
Every Microsecond Counts: Tracking
Fine-Grain Latencies with a Lossy Difference Aggregator

Ramana Rao Kompella†, Kirill Levchenko, Alex C. Snoeren, and George Varghese
†Purdue University and University of California, San Diego

ABSTRACT
Many network applications have stringent end-to-end latency re-
quirements, including VoIP and interactive video conferencing, au-
tomated trading, and high-performance computing—where even
microsecond variations may be intolerable. The resulting fine-grain
measurement demands cannot be met effectively by existing tech-
nologies, such as SNMP, NetFlow, or active probing. We propose
instrumenting routers with a hash-based primitive that we call a
Lossy Difference Aggregator (LDA) to measure latencies down to
tens of microseconds and losses as infrequent as one in a million.

Such measurement can be viewed abstractly as what we refer to
as a coordinated streaming problem, which is fundamentally harder
than standard streaming problems due to the need to coordinate
values between nodes. We describe a compact data structure that
efficiently computes the average and standard deviation of latency
and loss rate in a coordinated streaming environment. Our theoret-
ical results translate to an efficient hardware implementation at 40
Gbps using less than 1% of a typical 65-nm 400-MHz networking
ASIC. When compared to Poisson-spaced active probing with sim-
ilar overheads, our LDA mechanism delivers orders of magnitude
smaller relative error; active probing requires 50–60 times as much
bandwidth to deliver similar levels of accuracy.

Categories and Subject Descriptors
C.2.3 [Computer Communication Networks]: Network manage-
ment

General Terms
Measurement, algorithms

Keywords
Passive measurement, packet sampling

1. INTRODUCTION
An increasing number of Internet-based applications require

end-to-end latencies on the order of milliseconds or even microsec-
onds. Moreover, many of them further demand that latency remain

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’09, August 17–21, 2009, Barcelona, Spain.
Copyright 2009 ACM 978-1-60558-594-9/09/08 ...$10.00.

stable; i.e., low jitter. These applications range from popular multi-
media services like voice-over-IP, multi-player gaming, and video
conferencing to niche—but commercially important—markets like
automated trading and high-performance computing. As such ap-
plications grow in significance, customers are placing increasing
demands on operators to provision and manage networks that meet
these stringent specifications. Unfortunately, most of the currently
available tools are unable to accurately measure latencies of these
magnitudes, nor can they detect or localize transient variations or
loss spikes. Hence, we propose a new mechanism to measure la-
tency and loss at extremely small time scales, even tens of mi-
croseconds. We focus particularly on data-center networks, where
such measurement is both useful (because many data-center appli-
cations can be hurt if latencies increase by even tens of microsec-
onds) and feasible (because of small propagation delays). Our ap-
proach can also be applied more generally, but the accuracy of ex-
isting techniques may be sufficient for many wide-area scenarios.

As a motivating example, consider a trading network that con-
nects a stock exchange to a number of data centers where auto-
matic trading applications run. In order to prevent unfair arbitrage
opportunities, network operations personnel must ensure that the
latencies between the exchange and each data center are within 100
microseconds of each other [35]. (A recent InformationWeek arti-
cle claims that “a one-millisecond advantage in trading applications
can be worth $100 million a year to a major brokerage firm” [25].)

Current routers typically support two distinct accounting mech-
anisms: SNMP and NetFlow. Neither are up to the task. SNMP
provides only cumulative counters which, while useful to estimate
load, cannot provide latency estimates. NetFlow, on the other
hand, samples and timestamps a subset of all received packets; cal-
culating latency requires coordinating samples at multiple routers
(e.g., trajectory sampling [10]). Even if such coordination is pos-
sible, consistent samples and their timestamps have to be commu-
nicated to a measurement processor that subtracts the sent times-
tamp from the receive timestamp of each successfully delivered
packet in order to estimate the average, a procedure with funda-
mentally high space complexity. Moreover, computing accurate
time averages requires a high sampling rate, and detecting short-
term deviations from the mean requires even more. Unfortunately,
high NetFlow sampling rates significantly impact routers’ forward-
ing performance and are frequently incompatible with operational
throughput demands.

