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ABSTRACT
When many flows are multiplexed on a non-saturated link,
their volume changes over short timescales tend to cancel
each other out, making the average change across flows close
to zero. This equilibrium property holds if the flows are
nearly independent, and it is violated by traffic changes
caused by several, potentially small, correlated flows. Many
traffic anomalies (both malicious and benign) fit this descrip-
tion. Based on this observation, we exploit equilibrium to
design a computationally simple detection method for cor-
related anomalous flows. We compare our new method to
two well known techniques on three network links. We man-
ually classify the anomalies detected by the three methods,
and discover that our method uncovers a different class of
anomalies than previous techniques do.

Categories and Subject Descriptors: C.2.3
[Computer-Communication Networks]: Network Operations

General Terms: Experimentation, Measurement.

Keywords: Anomaly Detection, Statistical Test.

1. INTRODUCTION
Uncovering anomalies in large ISPs and enterprise net-

works is challenging because of the wide variety of such
anomalies. Anomalies can come from activity with mali-
cious intentions (e.g., scanning, DDoS, prefix hijacking), or
from misconfigurations and failures of network components
(e.g., link failures, routing problems, outages in measure-
ment equipment), or even legitimate events such as unusu-
ally large file transfers or flash crowds.

A number of techniques have been proposed [2, 12, 14,
26, 29] in order to identify some of these anomalies by an-
alyzing network traffic. They all seek to expose anomalies
by detecting deviations from some underlying model of nor-
mal traffic. Usually, this model has to be learned from days
or weeks of anomaly-free traffic traces, which is a practical
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problem since the training data is never guaranteed to be
clean and training should be performed periodically.

In this paper, we introduce a new approach to anomaly
detection that does not require training a model from his-
torical data. Rather, we use a relatively simple, but sur-
prisingly effective, statistical test for inferring strong cor-
relations among flows on a single link. This test is based
on a mathematical model of a type of equilibrium which
we call ASTUTE (A Short-Timescale Uncorrelated-Traffic
Equilibrium, Section 2). Based on ASTUTE, we propose
an anomaly detection technique (Section 3) that detects
strongly correlated flow changes, i.e., events where several
flows simultaneously increase or decrease their volume, even
when these flows do not share common 5-tuple features such
as IP addresses, ports, and protocol number. Many types of
anomalies (e.g., scanning and DDoS attacks, link outages,
routing shifts) exhibit this type of behavior. We show that
such anomalies violate ASTUTE. Our detector has a single
threshold parameter that directly controls its false positive
rate (under certain statistical assumptions).

We compare our technique to two well known detectors:
Kalman filter [26] and Wavelet [2]. We review both detectors
in Section 4. We identify and classify nearly 600 anomalies
found by ASTUTE, Kalman, and Wavelet in three traffic
data sets (links from two research ISPs and one corporate
network). Section 5 describes the traces and methodology
used in our evaluation.

In Section 6, we study the characteristics of the anoma-
lies found by each method. ASTUTE is more effective than
Kalman and Wavelet at uncovering anomalies that involve
a large numbers of flows (such as scanning attacks and link
flaps) particularly when the aggregate packet volume in these
flows is small. In fact, ASTUTE finds anomalies that involve
one or two orders of magnitude fewer packets than anoma-
lies found by Kalman and Wavelet. For anomalies with
many correlated flows, ASTUTE achieves high detection
rates with very low false positive probabilities. We also show
that ASTUTE’s sensitivity to low-volume anomalies comes
with a trade-off; ASTUTE is oblivious to anomalies that
involve a few large flows, which Kalman and Wavelet can
easily spot. Finally, we perform controlled simulations via
anomaly injection to evaluate how ASTUTE and Kalman
trade-off true detections and false alarms.

ASTUTE is fundamentally different from other detectors
because it does not need to learn a model of normal traf-
fic; it merely infers strongly-correlated flows. Our results
show that almost all of the flows inferred by ASTUTE to be
strongly correlated in links carrying commercial, research,
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and enterprise traffic are indeed anomalies. This is consis-
tent with findings in prior work [1, 10] which have shown
that most dependencies across flows observed on real links
are normally very weak. Because of this different approach,
ASTUTE has three unique advantages:

• Not requiring a training phase makes ASTUTE com-
putationally simple and immune to data-poisoning.

• Since ASTUTE is specialized in a class of anomalies
(strongly correlated flows), it is more accurate at flag-
ging these anomalies than other detectors.

• Once an alarm is flagged, ASTUTE provides informa-
tion about the anomaly that facilitates classification.

2. AN EQUILIBRIUM MODEL
We introduce a model for normal traffic behavior, called

ASTUTE (A Short-Timescale Uncorrelated-Traffic Equilib-
rium). As the name suggests, ASTUTE’s assumptions hold
for aggregate traffic on a link under certain conditions: over
short timescales (on the order of minutes), when a large
number of independent flows traverse a non-saturated link.

2.1 Model Definition
A traffic flow is a set of packets that share the same values

for a given set of traffic features (e.g., source and destina-
tion IP addresses, source and destination ports, and protocol
number). To study the evolution of a flow, time is usually
divided into fixed sized intervals called bins. The volume
of a flow f during bin i, denoted by xf,i, is the number of
packets or bytes in the flow during the corresponding bin.

In the ASTUTE model, flows crossing a link of interest
are generated by a discrete-time marked point process [7],
where the mark process determines both the flow’s duration
and its volume per time bin. Thus, each traffic flow f is
uniquely defined by the following random variables:

• sf , the time bin where the flow arrives into the link;

• df , the number of bins where the flow is active;

• ~xf = (xf,sf , . . . , xf,sf+df−1), a vector with the flow’s
volume for each time bin where it is active.

While our model allows any distributions in the arrival
and mark processes (e.g., arrivals can be Poisson or not,
flow sizes can be heavy tailed or not), we make the following
two assumptions:

(A1) Flow independence - a flow’s properties (sf , df , and
~xf ) are independent of other flows’ properties.

There are two well-known ways through which flow inde-
pendence can be violated. First, some flows can be grouped
into sessions; e.g., after a client downloads a web page from
a server, it may open connections to other servers to down-
load objects contained in the page. Second, flows can be
correlated during congestion episodes, since they share the
same queues in routers. This can happen if a link is sat-
urated, since some flows need to reduce their throughput
so that other flows can increase theirs. Previous works [1,
10] have shown that, despite these two common reasons for
correlation, the dependencies across flows observed in traces
from real links are normally very weak. One of the reasons
for this is that most backbone links are under-utilized, as
they are over-provisioned by design.

(A2) Stationarity - the distributions of the flow arrival pro-
cess and the mark process do not change over time.

Stationarity is heavily dependent on the timescale in which
we observe flows, i.e., the size of time bins. Even though traf-
fic exhibits strong non-stationary at long timescales (e.g.,
daily and weekly cycles, long-term trends), several works
have shown that, at short timescales (i.e., less than an hour),
traffic is well modeled by stationary processes [4, 21].

It is important to understand that ASTUTE does not con-
tradict the observation that network traffic is self-similar
[16]. One way in which self-similarity manifests itself is in
slowly decaying correlations in measurements of total traf-
fic volume across time. ASTUTE is agnostic to temporal
correlations and only focuses on correlations across flows
within a single time bin. Indeed, self-similar traffic can be
explained by the superposition of a large number of indepen-
dent flows [28], albeit with a specific characteristic (heavy
tailed on-off times).

