are similar/close in a Euclidean sense, do not necessarily
translate to IP sources that are close in the actual network
topology. Thus, the exclusive use of raw hop count distance
vectors for clustering could place IP sources that are actu-
ally far apart in the same group. One reasons for this is
that clustering the raw hop count distance data ignores the
network-centric knowledge embedded in the distance vec-
tors. To exploit the integer distance offset property of the
clusters of IP sources that shared border routers, we perform
preprocessing on the hop count distance vectors such that
if hi and hj share a common border router, then after some
transformation, the two vectors are equivalent. The pre-
processing here takes the form of converting the hop count
distance vectors (hi = [hi,1,hi,2, ...,hi,M]) to hop count con-
trast vectors (h′i), where the mean value of each vector is
subtracted from each element of the hop count distance vec-
tor.

h′i = hi − µi1

Where µi = 1
M

∑M
k=1 hi,k and 1 = [1,1, ...,1]. Using Theo-

rem 1, we can state with certainty that if hi,k−hj,k = C : ∀k,
then h′i,k = h′j,k : ∀k.

4. CLUSTERING IP SOURCES
The first goal of our work is to develop a method for gen-

erating clusters of IP sources that are topologically close to
each other from a layer 3 hop count perspective. The obser-
vation that is key to our algorithms is that the location of a
given source Si is defined by it’s relative distance to multiple
monitors Mj . . . Mk, and that sources with similar relative
distances will be topologically close to each other (assuming
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that packets from the sources are observed in a sufficient
number of monitors). In this section we describe our clus-
tering methodologies and demonstrate their capability using
synthetically generated network maps.

4.1 Client Clustering
We can generate clusters of IP sources using unique hop

count contrast vectors and the simple K-Means algorithm.
Experiments with synthetic topologies showed that clusters
of various sizes could be generated (K-Means requires that
the number of clusters be specified a priori) with a clear
trade off between the number of clusters and the number of
sources included in each cluster. A larger number of small
clusters with minimal differences between contrast vectors
might be considered a “good” choice with this approach.

Unfortunately, these small clusters miss the case where
sources located in the same area (which we will refer to as a
“subnet”although this is not related to IP address structure)
of the network have differing hop count contrast vectors.
This situation occurs when one or more monitor nodes are
located in the same subnet as the cluster, or when the sub-
net has multiple egress points. This sort of subnet topology
produces variability in the contrast vectors. This observa-
tion suggests that rather than clustering sources according
to unique contrast vectors, clusters that allow for a bit of
variation about a nominal value may better capture subnets
of sources.

S i

x y

# of measurement nodes = K # of measurement nodes = J 

Figure 2: Example of a subnet having multiple
egress points.

Consider the subnet topology in Figure 2, where there are
two egress points to the set of measurement nodes for each
IP source located in the subnet. The first egress router will
send paths from subnet sources to k measurement nodes M1

to Mk, and the second egress router will route paths from
subnet sources to j measurement nodes Mk+1 to MM (where
M = j + k). Every source will have a (potentially unique)
path of length x to the first egress router, and (potentially
unique) path of length y to the second egress router. For the
paths from the egress router to the measurement nodes, the
paths will be common for all sources in the subnet. Using
this setup, we can state Theorem 2.

Theorem 2. Given a subnet with two egress points (as
in Figure 2), all sources contained in the subnet will have
collinear hop count contrast vectors.

Proof. We first define the nominal distance vector (h)
as the distances from the egress routers to the measure-
ment nodes, where h1 is the k-length vector containing the
distances from the border node to the first k measurement

nodes, and h2 is the j-length vector with the distances from
the border node to the last j measurement nodes.

h =
[

h1 h2

]

We can state the hop count distance vector for each source
in the subnet as the addition of the intra-subnet paths x, y
and the nominal distance vector, where 1k is the k-length
all ones vector:

hi =
[

x · 1k y · 1j

]
+

[
h1 h2

]

We define the nominal contrast vector as:

h′ = h− µh =
[

h1 h2

]− µh

Therefore, each IP source located in the subnet will have
contrast vector:

h′i = h′ +
[

x · 1k y · 1j

]−
(

k

M
x +

j

M
y

)
1

h′i = h′ +
[

j
M

(x− y)1k
k
M

(y − x)1j

]

Setting r = x− y, the difference between the IP source hop
contrast vector and the nominal contrast vector is:

h′i − h′ =
[

j·r
M

1k − k·r
M

1j

]

Therefore, all IP sources sharing the same egress routers will
have collinear contrast vectors.