Thus, operators of latency-critical networks are forced to use ex-
ternal monitoring mechanisms in order to collect a sufficient num-
ber of samples to compute accurate estimates. The simplest tech-
nique is to send end-to-end probes across the network [24, 31,
33]. Latency estimates computed in this fashion, however, can be
grossly inaccurate in practice. In a recent Cisco study, periodic

255

probes sent at 1-second intervals computed an average latency of
under 5 ms, while the actual latencies as reported by a hardware
monitor were around 20 ms with some bursts as high as 50 ms [30,
Fig. 6]. Capturing these effects in real networks requires injecting
a prohibitively high rate of probe packets. For these reasons, oper-
ators often employ external passive hardware monitors (e.g., those
manufactured by Corvil [1]) at key points in their network. Un-
fortunately, placing hardware monitors between every pair of input
and output ports is cost prohibitive in many instances.

Instead, we propose the Lossy Difference Aggregator (LDA), a
low-overhead mechanism for fine-grain latency and loss measure-
ment that can be cheaply incorporated within routers to achieve the
same effect. LDA has the following features:

• Fine-granularity measurement: LDA accurately measures
loss and delay over short time scales while providing strong
bounds on its estimates, enabling operators to detect short-
term deviations from long-term means within arbitrary con-
fidence levels. Active probing requires 50–60 times as much
bandwidth to deliver similar levels of accuracy, as demon-
strated in Section 4.3.

• Low overhead: Our suggested 40-Gbps LDA implementa-
tion uses less than 1% of a standard networking ASIC and 72
Kbits of control traffic per second, as detailed in Section 5.1.

• Customizability: Operators can use a classifier to configure
an LDA to measure the delay of particular traffic classes to
differing levels of precision, independent of others, as dis-
cussed in Section 5.1.

• Assists fault localization: LDA can operate link-by-link and
even segment-by-segment within a router, enabling direct,
precise performance fault localization. Section 5.2 describes
a potential fault-localization system based upon LDA.

While researchers are often hesitant to propose new router primi-
tives for measurement because of the need to convince major router
vendors to implement them, we observe several recent trends. First,
router vendors are already under strong financial pressure from
trading and high-performance computing customers to find low-
latency measurement primitives. Second, next-generation 65-nm
router chips have a large number of (currently unallocated) tran-
sistors. Third, the advent of merchant silicon such as Broadcom
and Marvell has forced router vendors to seek new features that
will avoid commoditization and preserve profit margins. Hence,
we suggest that improved measurement infrastructure might be an
attractive value proposition for legacy vendors.

2. PRELIMINARIES
A number of commercially important network applications have

stringent latency demands. Here, we describe three such domains
and provide concrete requirements to drive our design and evalua-
tion of LDA. In addition, we present an abstract model of the mea-
surement task, an instance of what we term a coordinated stream-
ing problem. We then show that some coordinated problems have
fundamentally high space complexity as compared to traditional
streaming versions of the same problem.

2.1 Requirements
An application’s latency requirements depend greatly on its in-

tended deployment scenario. We start by considering the specific
requirements of each domain in turn, and then identify the overall
measurement metrics of interest.

2.1.1 Domains
Wide-area multi-media applications have demands on the order

of a few hundred milliseconds (100–250 ms). Latency require-
ments in the financial sector are tighter (100 μs—1 ms), but the
most stringent requirements are in cluster-based high-performance
computing which can require latencies as low as 1–10 μs.

Interactive multi-media: Games that require fast-paced interac-
tion such as World of WarCraft or even first-person shooter games
like Quake can be severely degraded by Internet latencies. While
techniques such as dead-reckoning can ameliorate the impacts, la-
tencies of more than 200 ms are considered unplayable [5]. There
has also been a large increase in voice-over-IP (VoIP) and inter-
active video. While pre-recorded material can be buffered, interac-
tive applications like video conferencing have strict limits on buffer
length and excess jitter substantially diminishes the user experi-
ence. For example, Cisco’s recommendations for VoIP and video
conferencing include an end-to-end, one-way delay of no more than
150 ms, jitter of no more than 30 ms, and less than 1% loss [34].

Automated trading: Orders in financial markets are predomi-
nantly placed by machines running automatic trading algorithms
that respond to quotes arriving from exchanges. For example, in
September 2008, the London Stock Exchange announced a ser-
vice that provided frequent algorithmic trading firms with sub-
millisecond access to market data [21]. Because machines—not
people—are responding to changing financial data (a recent survey
indicates that 60–70% of the trades on the NYSE are conducted
electronically, and half of those are algorithmic [25]), delays larger
than 100 microseconds can lead to arbitrage opportunities that can
be leveraged to produce large financial gains.