2.2 Consequences of the ASTUTE Model
Consider a pair of consecutive bins, i and i + 1. Let F

be the set of flows that are active in i or i + 1. For f ∈ F ,
let δf,i = xf,i+1 − xf,i be the volume change of f from i to
i+ 1. If the flow starts at bin i+ 1 (or finishes at bin i), we
consider that xf,i (resp. xf,i+1) is zero in the definition of
δf,i. Finally, let ∆i be the set of δf,i’s for each f ∈ F . The
following theorem summarizes the main consequences of our
model, and is the foundation of our anomaly detector.

Theorem 1 (Consequences of ASTUTE).
When both (A1) and (A2) hold, the variables in ∆i are zero

mean i.i.d. random variables. In order words, for arbitrarily
chosen flows f and g in F :

(a) δf,i has zero mean;

(b) if f 6= g, then δf,i is independent from δg,i;

(c) δf,i and δg,i have the same distribution.

Proof. To prove item (a) for an arbitrary flow f ∈ F ,
condition on its duration df = d and volume ~xf = ~x =
(xsf , . . . , xsf+d−1). For fixed d and ~x, the flow’s arrival time
sf can range from i− d+ 1 to i+ 1. Given the stationarity
of the flow arrival rate in (A2), f is equally likely to have
arrived in any of the bins in this range, i.e., sf is uniformly
distributed between i−d+1 and i+1. We can then express
the mean of δf,i by conditioning on all the possible values of
sf , each with probability 1

d+1
:

i+1∑
sf=i−d+1

δf,i
d+ 1

=

sf+d−1∑
i=sf−1

xi+1 − xi
d+ 1

=
xsf+d − xsf−1

d+ 1
= 0. (1)

In the last step above, we use the fact that both xsf+d and
xsf−1 are zero since f starts at bin sf and ends at sf +d−1.

Item (b), on the other hand, is a direct consequence of
assumption (A1). Namely, since the flow volumes ~xf and ~xg
are independent for two different flows f and g, so must be
their volume changes δf,i and δg,i between bins i and i+ 1.

Finally, item (c) relies on (A2) and the above observation
that the conditional distribution of δf,i, given df and ~xf ,
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depends only on df and ~xf . Because of this observation,
if the distributions of df and ~xf do not depend on f , the
marginal distribution of δf,i is also independent of f .

In the proof of item (c) above, note that we can have a sin-
gle distribution of flow properties even if there are multiple
“classes” of flows, where a class represents flows generated
by a given application (e.g., HTTP, VoIP) or using a given
transport protocol (e.g., TCP, UDP). Suppose there are a
set of classes C, and let the distributions of flow sizes and
volumes depend on a flow’s class. For each c ∈ C, let αc
be the probability that a flow in the total traffic belongs to
class c, and according to the stationarity assumption (A2),
let αc be constant across time bins. The distributions of
df and ~xf across all flows can be considered as a mixture
distribution [8], with weights αc and mixture components
given by the distributions of the individual classes.

3. ASTUTE-BASED ANOMALY DETECTION
In this section we describe an anomaly detector based on

the consequences of the ASTUTE model (Theorem 1). We
also provide empirical evidence that the assumptions in our
detector are observed in real traffic.

3.1 Detection Method Description
To detect strongly correlated flows, we design an anomaly

detector whose null hypothesis [15] is the set of consequences
in Theorem 1. Namely, we test with high confidence whether
the volume changes of flows are i.i.d. samples of a zero-mean
distribution. For this, we simply compute the confidence
interval for the average volume changes across flows, and
check if that confidence interval includes zero. If this condi-
tion does not hold for a given time bin, we mark that time
bin as anomalous. We consider only traffic on non-saturated
links, and using short-timescale bins. The rest of this section
formalizes this intuition.

Consider F flows that are active at bin i, with volume
changes given by δf,i. Let δ̂i be the sample mean and σ̂i the
sample standard deviation [8] of the volume changes, i.e.:

δ̂i =

F∑
f=1

δf,i
F

∴ σ̂i =

 F∑
f=1

(δf,i − δ̂i)2

F − 1

 1
2

. (2)

If Theorem 1 holds, then for large F , δ̂i has a (1 − p)-
confidence interval given by the central limit theorem [8]:

Iδ̂i = [δ̂i −K(p)σ̂i/
√
F , δ̂i +K(p)σ̂i/

√
F ], (3)

where K(p) is the percentile 1−p/2 of the standard Gaussian
distribution. We say that a set of flows satisfies ASTUTE
if Iδ̂i contains zero. Otherwise, we say that there is an AS-
TUTE anomaly at time bin i.

Clearly, the efficacy of the algorithm depends upon the
choice of K(p). As we increase the confidence level 1 − p,
we also increase the size of the confidence interval Iδ̂i . For

a given set of flows, it is clear from (3) that the size of the
interval is characterized by the value of K(p). The smallest
value of K(p) such that the interval contains zero is:

K′ =
δ̂i
σ̂i

√
F . (4)

We call K′ the ASTUTE assessment value (AAV) of a
time bin. Note that ASTUTE is violated if and only if |K′|

is larger than K(p). This equivalence holds because, for a
large set of flows that satisfy ASTUTE, the AAV distribu-
tion is close to a standard Gaussian distribution. Later in
this section we perform simulations to determine the mini-
mum number of flows needed to obtain this approximation.

When ASTUTE is violated there are two possibilities.
First, the confidence interval Iδ̂i is supposed to contain zero
only for a fraction 1 − p of the time bins. Thus, in a frac-
tion p of the time bins, we should expect ASTUTE to be
violated by normal traffic. This is the false positive rate
of our anomaly detection method and it can be reduced by
increasing the detection threshold K(p).

The second possibility is that some set of flows violates our
model’s assumptions of flow independence and stationarity
(Section 2.1). Later in this section we show that station-
arity holds for time bins smaller than 15 minutes. Thus
at short timescales (i.e., between 1 and 5 minutes), an AS-
TUTE anomaly must be triggered by a violation of the flow
independence assumption. For instance, if many flows in-
crease (or decrease) their volumes at the same time, then
these flows are no longer independent of each other.

Several types of events can trigger ASTUTE anomalies.
Some forms of attacks like DDoS, port scans, network scans
generate several correlated flows. Operational problems like
route flapping, link outages, and transient congestion on up-
stream links can also cause flows to correlate.

However, not all volume changes will result in ASTUTE
violations. A single high-volume flow does not violate the
independence assumption and will not cause an ASTUTE
violation. Even though a single large flow makes the av-
erage volume change δ̂i deviate from zero, it also increases
the standard deviation σ̂i at the same rate, thereby keeping
the AAV low. More generally, a small number of correlated
flows does not trigger an ASTUTE anomaly. ASTUTE fo-
cuses on strong correlations, i.e., those involving simultane-
ous changes in several flows. The strength of the correlations
that we can flag as anomalous is determined by the single
parameter in our detector, the threshold K(p). We explore
this issue in greater detail in Section 5.2.1.