From Theorem 2, we see that sources in subnets with mul-
tiple egress points may have slight variations in the hop
count vectors. The precise nature of these variations de-
pends on several uncertain factors, including the number of
egress points and the nature of the paths to the egress points.
Thus, we will account for this uncertainty with a probabilis-
tic model for the variability in hop count contrasts of sources
within a subnet.

4.2 Gaussians Mixture Model for Subnet
Clusters

While the exact nature of the distribution hop count con-
trast vectors for sources in a given subnet is unknown, a
multivariate Gaussian model is perhaps the simplest way
to capture the variability of the data. The covariance ma-
trix can account for structure in the distribution, such as
the collinearity discussed in Theorem 2, as well as other
correlations arising the idiosyncracies of routing internal to
the subnet. Since the hop count data includes sources from
many different subnets, the overall distribution of hop count
contrast vectors can be modeled with a mixture of Gaussian
models, in which each Gaussian component represents the
distribution within one subnet. An example of these Gaus-
sian clusters can be seen in Figure 3, where a two dimen-
sional histogram of hop count contrast vectors are shown
with possible clusters shown by the drawn ellipses.

Gaussian mixture models can be fitted to data using the
well known Expectation-Maximization (EM) algorithm, and
in particular the version proposed in [23] automatically de-
termines the proper number of clusters using an information-
theoretic criterion. Once the Gaussian mixture model is de-
termined, each hop count contrast vector will be associated
most significantly with a given Gaussian component. This
then provides a clustering of the sources, where the number
clusters is equal to the number of Gaussian components in-
ferred by the EM algorithm [23]. Moreover, we will see later
(in Section 6.1.2) that the Gaussian mixture model and EM
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Figure 3: 2-D histogram of hop count contrast vec-
tors with clusters highlighted in ellipses.

algorithm provide a powerful tool for imputing missing hop
count data.

4.2.1 Subnet Cluster Analysis
To assess the topological relevance of the clusters deter-

mined by the Gaussian mixture model, we consider the prob-
lem of shared infrastructure estimation (to be discussed in
detail in Section 5.2). The topology relating the sources in a
given cluster to the measurement nodes can be estimated by
selecting one source from the cluster and performing tracer-
oute measurements from this source to each measurement
node. If the all the sources in the cluster share the same
paths, then this estimate is perfect. We do not, however,
expect this to be the case, even for sources located in the
same subnet, for the reasons state above. Nonetheless, these
routes should provide good predictions for the routes, if the
clusters are topologically meaningful. The accuracy of the
predictions is measured by calculating the error in predicted
shared hops in the paths between pairs of sources and a
measurement node (we define Root Mean Squared Error in
Section 5). The error rates in the predictions of shared path
lengths are shown in Figures 4 and 5, comparing the per-
formance of the predictions based on the Gaussian mixture
clusters with that of predictions based on randomly clus-
tered sets of sources. The clusters determined by the Gaus-
sian mixture model result in significantly better predictions,
indicative of the fact that they are indeed grouping sources
that have share similar paths to the the measurement nodes.

5. TOPOLOGY DISCOVERY
The source clusters identified by our algorithm are

topologically meaningful. However, they do not reveal the
topological relationship between the shared paths from the
clusters to the measurement nodes. In this section, we will
show that by coupling the passive hop count data with
a small number of active measurements, we can identify
the topological relationships between clusters. The active
measurements will take the form of traceroutes from the
measurement nodes to a small subset of target hosts which
effectively act as representatives for the clusters. This is
in contrast to the e.g., the Skitter methodology [5], where
active measurements are taken from all measurement nodes
to a large set of target hosts.

Figure 4: Comparison of Gaussian mixture clusters
to random clusters. Simulated topology, N = 1000,
M = 8.

Figure 5: Comparison of Gaussian mixture clusters
to random clusters. Skitter topology, N = 700, M =
8.

5.1 Cluster-Level Topology Discovery
Given a set of IP source clusters, discovering shared topol-

ogy between clusters becomes a straightforward task. For
every cluster, randomly choose an IP source in the cluster
and perform active traceroute measurements between that
IP source (consider as a representative for its cluster) and
the set of measurement nodes. If the clusters are topologi-
cally significant, the topology will have been discovered.