Trading networks frequently connect market data distributors to
trading floors via Ethernet-switched networks. A typical problem
encountered while maintaining these networks is a saturated core
1-Gbps link that increases latency by 10s of microseconds. The sit-
uation could be addressed (at significant cost) by upgrading the link
to 10-Gbps, but only after the overloaded link is detected and iso-
lated. Hence, a market has emerged for sub-microsecond measure-
ment. For example, Cisco resells a passive device manufactured by
Corvil [30] that can detect microsecond differences in latency [35].

High-performance computing: The move from supercomputing
to cluster computing has placed increased demands on data-center
networks. Today, Infiniband is the de-facto interconnect for high-
performance clusters and offers latencies of one microsecond or
less across an individual switch and ten microseconds end-to-end.
While obsessing over a few microseconds may seem excessive to
an Internet user, modern CPUs can “waste” thousands of instruc-
tions waiting for a response delayed by a microsecond. Back-end
storage-area networks have similar demands, where Fiber Channel
has emerged to deliver similar latencies between CPUs and remote
disks, replacing the traditional I/O bus.

As a result, many machines in high-performance data centers
are connected to Ethernet, Infiniband, and Fiber Channel networks.
Industry is moving to integrate these disparate technologies us-
ing commodity Ethernet switches through standards such as Fibre
Channel over Ethernet [16]. Hence, the underlying Ethernet net-
works must evolve to meet the same stringent delay requirements,
on the order of tens of microseconds, as shown in the specifica-
tions of recent Ethernet switch offerings from companies like Wo-
ven Systems [37] and Arista [4].

2.1.2 Metrics
Each of these domains clearly needs the ability to measure the

average latency and loss on paths, links, or even link segments.
However, in addition, the standard deviation of delay is important

256

A B

S1 S2

Ingress
Framer

Framer
Ingress

Framer

Framer
Egress

Egress

Switch
Packet Buffers

VOQs, DiffServ

VOQs, DiffServ
Packet Buffers

Fabric

Forwarding
Lookup

Lookup
Forwarding

Figure 1: An path decomposed into measurement segments.

because it not only provides an indication of jitter, but further al-
lows the calculation of confidence bounds on individual packet de-
lays. For example, one might wish to ensure that, say, 98% of
packets do not exceed a specified delay. (The maximum per-packet
delay would be even better but we show below that it is impossible
to calculate efficiently.)

2.2 Segmented measurement
The majority of operators today employ active measurement

techniques that inject synthetic probe traffic into their network to
measure loss and latency on an end-to-end basis [24, 31, 33]. While
these tools are based on sound statistical foundations, active mea-
surement approaches are inherently intrusive and can incur substan-
tial bandwidth overhead when tuned to collect accurate fine-grained
measurements, as we demonstrate later.

Rather than conduct end-to-end measurements and then attempt
to use tomography or inference techniques [2, 6, 8, 17, 27, 36, 38]
to isolate the latency of individual segments [18, 39], we propose to
instrument each segment of the network with our new measurement
primitive. (We will return to consider incremental deployment is-
sues in Section 5.2.) Thus, in our model, every end-to-end path can
be broken up into what we call measurement segments. For exam-
ple, as shown in Figure 1, a path from endpoint A to endpoint B
via two switches, S1 and S2, can be decomposed into five mea-
surement segments: A segment between A and the input port of
S1, a segment between the ingress port of S1 and the egress port
of S1, a segment between the egress port of S1 and the ingress port
of S2, a segment between the ingress port of S2 and the egress port
of S2, and a final segment between the egress port of S2 and B.

A typical measurement segment extending from just after recep-
tion on a router’s input port to just before transmission on the out-
put side has the potential for significant queuing. However, de-
ployments concerned with low latency (e.g., less than 100 μs) nec-
essarily operate at light loads to reduce queuing delays and thus,
latencies are on the order of 10s of microseconds. Such a router
segment can be further decomposed as shown in the bottom of Fig-
ure 1 into several segments corresponding to internal paths between
key chips in the router (e.g., forwarding engine to the queue man-
ager, queue manager to the switch fabric). Such decomposition
allows the delay to be localized with even finer granularity within a
router if queuing occurs and may facilitate performance debugging
within a router.

Thus, we focus on a single measurement segment between a
sender A and a receiver B. The segment could be a single link,
or may consist of a (set of) internal path(s) within a router that con-
tains packet queues. We assume that the segment provides FIFO
packet delivery. In practice, packets are commonly load balanced
across multiple component links resulting in non-FIFO behavior
overall, but in that case we assume that measurement is conducted
at resequencing points or separately on each component link. We
further assume that the segment endpoints are tightly time synchro-
nized (to within a few microseconds). If the clocks at sender and
receiver differ by e, then all latency estimates will have an additive
error of e as well.