Our method is valid when the link under consideration
is not saturated, i.e., even with anomalous traffic, the total
link utilization is less than 100%. If the monitored link is
fully saturated for two consecutive time bins, the average
volume change (and thus the AAV) should be zero, in which
case ASTUTE does not flag an alarm. However, anomalies
do not necessarily saturate all links everywhere in the net-
work. For example, a collection of anomalous flows may be
constrained by some upstream link, before reaching the link
where ASTUTE is deployed. We verify that this condition
holds in all the time bins that we evaluate.

Our ASTUTE-based anomaly detection method (hence-
forth, simply called ASTUTE) can be summarized as:

Initialization:

Given a target false positive rate p, determine the de-
tection threshold K(p) as discussed above.

For each pair of consecutive time bins, do:

1. For each flow f , measure its volume change between
the two time bins, δf,i.

2. Compute K′, the AAV defined in Equation (4).

3. If |K′| is larger than K(p), flag an anomaly.
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We track the AAVs for every pair of consecutive bins, in
six flow aggregation levels: 5-tuples, source IPs, destination
IPs, host pairs (i.e., source and destination IPs together),
source ports, and destination ports. We restrict our discus-
sion to these six flow aggregations simply because they have
worked well in our experiments; our methodology is general
enough to allow other combinations of 5-tuple features, or
even other types of header fields (e.g., MAC addresses). We
consider a bin as anomalous if any of the flow aggregation
levels triggers an ASTUTE anomaly. Tracking ASTUTE at
different aggregation levels is useful for two reasons. First,
it provides additional reliability to our detector, as some
anomalies are easier to find in specific aggregation levels.
Second, the fact that some anomalies are not visible at cer-
tain aggregation levels provides information that help us to
find the set of correlated anomalous flows. We discuss both
of these issues in more detail later in the paper.

3.2 Timescales with Stationary Behavior
To make sure that ASTUTE anomalies are violations of

the flow independence assumption, we need to validate the
stationarity assumption. Intuitively, at large timescales, sta-
tionarity is violated by daily patterns of link usage. To pin-
point the timescales in which stationarity holds, we run our
anomaly detection method in a trace from the GEANT2 net-
work (described later in Section 5.1) for different bin sizes.
We then measure the probability that ASTUTE triggers
an anomaly at each given time of the day, averaged over
a month. Figure 1 shows this metric for a detection thresh-
old equal to 6. We see that for 5-minute time bins, the
probability of detecting an anomaly is uniform throughout
the day, indicating it is not sensitive to time-of-day effects.
However, for bin sizes larger than 15 minutes, there is a
high chance of flagging anomalies when the number of users
ramps up in the morning, or drops down in the evening. We
have observed the same qualitative result for other traces
and different values of the detection threshold. Therefore,
in the rest of the paper, we use time bins of 5 minutes.
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Figure 1: Non-stationarity violates ASTUTE for
bins longer than 15 minutes.

3.3 Validating the Gaussianity of AAVs
Our detector relies on the fact that the AAVs of normal

time bins follow a standard Gaussian. This important since
it allows us to directly relate ASTUTE’s false positive rate to
its detection threshold K(p). In this section, we validate this
basic result by studying the impact of two characteristics of
real traffic measurements: (1) aggressive packet sampling
rates; and (2) the skew in flow size distributions.

3.3.1 Packet Sampling
Due to processing and storage overhead, traffic measure-

ments in highly aggregated links often employ random packet
sampling. Typical traces are sampled at rates as low as 1%
or even 0.1%. Although we described ASTUTE in terms
of non-sampled traffic data, our results are still valid un-
der random packet sampling. We show this using a publicly
available 48-hour long packet trace from a 100 Mbps link
between Japan and the USA1.

We bin 5-tuple flows into 5-minute intervals and compute
the AAVs for each bin in the trace. Figure 2 shows QQ-plots
comparing the distribution of AAVs, for different sampling
rates, to the standard Gaussian quantiles. The main chal-
lenge in analyzing these plots is that we can never be sure
that a trace contains only normal time bins. However, since
anomalies tend to increase the AAV in absolute value, they
should impact only the tails of the AAV distribution, and
small AAVs should be closer to Gaussian. The QQ-plot for
the non-sampled trace shows that the AAVs are well approx-
imated by the Gaussian distribution in the range between
-2 and 2. Outside this range, the AAV distribution deviates
from Gaussian, indicating that the trace contains anomalies
that violate ASTUTE. Note that as we sample packets, the
AAVs become closer to Gaussian in the whole range, i.e.,
both head and tails of the distribution. In summary, the
plots show that sampling does not violate ASTUTE, i.e., it
does not induce false positives. On the other hand, sam-
pling can make some low-volume anomalies disappear [18].
We have performed the same analysis on other traces and
obtained similar results.

Figure 2: QQ-plots for empirical AAVs.

3.3.2 Flow Size Distribution
Since the Gaussianity of the AAVs is a consequence of

the CLT, it only holds for flow size distributions with finite
variance [8]. Although previous works have observed that
total flow sizes are well-modeled by highly skewed distribu-
tions with infinite variance [5], our result depends only on
the flow volume within finite time bins. This restriction im-
poses a natural limit on the maximum flow size, dictated
by the bin size and the link’s capacity. Because of this, the
distribution of flow sizes within a time bin has finite vari-
ance and the CLT convergence has to occur given a large
enough number of flows. We perform simulations using syn-
thetic flow size distributions to visualize this convergence
and the flow sizes from a real traffic trace to show that this
convergence is achieved in practice.

Given a flow size distribution, we generate an i.i.d. sample
of F flows in a pair of time bins and we compute the cor-
responding AAV. We repeat this 1,000 times, and compute

1MAWI archive - http://mawi.wide.ad.jp/mawi/
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the distribution of the resulting AAVs. We then use a Fil-
liben hypothesis test [9] to check if the AAV distribution is
close to Gaussian. The statistic used by Filliben’s test is the
correlation between the AAV samples and the corresponding
quantiles of the standard Gaussian. If this statistic is below
a critical value (derived from simulations [9]) we can reject
the hypothesis that the AAVs are Gaussian.

Figure 3 shows the test statistic (on the y-axis) for dif-
ferent flow size distributions (the different curves) and dif-
ferent values of F (on the x-axis). If the flow sizes have a
non-skewed exponential distribution, the CLT convergence
is extremely fast, as the correlation goes beyond the critical
value even for ten flows. To observe the case of a highly
skewed distribution, we simulate flow sizes using a Pareto
distribution with infinite variance. The corresponding curve
shows that the test statistic does not reach the critical value,
even for tens of thousands of flows. However, if we bound the
maximum flow size in the Pareto distribution to a hundred
packets, then convergence to Gaussian is achieved once we
have around a hundred flows per bin. Finally, we also per-
form simulations using the empirical flow size distribution
from the GEANT2 trace (described later in Section 5.1).
The corresponding curve goes above the critical value with
at least a few dozens of flows per bin. In all of our traces,
over 95% of the time bins contain more than 100 flows. The
typical number of flows is much higher than that, i.e., on
the order of thousands or tens of thousands.
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4. ALTERNATE ANOMALY DETECTORS
Given the rich literature on anomaly detection methods [2,

12, 13, 26, 29], we need to understand their common fea-
tures and select a representative set of alternate methods
to compare with ASTUTE. The basic approach in previ-
ous detection methods is to filter out changes in a traffic
time series that are due to normal trends and analyze the
remaining residuals. The filtering step can be done using
either spatio-temporal information [12, 13, 26, 29] or fre-
quency information [2, 29]. We compare ASTUTE to two
methods that use different filtering strategies. We describe
these strategies in this section.