There are at least two potential problems with this
straightforward approach to topology discovery. First, the
source clusters may not be completely correct from a topo-
logical perspective, due the possible existence of multiple
egress points and missing hop counts (the missing data issue
will be thoroughly addressed in Section 6). Second, from an
Internet-wide perspective, the number of clusters may still
be prohibitively large for exhaustive (cluster-wise) tracer-
oute probing.

5.2 Shared Infrastructure Estimation
Given the drawbacks to the deterministic cluster-to-

cluster topology discovery technique, we address the prob-
lem of estimating shared infrastructure between pairs of IP
sources.

5.2.1 The Canonical Subproblem
Consider a triple {Si, Sj , Mk}, where two sources have

a path to a single measurement node as seen in Figure 6.
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Si Sj

Mk

Figure 6: The canonical subproblem: two IP sources
connecting to a single measurement node

There are three possible potential topologies connecting this
triple (two sources to one measurement node), with a shared-
ness spectrum ranging from absolutely no sharedness with
two separate paths from each source to the measurement
node, to complete sharedness with both sources on a single
path to the measurement node, with the intermediate stage
of some length of shared path between the two sources. It
is easy to verify that if the number of shared hops is known
for all such canonical subproblems, then the logical topol-
ogy relating the sources to the measurement nodes can be
determined. This follows by observing that the set of paths
from the sources to a given measurement node form a tree.
Therefore, this section will focus on estimating P (i, j, k),
the length of the shared path between two IP sources i, j to
a single measurement node k using the passive data and a
limited number of traceroute measurements.

5.2.2 Cluster-Level Shared Path Length Estimation
Toward the goal of cluster-level topology discovery, one

can discover shared path lengths by using active measure-
ments from a single representative of each cluster as seen in
Figure 7. We assume that all sources in Ci will share the
same path of length x to measurement node Mk with all
sources in Cj . Therefore, for a single active measurement of
each cluster, we have an estimate of the shared path lengths
between IP sources contained in all other clusters in the
topology.

C i C j

M k

x

Figure 7: Example of cluster-level path estimation.

5.2.3 Predictive Shared Path Length Estimation
For two hop count distance vectors, it is necessary to

first develop some metric for the amount of sharedness be-
tween the two vectors. The similarity of the hop count con-
trast vectors indicates the likelihood that the two sources
are within the same subnet. The greater the similarity the
stronger the evidence for shared infrastructure in the paths
to the measurement nodes. To assess the potential for shared
infrastructure to a given measurement node we consider the
difference in hop count distances to that node and calculate
the number of other measurement nodes that result in the
same hop count difference. Formally, we define,

Ui,j,k = |Ti,j,k| (1)

Where Ti,j,k = {k′ : |hi,k′ − hj,k′ | − |hi,k − hj,k| < ε} (for
ε > 0)

As the value of Ui,j,k becomes closer to the number of
measurement nodes, there is a higher likelihood of a longer
shared path to each measurement node.

Given the training set Ik, where each element is the index
of an IP source for which we have exact knowledge (from
active measurements) of the labeled path to measurement
node Mk, we can then construct sets consisting of pairs of
training nodes that share the same offset value for the par-
ticular measurement node k.

Ick = {[x, y] : x, y ∈ Ik, Ux,y,k = c} (2)

Considering two paths from Si to Mk and Sj to Mk, we
can state that the shortest shared path would be of length
zero as shown in Figure 8-(left), and the longest shared path
would be of length = min (hi,k, hj,k) as shown in Figure 8-
(right).

S i S j S i S j

M k M k

Figure 8: Potential topologies for two sources to
one measurement node (each black dot represents
a router hop) (Left) - Shortest possible shared path,
(Right) - Longest possible shared path

Given this range of shared path lengths, we can estimate
the shared path length for any two sources i, j to any mea-
surement node k by attenuating the longest possible shared
path length (= min (hi,k, hj,k)) by some value less than one,
represented by α.