Microsecond synchronization is easily maintained within a
router today and exists within a number of newer commercial
routers. These routers use separate hardware buses for time
synchronization that directly connect the various synchronization
points within a router such as the input and output ports; these
buses bypass the packet paths which have variable delays. Hence,
the time interval between sending and receiving of synchronization
signals is small and fixed. Given that most of the variable delays
and loss is within routers, our mechanism can immediately be de-
ployed within routers to allow diagnosis of the majority of latency
problems. Microsecond synchronization is also possible across sin-
gle links using proposed standards such as IEEE 1588 [15].

We divide time into measurement intervals of length T over
which the network operator wishes to compute aggregates. We en-
visage values of T on the order of a few hundred milliseconds or
even seconds. Smaller values of T would not only take up network
bandwidth but would generate extra interrupt overhead for any soft-
ware processing control packets. For simplicity, we assume that the
measurement mechanism sends a single (logical) control packet ev-
ery interval. (In practice, it may need to be sent as multiple frames
due to MTU issues.)

Thus in our model, the sender starts a measurement interval at
some absolute time ts by sending a Start control message. The
sender also begins to compute a synopsis S on all packets sent be-
tween ts and ts + T . At time ts + T , the sender also sends an
End control message. If the receiver gets the Start control message
(since control messages follow the same paths as data messages
they can be lost and take variable delay), the receiver starts the
measurement process when it receives the Start Control message.
The receiver computes a corresponding synopsis R on all packets
received between the Start and End Control messages. The sender
sends synposis S to the receiver in the End Control Message. This
allows the receiver to compute latency and loss estimates as some
function of S and R.

Note that the receiver can start much later than the sender if the
Start Control message takes a long time, but the goal is merely that
the sender and receiver compute the synopses over the same set
of packets. This is achieved if the link is FIFO and the Start and
End Control messages are not lost. Loss of control packets can be
detected by adding sequence numbers to control packets. If either
the Start or End Control packets are lost, the latency estimate for
an interval is unusable. Note that this is no different from losing a
latency estimate if a periodic probe is lost.

We assume that individual packets do not carry link-level times-
tamps. If they could, trivial solutions are possible where the sender
adds a timestamp to each packet, and the receiver subtracts this field
from the time of receipt and accumulates the average and variance
using just two counters. Clearly, IP packets do not carry times-
tamps across links; the TCP timestamp option is end-to-end. While
timestamps could be added or modified within a switch, adding a
32-bit timestamp to every packet can add up to 10% overhead to

257

the switch-fabric bandwidth. Further, loss would still need to be
computed with state accumulated at both ends. We will show that
by adding only a modest amount of state beyond that required for
loss measurements, we can also provide fine-grain measurements
of the average and standard deviation of latency.

2.3 Coordinated streaming
We measure the goodness of a measurement scheme by its ac-

curacy for each metric (in terms of relative error), its storage over-
head, bandwidth requirements, and its computational overhead. A
naïve solution to the measurement problem is for the sender to store
a hash and timestamp of each sent packet and for the receiver to do
the same for each received packet. At the end of the interval, the
sender sends the hashes and timestamps for all N packets to the
receiver, who then matches the send and receive timestamps of suc-
cessfully received packets using the packet hashes, and computes
the average. Indeed, Papagiannaki et al. used a similar approach in
their study of router delays [28]. Unfortunately, the naïve solution
is very expensive in terms of our performance measures as it takes
O(N) state at the sender and O(N) bandwidth to communicate the
timestamps. N can be large. For example, if measurement interval
is one second, and the segment operates at 40 Gbps, then N can be
as large as 125 million 40-byte packets. We aim for a scheme that
is well within the capabilities of today’s ASICs.

The quest for efficient solutions suggests considering streaming
algorithms. Several streaming algorithms are already popular in
the networking community for various applications such as finding
heavy hitters [11], counting flows [12], estimating entropy [20], and
computing flow-size distributions [19, 22]. The standard setting
for streaming problems considers a single computational entity that
receives a stream of data: The goal is to compute a function f of a
single set of N values using a synopsis data structure that is much
smaller than N .