We use both of these techniques to find anomalies in five
types of metrics computed from traffic traces: (1) packet
counts, and the entropies of (2) source IPs, (3) destination
IPs, (4) source ports, and (5) destination ports. While ear-
lier detectors looked for anomalies in time series of packet
counts, it was later shown that the entropy time series of IP
addresses and ports enables more accurate detections than
volume alone [14].

4.1 Kalman: a Spatio-Temporal Detector
The Kalman filter-based method [26] (henceforth, called

Kalman) identifies normal traffic changes by learning their
correlation structure. Namely, Kalman estimates both spa-
tial (i.e., across different time series) and temporal (i.e.,
within a single time series) correlations in order to pre-
dict the next values of packet counts and entropy. Pre-
vious detectors used only purely temporal [12] or purely
spatial [13] correlation models. Although there are newer
spatio-temporal traffic models [30], we use Kalman in our
evaluation because it is simple to parameterize and because,
as we discuss below, its threshold parameter has similar se-
mantics to that of ASTUTE, allowing a direct comparison.

Kalman was originally proposed as a network-wide de-
tection technique but, to provide a fair comparison with
ASTUTE, we run Kalman using the volume and entropy
time series for a single link. We have studied this single-
link Kalman by comparing the anomalies it finds with the
network-wide version of Kalman [25]. We found that single-
link Kalman catches more than 91% of the anomalies found
by the network-wide version.

Kalman computes an assessment value (analogous to the
AAV from Section 3 but called innovation) that follows a
Gaussian white noise process if the traffic changes are nor-
mally distributed [26]. Thus, given a target false positive
rate p, the corresponding Kalman threshold is the percentile
1− p/2 of the standard normal distribution K(p), as in AS-
TUTE (Section 3). This means that a given threshold has
the same false positive rates for both ASTUTE and Kalman.

4.2 Wavelet: a Frequency-Based Detector
In the wavelet-based method [2] (henceforth, Wavelet),

each time series is decomposed, through wavelet analysis, in
low, medium, and high frequency bands. The basic assump-
tion in Wavelet is that, since the low frequency band corre-
sponds to the daily and weekly cycles, these must represent
the normal traffic patterns. After the decomposition, the
method normalizes both medium and high frequency bands
(to have unit standard deviation), and computes a weighted
sum of the two signals. Finally, the method computes the
variance of the combined signal using a sliding window whose
size should match the duration of the anomalies [2]. Wavelet
flags an alarm when a set of time bins has variance above a
pre-selected threshold T .

In our implementation, we use a Daubechies mother wavelet
with four vanishing moments. We combine the medium and
high frequency signals with weights of 0.5 each. We use a
sliding window of size 30 minutes in order to catch short-
lived events such as DoS attacks and port scans.

Unlike with Kalman, there is no well-known relationship
between the Wavelet threshold value T and the target false
positive rate. This is a major challenge in our evaluation,
and we address it with an approach previously used by Zhang
et al. [29] to compare methods with different threshold scales.
Specifically, for each trace, we pick T so that Wavelet can
catch as many anomalies as Kalman does. Since Kalman
and Wavelet are both looking for spikes in the same volume
and entropy time series, we expect that the top-N Kalman
anomalies overlap with the top-N Wavelet anomalies. Note
that, choosing T to match the alarms between Wavelet and
ASTUTE would not necessarily yield a fair comparison be-
cause ASTUTE is not looking for volume or entropy spikes,
but for violations of its flow independence assumption.
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5. EXPERIMENTAL METHODOLOGY
Evaluating anomaly detectors is notoriously difficult. In

the absence of ground truth, our community has resorted to
two types of approaches. One approach is to inspect each
anomaly in order to pinpoint its root cause [2, 14, 20]. How-
ever, current root cause analysis practices are largely based
on manual analysis, making it error prone and hard to scale
for datasets with hundreds of anomalies. Other works have
also evaluated their detectors through simulation, either by
injecting synthetic anomalies [13, 26, 20] or by replaying real
ones that have been manually labeled [14]. The advantage
of this approach is that we can vary an anomaly’s character-
istics, such as its size and duration, and test the detector’s
sensitivity to these parameters. In addition, simulation is
arguably a necessary step in any detector’s evaluation [22]
since we can replay anomalies in a large enough number
of bins to obtain results with high confidence. We employ
both manual classification and anomaly injection in order to
evaluate ASTUTE as thoroughly as possible.

5.1 Extracting Anomalies from Traffic Data
We analyze traffic traces collected from research and cor-

porate networks. Our traces come from three network links:
(1) a link connecting several customers of Internet2 to a
backbone router in New York2; (2) a peering link between
a transit provider and the Frankfurt router at GEANT23;
(3) an access link between a corporate site and the rest of a
worldwide MPLS enterprise network. In the Internet2 trace,
the last 11 bits of all IP addresses are set to zero for host
anonymization. Both Internet2 and GEANT2 use Juniper
routers, and generate sampled J-Flow statistics at rates of
1/100 and 1/1000, respectively. The corporate network col-
lects non-sampled Cisco NetFlow.

We select these traces to study ASTUTE under a diverse
range of potential deployments. The Internet2 trace con-
tains traffic between research institutions that are mostly in
the USA. The GEANT2 link comes from a commercial tran-
sit provider and thus acts as an entry point from the pub-
lic Internet to the European NRENs. Both Internet2 and
GEANT2 operators care about attacks and outage events
that can compromise reachability to their customers. The
Corporate trace contains only traffic among hosts inside the
enterprise network. All communications with the public In-
ternet are through a proxy located on another site of the
network. Although this is a more isolated network environ-
ment than those in our other traces, operators still need to
manage outages and misconfigured hosts that generate un-
necessary traffic in the network.

Table 1 summarizes information about the traces. The
table also shows the average utilization of the links. Notice
that among our traces, none of the links is running close
to 100%. In fact, with a bin width of 5 minutes, no bin
exceeded 70% of utilization.

It is worth noting that two of our traces have been col-
lected after random packet sampling. The work of Mai et
al. [18] has shown that sampling degrades the performance
of different anomaly detectors, leading to both false positives
and missed detections. Recall from Section 3.3 that packet
sampling does not increase the false positive rate in AS-
TUTE. Of course, sampling can make low-volume anomalies

2Internet2 - http://www.internet2.edu/
3GEANT2 - http://www.geant2.net/

Trace Period Link utilization

Internet2 Aug 2007 3%
GEANT2 Nov 2007 36%
Corporate Sep-Dec 2007 0.2%

Table 1: Traffic traces used in our evaluation.

disappear altogether from the trace. This information loss
is inherent in sampled data but, as we show in Section 6, our
methods are able to uncover a significant number of anoma-
lies in spite of sampling.