P̂ (i, j, k) = α ·min (hi,k, hj,k) (3)

The problem becomes estimating the value of α. Given
some collection of training data where active measurements
give observed values for the shared path lengths, we can esti-
mate α as a function of the passive measurements of Si and
Sk. We hypothesize that the more hop count distance values
that are a constant integer apart, the more sharedness that
will be observed along the path. This results in learning a
function whose domain is the number of hop count elements
where the two vector hi and hj are a constant integer apart.
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We can then learn the attenuation function by taking the
average of the observed path lengths for each integer offset
value. Therefore, for each measurement node k and unifor-
mity metric value c:

α (c, k) =
1

|Ick|2
∑

i∈Ic
k

∑

j∈Ic
k

P (Ick (i) , Ick (j) , k)

min
(
hIc

k
(i),k, hIc

k
(j),k

) (4)

Finally, we combine the learning attenuation function to
create an estimator of the shared path length for each pair
of IP sources,

P̂ (i, j, k) = α (Ui,j,k, k)min (hi,k, hj,k) (5)

5.3 Shared Path Estimation Analysis
In Table 3, we show the results for three different methods

for shared path length estimation. The methods include :

1. Unique Contrast cluster-level Estimation - Cluster-
level estimation is performed on clusters where each
represents a unique hop count contrast vector in the
passive dataset.

2. Cluster-level estimation using Gaussian mixture model
- Cluster-level estimation is performed on clusters
found using the Mixture Gaussian algorithm.

3. Predictive Function Estimation - Using Equation 5,
the estimated shared path lengths are found.

The results are based on a 1000 node synthetic topology,
which was generated by Orbis [24]. We randomly select
800 leaf nodes (sources) and 8 measurement nodes in the
graph, and assume “complete data” i.e., that probes from
all sources are received at all measurement nodes. The error
metric that we use to assess the estimation accuracy the
Root Mean Squared Error (RMSE) is defined as:

RMSE(ĥ) =

√∑
i,j

|hi,j − ĥi,j |2 (6)

Where an RMSE of x indicates that the estimated shared
number of hops is on average x hops away from the true
number of hops extracted from the graph.

The results show that the estimation from the unique con-
trast clustering performed the best, but required a larger
number of active measurements. Using the information-
theoretic approach from [23], 7 clusters were found, (in com-
parison to 47 active measurement needed for each measure-
ment node if performing unique contrast clustering). Using
the Gaussian mixture clustering, the predictive method out-
performs the cluster-level method. Simulations with differ-
ent synthetic topologies provided similar results.

Estimation Type # Clusters RMSE
Cluster-level 7 1.28
Predictive Function 7 1.00
Unique Contrast 47 0.70

Table 3: Shared path estimation results for a 1000
node synthetic topology assuming that probes from
800 randomly selected source nodes were observed
in 8 randomly selected monitors.

In Figure 9, we assess how increasing the number of clus-
ters affects the performance of the Gaussian mixture EM
cluster-level algorithm from a RMSE perspective. For this
simulated synthetic topology (with N = 800, M = 24, in
contrast to M = 8 results in Figure 4), the addition of
more clusters (and hence more active measurements needed)
causes a significant decrease in the error rate of the path
length estimation.

Figure 9: The effect of increasing the number of clus-
ters on the shared path estimation performance on
the simulated topology using the cluster-level shared
path estimation method.

In Table 4, we show how the same three methods for
shared path length estimation considered above perform on
the Skitter topology described in Section 3. A random set
of 700 leaf nodes were selected as sources and 8 leaf nodes
were randomly selected measurement nodes.

Similar to the simulated topology, the estimation from
the unique contrast clustering performed the best from an
RMSE perspective but also required the largest number of
active measurements. Using the information-theoretic ap-
proach, 9 clusters were found, requiring 18 active measure-
ments of the topology for each measurement node. Again,
the predictive function outperforms the cluster-level method
when considering the smaller number of clusters found by
the Gaussian mixture EM algorithm.

Estimation Type # Clusters RMSE
Cluster-level 9 1.25
Predictive Function 9 1.23
Unique Contrast 434 0.66

Table 4: Shared path estimation results for the Skit-
ter topology assuming that probes from 700 ran-
domly selected source nodes were observed in 8 ran-
domly selected monitors.

In Figure 10, we assess how increasing the number of
clusters affects the performance of the Gaussian mixture
EM cluster-level algorithm from a RMSE perspective. For
the Skitter topology (with N = 700, M = 24 (in contrast
to the results for M = 8 in Figure 5), the addition of more
clusters causes a decrease in the error rate of path length
estimation, but not as significant a decrease as seen in the
simulated topology example.
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Figure 10: The effect of increasing the number of
clusters on the shared path estimation performance
on the Skitter topology using the Gaussian mixture
EM cluster-level shared path estimation method.