When binning the flow records, we assume that packets
in a record arrive uniformly spaced in time. This assump-
tion is necessary because flow traces keep timestamps only
for the first and last packet in each record, so we cannot
know the exact volume of the flow’s traffic that should be
attributed to each bin. Previous research has shown that
this assumption is a reasonable approximation for time bins
larger than a few minutes and is particularly more accurate
when describing the behavior of long-lived flows [27]. We an-
alyze these traces only at time bins larger than one minute.
This assumption only needs to be used for flows that span
more than a single bin, and we verified that less than 10%
of the flows at a bin width of 1 minute (and less than 1% for
bins of 5 minutes) spanned two or more bins. We bin traffic
in each trace at 5 minute intervals, since we have observed
that non-stationarity violates ASTUTE at timescales longer
than that. Previous anomaly detection papers [2, 14, 26]
have also used time bins of 5 minutes.

We use a threshold value of 6 for both ASTUTE and
Kalman. This threshold value corresponds to a false positive
rate of 2× 10−9 in both methods. We choose this conserva-
tive threshold to reduce the number of bins in our manual
analysis and to avoid dealing with false positives. For each
trace, we set the Wavelet threshold in order to catch as many
anomalies as Kalman does, as discussed in Section 4.2. The
resulting thresholds in the Internet2, GEANT2, and Corpo-
rate traces are respectively 7, 6, and 6.8.

5.2 Manual Classification
We perform root cause analysis for the anomalies found

by ASTUTE, Kalman, and Wavelet. However the process of
manually classifying hundreds of anomalies is laborious and
error-prone. We realized that we could make use of some of
the information ASTUTE provides about flows to improve
our analysis by making it faster and more reliable. We thus
developed a two-step method in which we first use ASTUTE
to discover characteristics of the anomalous flows, and then
classify the candidate flows by hand in a second step.

5.2.1 Correlated Anomalous Flows
We need to first understand a feature of ASTUTE that

makes classification easier; ASTUTE only flags anomalies
that contain several flows, and it ignores anomalies that in-
volve only a few flows. Understanding this is important
because, if we know that an anomaly exists in a time bin,
but ASTUTE is not violated at one of its six flow aggrega-
tion levels, we can infer that an anomaly involves only a few
flows in that aggregation level.

We simulate anomalies in the GEANT2 trace to measure
ASTUTE’s sensitivity to the number of anomalous flows and
the volume in these flows. To keep it simple, for the moment,
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consider that ASTUTE is tracked only for 5-tuple flows,
instead of all six flow aggregation levels. First, we identify
time bins where there are no ASTUTE anomalies. We do
this by computing the AAV for each bin, and keeping the
bins with an AAV smaller than 2. For each of these bins, we
add different amounts of anomalous traffic. Essentially, we
add A anomalous 5-tuples, each with volume change δA, for
different values of A and δA. Then we measure, for each bin,
the minimum number of anomalous flows required to trigger
an anomaly in ASTUTE. We average this metric across all
the bins in the trace.

Figure 4 shows this metric as a function of the volume
per anomalous flow, δA, and for three different values of the
detection threshold. The plot shows that given a threshold
value, ASTUTE cannot be violated by fewer than a certain
number of 5-tuple flows. Recall from Section 3.1 that when
there are few anomalous flows, the average volume change δ̂t
increases with δA at the same rate as the standard deviation
σ̂i, and the AAV does not exceed K(p).
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Figure 4: Minimum number of correlated anomalous
flows needed to trigger an alarm.

We observe in Figure 4 that, for large values of δA, the
minimum number of anomalous flows to trigger an alarm
converges approximately to the square of the threshold value.
We can generalize this lower bound to all threshold values
through a simple mathematical model [25]. This relation-
ship between K(p) and the minimum number of anomalous
flows is useful for the following reason. If a time bin con-
tains an anomaly that is found by another detector (e.g.,
Kalman or Wavelet) but not by ASTUTE, then we know
that the anomaly involves less than K(p)2 flows. We use
this knowledge in our flow identification algorithm in the
next subsection.

In the more general scenario, we compute the AAVs for six
flow aggregation levels instead of only 5-tuple flows. Many
anomalies violate ASTUTE in a subset of the aggregation
levels but not in all six of them. The use of multiple aggre-
gation levels is important to identify the flows responsible
for an anomaly. For example, consider a source machine
scanning several destinations hosts looking for a vulnerable
server to attack. The resulting anomaly would generate one
5-tuple flow for each probed target, and thus trigger an AS-
TUTE anomaly at the 5-tuple level. However, at the source
IP aggregation level, the anomaly is concentrated in a single
flow (i.e., the attacker’s IP) and, as we have just shown in
Figure 4, this does not violate ASTUTE. Once we know that
the anomaly lies in a few source IPs it is easier to look for
culprits among a few (less than K(p)2) of the largest source
IPs, instead of several combinations of small 5-tuples. In

the next section, we formalize this intuition into a method
to identify anomalous flows.

Since 5-tuple flows are the finest aggregation level, we
should expect that most anomalies that violate ASTUTE at
coarser levels (like IPs or ports), should also be found at the
5-tuple level. Indeed, in our traces most of the anomalies are
found with 5-tuples only. However, a few anomalies are not
found in 5-tuples because they are diluted in a large num-
ber of normal flows. At fine flow aggregations like 5-tuples,
if the number of correlated flows is too small compared to
the number of independent flows, ASTUTE may miss the
anomaly. Tracking ASTUTE at six aggregation levels thus
also increases the chances of catching an anomaly.

5.2.2 Anomalous Flow Identification
ASTUTE can help with classification by first exposing the

set of flows responsible for an anomaly. Once we have iden-
tified the responsible flows, the job of manual classification
is far simpler since we do not have to search through thou-
sands of possible flows to figure out what has happened.
Our flow identification heuristic consists of three steps: (1)
we estimate the traffic volume involved in the anomaly; (2)
we identify flow aggregation levels where the anomaly can
be represented by a few flows; (3) within these aggregation
levels, we identify flows whose total volume matches our size
estimate. We now detail each of these steps.

Step 1. If an alarm is flagged at any of the six flow aggre-
gation levels where we track ASTUTE, we can estimate the
volume of traffic in an anomaly as follows. The confidence
interval in Equation (3) is an estimate of the average vol-
ume change across all flows in the link. We can multiply the
limits of this interval by the number of flows in the link and
estimate the total volume of traffic involved in an ASTUTE
anomaly. This estimate is given by:

I = [δ̂i −K(p)σ̂i
√
F , δ̂i +K(p)σ̂i

√
F ]. (5)

Step 2. If a flow aggregation level L1 detects an anomaly,
but the same time bin does not violate ASTUTE at another
aggregation level L2, we can infer that the anomaly must
be concentrated in only a few large flows at L2. There-
fore, it is easier to look for candidate anomalous flows in L2

(where the anomaly is concentrated) than in L1 (where the
anomaly is spread). In the scanning example discussed in
the previous subsection, L1 corresponds to 5-tuple flows and
L2 corresponds to the source IP aggregation level.

Step 3. For the flow aggregations where ASTUTE is not
violated, we look among the largest flows by size, for a small
set of flows whose volume change fits inside the confidence
intervals estimated in Step 1. We identify the matching flows
as those responsible for the anomaly. If a time bin violates
ASTUTE on all six flow aggregation levels, we aggregate
flows at the level of network prefixes4 and check if there is
a subnet whose total volume fits one of the estimated con-
fidence intervals. Our rationale behind this is to check for
network-level events (e.g., routing changes) that cause par-
ticular subnets to appear or disappear at once.

To increase our confidence in the above heuristic, we per-
form a validation phase. We remove the candidate anoma-

4Our traces contain prefix information for each flow.
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lous flows from the time bin where we found them and check
whether ASTUTE is still violated by the remaining traffic.

For anomalies found exclusively by Kalman and Wavelet,
we use an alternative heuristic which we discovered to work
well in practice. Since these anomalies do not violate AS-
TUTE at any of the six flow aggregation levels, the likely
explanation is that the anomaly is concentrated on a few
large 5-tuples, which we find by inspecting the high-volume
5-tuples in the corresponding time bin.

5.2.3 Anomalous Flow Classification
Based on the flows responsible for a given anomaly, we

classify the anomaly by type. To do this, we manually ex-
amine the identified flows by looking at features like average
packet sizes, application-level protocols, number of sources
and destinations, and so on. Table 2 summarizes the criteria
we use to label the anomalies found in our three traces. We
now discuss each anomaly type in more detail.

Anomalies involving many small packets (e.g., TCP SYNs)
usually indicate malicious traffic. We label anomalies as
Denial-of-Service (DoS) attacks when one or more sources
send many small packets to a single destination. When one
or more sources send small packets to several destination
ports of a single target host, we label it as a port scan.

Other anomalies are caused by unusual application be-
havior. In all traces, we found anomalies due to large file
transfers, i.e., hosts that download files from one or more
sources at the same time. We differentiate those transfers
from DoS attacks by two features: (1) bulk data transfers
typically use large TCP packets (above 1024 bytes); and (2)
the sources often use well-known application protocols such
as HTTP or FTP.

In the corporate trace, we found anomalies related to a se-
ries of misbehaving applications. For instance, we observed
that once a day at 2:00 AM (local time), hundreds of hosts si-
multaneously broadcast name service requests. This anoma-
lous behavior is caused by a default setting in the name
server used within the enterprise. We have notified the IT
operators of the corporate network (who were unaware of the
anomaly). A similar example is an instant messaging appli-
cation used between employees. In this anomaly, we found
a number of clients continuously trying to establish TCP
connections to a non-responsive (and probably unreachable)
server. Our anomaly detector could have been used to warn
the operators of this problem.

We found anomalies involving flows that share nothing
in common except that all source (or destination) IPs are
contained in one or a few subnets. After inspecting those
anomalies, we noticed gaps in the traffic associated with
those subnets’ prefixes and labeled them as prefix outages.
These anomalies may be associated with routing changes or
also upstream/downstream link outages that cut the reach-
ability to the corresponding networks. Many of these prefix
outages were in GEANT2, and most were associated with a
research institution in Greece whose prefix route kept flap-
ping several times in one day.

We also found that many anomalies were caused by trace
gaps of at least 10 seconds. Such gaps impact all of the
link’s traffic, and because of that, they violate ASTUTE
in all six flow aggregation levels. If a gap lasts more than
a full time bin (i.e., 5 minutes), we assume that it is due
a persistent link outage. Otherwise, we assume that it is
simply a measurement gap. Measurement gaps are caused

by a bug in one of the implementations of J-Flow (Juniper’s
equivalent of NetFlow) that has been recently documented in
the literature [6]. Since J-Flow is used in both the Internet2
and GEANT2 networks, we see such anomalies from those
networks in our data. The corporate trace is collected with
Cisco NetFlow and does not exhibit such gaps.

Using these criteria, we have classified a variety of events,
ranging from abuse traffic (e.g., DoS attacks and scans) to
operational problems (e.g., outages and misconfigured en-
terprise applications). Even though these are all statisti-
cal anomalies, not all operators care about their root cause
events. For example, a transit ISP may care about outages
and routing disruptions but not about DoS attacks (if its
links are over-provisioned to avoid congestion). When eval-
uating an anomaly detector, it is important to differentiate
the definitions of (a) statistical anomalies and (b) events
that an operator cares about. We focus on the definition of
statistical anomalies to evaluate our detectors. Accordingly,
we define false positives in the statistical sense, i.e., time
bins that follow the normal traffic assumptions (e.g., weakly
correlated flows for ASTUTE) but are flagged as anomalous.

5.3 Simulation through Anomaly Injection
Simulation helps us understand how methods trade-off de-

tection rates for false positives. We use this particular type
of evaluation to compare Kalman and ASTUTE only. Recall
from the discussion in Section 4.2 that the relation between
the Wavelet detection threshold and its false positive rate
does not follow the same theoretical argument shared by
Kalman and ASTUTE. In fact, we are not aware of a the-
oretical relationship between the Wavelet threshold and its
expected false alarm rate [2].

Our method for anomaly injection consists of three steps.
First, we build a set of benchmark anomalies for injection.
Then, we inject these anomalies, one at a time, in each non-
anomalous bin and measure how much they impact both
the AAV and the Kalman innovation. Finally, for a given
method and a threshold value, we measure the method’s
detection rate for each type of anomaly.

Our benchmark set contains the same types of anomalies
as those shown in Table 2. Since we have manually identi-
fied the flows responsible for several ASTUTE and Kalman
anomalies (Section 5.2.3), we can recreate those anomalies
by adding their flows to other time bins. This makes our
experiment realistic since (1) our benchmark contains real
anomalies, and (2) we are sure that the IPs involved in these
anomalies (i.e., attackers, victims, and misbehaving hosts)
actually have their traffic routed through the link where we
want to inject them.

However, we can only inject the manually identified anoma-
lies that are associated with end-host activity, i.e., DoS at-
tacks, port scans, large file transfers, and misbehaving en-
terprise applications. Anomalies caused by prefix or link
outages (or other network problems), impact a different set
of flows depending on the bin where they happen. We simu-
late prefix and link outages in a given time bin by removing
the subset of the bin’s traffic that is associated with a known
anomalous prefix in the former case, or all the prefixes in the
latter case. In addition, we can re-create these outages at
different durations to learn how large an outage needs to be
to be accurately detected.

We have also considered simulating a type of anomaly
which we did not observe in our traces: namely, congestion
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Anomaly class Description

DoS attack Many small packets from one or more source IPs to a single destination IP.
Port scan Small packets from one source IP to several ports in one destination IP.
Large file transfer One or more TCP bulk flows (i.e., large packets) to a single destination IP.
Misbehaving apps. Multiple causes; see text in Section 5.2.3.
Prefix outages Intervals where the traffic of one or more prefixes (but not all of them) disappears.
Link outages Intervals larger than five minutes with no flow arrivals.
Measurement gaps Intervals smaller than five minutes with no flow arrivals.
Unknown Anomalies for which we could not identify their root causes.

Table 2: Criteria used to classify events based on characteristics of the anomalous flows.

in upstream links. However, for the purposes of our simu-
lation, the impact of upstream congestion should be similar
to that of the prefix outages described above, i.e., we should
observe a correlated decrease in the throughput from flows
that cross the congested link. Since ASTUTE detects pre-
fix outage anomalies, we conjecture that it should also flag
alarms due to upstream congestion if a significant number
of the flows experiencing congestion cross a link where AS-
TUTE is deployed.