6. THE MISSING DATA PROBLEM
In Section 5, we evaluated our methods for estimating

shared infrastructure between IP sources with hop count
distance values between all sources and measurement nodes.
However, it is unlikely that packets from large numbers of IP
sources will be seen at a random set of widely measurement
nodes. Thus for a given set of measurement nodes (such
as the honeypots describe in Section 3), there will be some
number of hop count distance observations missing from the
observed set. For each IP source i, we have a (potentially

incomplete) hop count vector h
i,I

(i)
known

where I
(i)
known is a

known subset of the indices of the complete set of measure-
ment nodes for IP source i.

We assume that this data is Missing-at-Random (where
the missing data locations are chosen at random). With
some assumptions on the topology and statistical tech-
niques, we have developed a method for imputing this miss-
ing data.

6.1 Imputation Methods

6.1.1 Network-centric Imputation
Given missing data, one can easily conceive of simple im-

putation methods, such as imputing based on the mean value
of the element, or using the nearest neighbors based on the
observed elements of the distance vector. One problem with
such a simplistic approach is that it does not take advantage
of the structural characteristics of the network. As describe
in [8], we can exploit the observed hop count distances from
sources that are an integer offset from a source missing a
hop count distance value. This method can be considered
analogous to using nearest neighbor imputation on the hop
count contrast vectors. For N sources and M measurement
nodes in the network, this imputation method has compu-
tation complexity O

(
N2M

)
. In the following, we describe

a new method for imputing missing data that improves on
the prior, network-centric approach in instances when larger
fractions of data are missing.

6.1.2 Gaussian Mixture EM Imputation
In Section 4.2, we reasoned that a mixture of Gaussians

model encapsulates the variability found in the hop count
contrast vectors. In [14], a Gaussian mixture EM algo-

rithm was purposed to both learn the parameters (mean,
variance, prior probabilities, responsibilities) for a group of
Gaussian distributions given a set of incomplete data, and
then use those estimated Gaussian mixtures to impute the
missing data values. The only necessary parameter input to
this algorithm is the number of Gaussian mixtures to use.
From [23], an information-theoretic technique was purposed
to determine, given a set of complete data, how many Gaus-
sian mixtures to use to model the data. This method is
a hybrid two-step iterative approach, where the first step
consists of estimating the number of Gaussians from the
imputed data using the method from [23], and the second
step then estimates the new imputed data values using the
method from [14]. For N sources and M measurement nodes
in the network, this method has computation complexity
O

(
iKNM4

)
, for i iterations and K Gaussian modes.

6.1.3 Imputation Performance Analysis
Using the honeynet dataset described in Section 3, we

can synthetically generate missing data examples by consid-
ering the sources that are seen in M measurement nodes and
knocking out (eliminating) a random subset of the hop count
measurements for each hop count vector. Where X observed
measurement nodes refers to each hop count vector observ-
ing X randomly selected hop counts with the rest of the
vector incomplete. The new imputation method (Gaussian
mixture EM) results are compared in terms of Root Mean
Squared Error (RMSE, Equation 6) in Figure 11 against
a naive mean method. In this analysis, we consider mea-
surements from sources that were observed in 16 honey-
pots for the synthetic topology with three different sizes
(N = 1000, 2000, 3000). The results shows a clear advan-
tage to using the Gaussian mixture imputation method for
even a small amount of observed measurements.

6.2 Shared Path Estimation with Imputed
Data

Next, we assess how topology estimation is affected by us-
ing imputed data. Following the method from Section 5.2.2,
the incomplete case derives clusters from imputed hop con-
trast vectors (using the Gaussian mixture imputation algo-
rithm) and then performs active measurements on the clus-
ters. The use of imputed hop contrast vectors introduces
more uncertainty on the topological significance of the clus-
ters.

To derive the estimated shared path length estimation for
using incomplete data, we follow the derivation from Sec-
tion 5.2.3, replacing all occurrences of the complete hop
count distance vectors hi, with the imputed hop count dis-

tance vectors ĥi.