Using this injection methodology, we are able to plot ROC
curves, which show detection rates as a function of false pos-
itive rates. Given a trace and an anomaly type, we vary the
detection threshold for ASTUTE and Kalman (top axis) and
compute both the false positive rate (bottom axis) and de-
tection rates (left axis). The false positive rate comes from
the theoretical model that both the AAV and the Kalman
innovation follow a standard normal distribution in the ab-
sence of anomalies (Sections 3 and 4.1). For a fixed threshold
value, the detection rate for either method is the fraction of
injections that trigger a detection in the method.

6. PERFORMANCE EVALUATION
Our results essentially show that ASTUTE finds a new

family of anomalies. While Kalman and Wavelets tend to
find anomalies involving few large flows (e.g., DoS attacks),
ASTUTE is much more accurate at finding anomalies involv-
ing several small flows (e.g., scans and outages). In addition,
we show that this result is independent of threshold values.

6.1 Anomaly Characteristics
Table 3 shows the number of anomalies found by each

method in each trace. We measure the intersection be-
tween anomalies found by ASTUTE and anomalies found by
the other two methods. We also show the overlap between
Kalman and Wavelet, and the total number of anomalies
found by all methods together. Our main observation is
that the overlap between ASTUTE and the other methods
is small: only 6% of all the anomalies, and less than 30% of
the combined detections of Kalman and Wavelet. This sug-
gests that ASTUTE can complement the detections from
the other two methods, which are based on volume and en-
tropy. In addition, Kalman and Wavelet have more overlap
among each other than with ASTUTE. Note that this is not
simply a matter of our choice of thresholds; if we increase
the ASTUTE threshold so that it detects the same number
of anomalies as Kalman and Wavelet the new overlap could
only be smaller since ASTUTE would flag fewer alarms.

To understand the differences between anomalies found
by each method, we inspected and classified the cause of

Anomaly Set Internet2 GEANT2 Corporate

ASTUTE (A) 351 99 61
Kalman (K) 56 24 16
Wavelet (W) 56 24 16

A
⋂

(K
⋃
W) 19 12 3

K
⋂
W 49 19 7

A
⋃
K
⋃
W 395 116 83

Table 3: Anomalies found by each method.

each alarm. Using the heuristics described in Section 5.2,
we are able to identify the anomalous flows for 59% of all
the ASTUTE anomalies. We found that the remaining 41%
of ASTUTE anomalies are caused by measurement gaps or
by link outages which essentially impact all flows in the link.
We verified this by measuring the flow inter-arrival times in
the corresponding anomalous bins, and noting that each of
these bins contain gaps of at least 10 seconds without any
flows. We found that gaps this long are unusual, and do
not occur in other anomalous bins, nor in the normal bins.
For these events, we define the anomalous flows as those
that are impacted by the outage, i.e., flows that exist before
and after, but not during the gap. Using the procedures
described in Section 5.2, we are able to identify the flows
causing all anomalies in our traces.

Table 4 summarizes the number of anomalies per type
found in each trace and by each method. Note that AS-
TUTE is more effective at detecting anomalies such as port
scans, prefix outages, misbehaving enterprise applications,
and even sometimes link outages (in the case of the cor-
porate network) than the Kalman and Wavelet methods.
However, Kalman and Wavelet are better at detecting DoS
attacks in both Internet2 and GEANT2.

We also observe that Kalman and Wavelet find more large
file transfers than ASTUTE in the corporate network, but
the situation is reversed in Internet2 and GEANT2. All of
the file transfers found in the corporate trace involve few
local hosts communicating with the company’s gateway to
the public Internet (which is located on another corporate
site and thus the transfers are seen in the MPLS link). Con-
versely, the file transfers found in Internet2 and GEANT2
usually involve a single destination host, receiving traffic
from several (up to hundreds) of sources simultaneously (due
to peer-to-peer transfers).

Finally, we could not discover the root causes of five anoma-
lies (out of 600); we labeled them as unknown anomalies.
These anomalies may be either due to false positives (which
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Internet2
Anomaly type Total A K W

DoS attack 38 1 37 30

Port scan 198 198 0 2
Large file transfer 2 2 0 0
Prefix outage 1 1 0 0
Link outage 15 12 12 15
Measurement gap 136 135 4 6

Unknown 5 2 3 3

Total 395 351 56 56

GEANT2
Anomaly type Total A K W

DoS attack 16 0 16 12

Port scan 8 8 4 5
Large file transfer 4 4 0 0
Prefix outage 37 36 3 7
Measurement gap 51 51 1 0

Total 116 99 24 24

Corporate
Anomaly type Total A K W

Large file transfer 20 0 13 11
Misbehaving apps. 38 37 1 1
Link outage 12 11 2 4
Prefix outage 13 13 0 0

Total 83 61 16 16

Table 4: Anomaly types found on each trace by AS-
TUTE (A), Kalman (K), and Wavelet (W).

is unlikely, given the high threshold we use) or simply real
anomalies that we cannot explain through visual inspection.

Figure 5 maps the qualitative properties of the anomalies
(i.e., their labels) to their quantitative properties (i.e., their
number of flows and packets). Each point corresponds to
all the anomalies of a given type (represented by the point
shape) that are detected in a given network (represented by
the point fill pattern) by any of the three methods. Each
point’s coordinates correspond to the number of anomalous
5-tuple flows (x axis) and the average anomalous flow size in
packets (y axis). The coordinate values are averaged across
all the anomalies represented by the corresponding point.

Figure 5 characterizes the different types of anomalies de-
tected by ASTUTE, Kalman, and Wavelet. We draw verti-
cal and horizontal lines to divide the plot in quadrants that
isolate the types of anomalies in which ASTUTE is better
than Kalman and Wavelet, and vice-versa. The top-left and
bottom-right quadrants respectively correspond to anoma-
lies with a few large flows and to anomalies with many small
(or medium-sized) flows. The bottom-left quadrant contains
no anomalies since it represents “well-behaved” traffic appli-
cations, i.e., few flows of moderate size. The top-right quad-
rant is also empty since every link has a finite capacity and
it is very unlikely to find many large flows at once in a link.
All the anomalies for which Kalman and Wavelet perform
better than ASTUTE in Table 4 lie in the top-left quadrant
of the plot. Conversely, ASTUTE detects more anomalies
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Figure 5: Map of the traffic anomaly spectrum.

than Kalman and Wavelet in all points represented in the
bottom-right quadrant of the plot.

In addition to the difference in anomaly types, Figure 5
shows that ASTUTE finds anomalies that often involve less
total volume than anomalies found by Kalman and Wavelet.
Note that if we multiply the x and y coordinates of points in
Figure 5, we obtain the average total volume in an anomaly
type. We add diagonal lines in the plot to show different or-
ders of magnitude of aggregate volume in packets. For each
network, note that the anomaly types for which ASTUTE
has more detections (bottom-right) usually involve one or
two orders of magnitude less volume than those types where
Kalman and Wavelet are better. For instance, while the DoS
attacks in GEANT2, found by Kalman and Wavelet, typi-
cally involve hundreds of thousands of packets (per 5-minute
bins at 1/1000 sampling), the port scans found by ASTUTE
in the same network involve only thousands of packets.

This pattern can be observed across the three traces and
it confirms that ASTUTE cannot detect anomalies caused
by a few large flows while it is very sensitive to anomalies
involving many small flows. Since both types of anomalies
are important, we do not advocate that operators should
use ASTUTE as a replacement for detectors based on vol-
ume and entropy. However, our findings suggests that either
Kalman or Wavelet, combined with ASTUTE, cover more
exhaustively the space of traffic anomalies.

6.2 Detection Performance
In this section, we use simulation (described in 5.3) in or-

der to understand how ASTUTE and Kalman trade-off de-
tection rates for false positives. Our analysis shows that the
main result from the previous section, namely that ASTUTE
and Kalman are good at different types of anomalies, also
holds for different threshold values. Figure 6 shows ROC
curves for four anomaly types in GEANT2. The plots for
other anomaly types and other traces contain similar curves;
we omit them for conciseness.

The ROC plots in Figure 6 display three different behav-
iors in the relative performance of ASTUTE and Kalman.
First, plot 6(a) shows that even though Kalman can detect
most port scans, ASTUTE is much more sensitive to these
anomalies, particularly for threshold values above 3. Sec-
ond, plots 6(b) and 6(c) show that ASTUTE exposes short
outages (30-second link outages and 2-minute prefix outages
in 5-minute bins) that Kalman can barely detect at all. Al-
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Figure 6: ROC curves comparing ASTUTE and
Kalman for different anomaly types in GEANT2.
False positive rates are based on statistical assump-
tions (described in Sections 3.3 and 4.1).

though a single short outage has limited impact on end-user
performance, a large number of alarms due to outages can
be an indication of faulty links [19] or routing misconfigu-
rations. Third, plot 6(d) shows that ASTUTE misses DoS
attacks which Kalman can easily spot. Recall from Figure 5
that the DoS attacks in the GEANT2 trace tend to involve
only a few large flows, which do not violate ASTUTE (as
shown in Section 5.2.1).

6.3 Complementarity of ASTUTE and Kalman
Fixing the detection thresholds for ASTUTE and Kalman,

we compute the detection rate of a detector that combines
alarms from both methods. To determine the combined false
positive rate, we consider lower and upper bounds as follows.
Let the false positive rates from ASTUTE and Kalman be
fA and fK , respectively. In the best case, bins that trigger
false alarms in one method also do so in the other method,
and thus the combined false positive rate is the maximum
between fA and fK . Conversely, if ASTUTE and Kalman
trigger false alarms in different bins, then the combined false
positive rate is either fA + fK or 1, whichever is smaller.

In order to compute a single ROC curve for different
classes of anomaly, we need to decide the relative frequency
of events in each class, which we call the anomaly mix. Since
we cannot know a priori the anomaly mix in a trace, we com-
pute our ROC curves under two scenarios. First, we consider
that the frequency of each anomaly type is proportional to
the number of such anomalies observed in a trace, accord-
ing to Table 4. In the second scenario, we consider that the
frequency of anomalies is uniform across all classes.

Figure 7 shows ROC curves for ASTUTE, Kalman, and
the combined detections in GEANT2, assuming equal thresh-
old values for ASTUTE and Kalman. We plot ROC curves
of the combined detections using lower and upper bounds for
the false positive rate as described above. The plots show
that the two methods combined perform better than each
by itself, even in the worst case, when the false alarms from
ASTUTE and Kalman add up. For example, in the observed
anomaly mix (left plot in Figure 7) for a 1% false positive
rate, ASTUTE alone misses 15% of the anomalies, Kalman
misses 35%, but the combined methods only miss 5%. The
corresponding ROC curves for the other two traces show the
same qualitative result and we omit them here.
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Figure 7: ROC curves for ASTUTE, Kalman, and
their combined detections in GEANT2.

7. RELATED WORK
Significant attention has been devoted to anomaly detec-

tion in recent years. Early anomaly detection techniques re-
lied only on volume metrics such as packet and byte counts [2,
13, 26]. Lakhina et al. [14] showed that the entropy of fea-
ture distributions (e.g., IP addresses and ports) extends the
set of detections by volume metrics. More recently, Ny-
chis et al. [20] have shown that the entropies of flow size
and degree distributions can flag low-volume anomalies in
their dataset that go unnoticed in the entropies of addresses
and ports. Note, however, that their work is concerned with
new entropy-based metrics for anomaly detection. Such new
metrics can, in principle, be used with any detector that
learns their normal trend from time series data and flags
bins which deviate from that trend. On the other hand, we
develop a new method which is fundamentally different from
time series approaches used by Kalman [26], Wavelet [2], or
PCA [13], because it does not require training from normal
traffic data, and thus is immune to data-poisoning.

There are specific anomaly detection methods for finding
network disruptions such as link or prefix outages. For ex-
ample, some methods can detect routing-induced anomalies
by analyzing BGP feeds [11] or by combining those feeds
with traffic data [23]. Our method is capable of finding this
type of anomalies looking only at traffic data by detecting
the correlated increase or decrease in the throughput of the
impacted flows.

Tangentially related to our work is recent research that
has addressed the complementary problem of automated
root cause analysis of traffic anomalies [17, 3, 24] which typ-
ically involves identifying the flows involved in the anomaly
and classifying their behavior.
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8. CONCLUSIONS
We presented ASTUTE, a new method for traffic anomaly

detection in network links. The main novelty in ASTUTE’s
design is that, unlike traditional anomaly detectors, it does
not need to learn normal traffic behavior from traffic traces.
Instead, ASTUTE relies only on empirical traffic properties
which hold for highly aggregated network links.

We showed that ASTUTE uncovers anomalies that are
qualitatively and quantitatively different than those found
by two other methods from the literature: Kalman [26] and
Wavelet [2]. The anomalies found by ASTUTE are caused
by groups of flows that simultaneously increase or decrease
their traffic, even if the traffic in these flows is small com-
pared to the total link traffic. This result is supported by
experiments with real traffic traces, including manual clas-
sification and simulation through anomaly injection.

We showed that ASTUTE cannot find large volume anoma-
lies caused by one or a few flows. These types of anoma-
lies are easily found by previous techniques such as Kalman
and Wavelet. Our simulations showed that ASTUTE and
Kalman complement each other nicely. This suggests that a
hybrid detector based on ASTUTE and one of the previous
techniques is likely to cover a broad spectrum of anomalous
traffic. We will explore this idea in our future work.

Besides detection, ASTUTE also provides information that
is useful to perform root cause analysis. After having manu-
ally identified hundreds of anomalies in our three traces, AS-
TUTE made it easier to determine the type of each anomaly
and to identify the responsible set of flows. We plan to ex-
plore how to automate the heuristics based on ASTUTE as
a method for classifying anomalies.

Finally, ASTUTE’s computational cost is fairly small, and
smaller than detectors that require training phases [25]. Be-
sides the process of binning flows (needed for all detectors),
it takes 21 seconds to calibrate Kalman on the GEANT2
trace, while ASTUTE is computed in less than a second.
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