P̂ (i, j, k) = α
(
Ûi,j,k, k

)
min

(
ĥi,k, ĥj,k

)
(7)

6.3 Topology Estimation Performance with
Imputed Data

Using synthetic topologies generated by Orbis, we assess
the impact of missing data imputation on topology estima-
tion. We generate three different synthetic topologies with
1000, 2000, and 3000 nodes. The measurement nodes are
randomly chosen from the set of leaf nodes in the topol-
ogy, with the passive measurements simulated as the length
of the shortest path found in the topology between the IP
sources and the measurement nodes. After imputation of
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Figure 11: Imputation accuracy over a range of randomly selected missing values using data from M = 16
honeypots. (Left) N = 1000, (Center) N = 2000, (Right) N = 3000

the missing data using the mixture of Gaussians technique,
10 clusters are found in the imputed hop count contrast
vectors, resulting in a active probe budget of 20 active mea-
surements per measurement node. Figure 12 shows that the
estimation of shared paths using the predictive methodol-
ogy from Section 5 is comparable to the cluster-level deter-
ministic estimation method for a majority of missing data
percentages. The RMSE error rate for the estimated path
lengths is defined as:

RMSE(P̂ ) =

√∑

i,j,k

|P (i, j, k)− P̂ (i, j, k)|2

When the simulated topology is expanded to 2000 and
3000 total nodes, the effects on the shared path estimation
algorithms can be seen in Figures 13. As seen from the fig-
ures, the increase in graph size improves upon the estimation
for both algorithms.

We also consider the impact of imputation using the Skit-
ter dataset. We selected a subset of 700 leaf nodes as IP
sources and randomly selected other leaf nodes as measure-
ment nodes. Data representing passive measurements was
derived from the graph and the shared infrastructure was
estimated for different levels of missing data. In Figure 14,
we see the performance of the two shared path length esti-
mation methods on the Skitter topology for (M = 8, 16, 24)
and 10 clusters found. In contrast to the results from the
synthetic topologies, the predictive estimation method per-
forms better than the cluster-level method. This can be
explained by the fact that Skitter measurements typically
only have a single leaf node for each branch of the topol-
ogy. This puts the Cluster-level method at a disadvantage
for estimating shared topology.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we address the problem of identifying net-

work structure and topology through the use of passive mea-
surements of IP packet traffic. While prior work on client
clustering, shared path estimation and router-level topology
mapping has been based on information embedded in IP ad-
dresses or via active-probes, passive measurements offer an
opportunity to expand perspective and reduce traffic and
management overhead. However, the minimal information
(source ID’s and hop counts) considered in our problem for-
mulation presents serious challenges to identifying meaning-

ful network structure. We describe a method for clustering
hosts based on Gaussian mixtures of hop count vectors. We
demonstrate the trade-offs between cluster size and shared
path length using a set of synthetic topologies. We then
describe two topology estimation techniques that rely on
a small set of active probe-based measurements. The first
method established ground truth paths between clusters via
active probes, and the second uses a predictive approach to
estimate shared path lengths based on a topology frame-
work established with active probes. The capabilities of
both methods are evaluated using synthetic and empirical
network maps. Finally, we describe an imputation method
for estimating missing data in passive measurements, and
demonstrate the capabilities of this method using data col-
lected in a set of network honeypots distributed around the
Internet.

This study represents a first step toward our goal of ac-
curately identifying Internet topology with passive mea-
surements. There are several important next steps that
we intend to address in future work. The first is to con-
struct larger graphs of the Internet using datasets from hon-
eynets [1] and other sources such as web servers that receive
a great deal of traffic, and to validate these extensively with
data sets from Internet mapping projects such as Skitter.
We also plan to develop additional methods for enriching
our graphs, for example, by coupling them with other data
such as BGP routing information, and to consider how dy-
namic changes in hop counts can be accommodated in our
formulations. Finally, we plan consider problems related to
measurement such as optimal monitor placement, and re-
duction or elimination of active measurements for shared
topology estimation.
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Figure 12: Topology estimation performance for two different estimation methods in a 1000 node synthetic
topology, ((Left) M = 8, (Center) M = 16, (Right) M = 24)

Figure 13: Performance of topology estimation algorithm in 1000, 2000, and 3000 node synthetic topologies
with M = 16, (Left) - Predictive Function Topology Estimation, (Right) - Cluster-Level Topology Estimation.
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