Latency measurement, by contrast, is what we term a coordi-
nated streaming problem with loss. In the general setting, we have
two computational entities A and B. There are two streams of
data values ax and bx; ax is the time packet x left A, and bx is
the time it is received at B. Some packets are lost, so bx may be
undefined. The goal here is to compute some function f of the
set of (ax, bx) pairs. For measuring average latency, the function isP

x(bx−ax) over the cardinality of the set of packets for which ax

is defined (i.e., packets that are received and not lost). For measur-
ing variance, the function is

P
x(bx−ax)2 over the received pack-

ets. For measuring, say, the maximum delay, the function would
be max(bx − ax). In all cases, the function requires a pairwise
matching between a received data item and the corresponding sent
item—a requirement absent in the standard streaming setting.

The coordinated streaming setting is strictly harder than the stan-
dard setting. To see this, observe that computing the maximum data
item in the stream is trivial in a standard streaming using O(1)
space and O(1) processing. However computing the maximum
delay requires Ω(N) space, even without the assumption of loss.
(The proof is a straightforward reduction from Set Disjointness as
in Alon, Matias and Szegedy [3].) Despite this negative result for
the maximum delay, we will show that approximating both average
and standard deviation of delay can be done efficiently. In the next
section, we describe the Lossy Difference Aggregator, a mecha-
nism that estimates these statistics.

3. LDA
A Lossy Difference Aggregator (LDA) is a measurement data

structure that supports efficiently measuring the average delay and
standard deviation of delay. Both sender and receiver maintain an

LDA; at the end of a measurement period—in our experiments we
consider 1 second—the sender sends its LDA to the receiver and
the receiver computes the desired statistics. The only additional re-
quirements are tight time synchronization between sender and re-
ceiver (which is required by all one-way delay measurement mech-
anisms) and consistent packet ordering at the sender and receiver.

3.1 The data structure
To better explain the LDA, we begin with the simplest average

delay measurement primitive—a pair of counters—and then de-
velop the full LDA as shown in Figure 3.

3.1.1 No loss
To start, consider the problem of (passively) measuring the av-

erage latency between a sender A and a receiver B. A natural
approach is a pair of timestamp accumulators, adding up packet
timestamps on the sender and receiver sides, and a packet counter.
The average delay is then just the difference in timestamp accu-
mulators between sender and receiver, divided by the number of
packets: (TB − TA)/N . Of course, if packets are lost, this ap-
proach fails: The sender’s timestamp accumulator TA will include
the timestamps of the lost packets while the receiver’s will not.

3.1.2 Low loss
Consider the case of exactly one loss. If we randomly split the

traffic into m separate “streams” and compute the average latency
for each such “stream” separately, then a single loss will only make
one of our measurements unusable; we can still estimate the overall
average latency using the remaining measurements.

Practically speaking, we maintain an array of several times-
tamp accumulators and packet counters (collectively called a bank).
Each packet is hashed to one of the m accumulator-counter pairs,
and the corresponding timestamp accumulator and packet counter
are updated as before. By using the same hash function on the
sender and receiver, we can determine exactly how many packets
hashed to each accumulator-counter pair as well as how many of
them were lost. Note that the sum of the receiver’s packet counters
gives us the number of packets received and the sum of the sender’s
packet counters, the number of packets sent; the difference gives
the number of lost packets.

If a packet is lost, the sender’s packet counter at the index of the
lost packet will be one more than the corresponding packet counter
on the receiver. We call such an index unusable and do not use it
in calculating our average delay estimate. The remaining usable
indices give us the average delay for a subset of the packets. With
a single loss, m accumulator-counter pairs are roughly equivalent
to sampling roughly every m − 1 in m packets, providing a very
accurate estimate of the overall average latency. The number of
packets that hashed to a usable index is the effective sample size
of the latency estimate. In other words, it is as if we had sampled
that many packets to arrive at the estimate. In general, for a small
number of losses L, the expected effective sample size is at least a
(1− L/m) fraction of the received packets.

Example. Figure 2 shows an example configuration with m = 4
and exactly one lost packet that hashed to the second accumulator-
counter pair. The sum of packet delays from the other three usable
accumulator pairs is (180 − 120) + (37 − 15) + (14 − 6) = 90;
the effective sample size is 5 + 2 + 1 = 8. The estimated delay is
thus 90/8 = 11.25.

3.1.3 Known loss rate
For larger loss rates, we need to sample the incoming packets

to reduce the number of potentially unusable rows. Sampling can

258

120

5

234

10

15

2

6

1

timestamp acc.

packet counter

Sender

180

5

348

9

37

2

14

1

Receiver

60

 5 ✓
114

10≠9!

22

 2 ✓
8

 1 ✓

Difference

Unusable:
packet counts
don’t match

Figure 2: Computing LDA average delay with one bank of four
timestamp accumulator-counter pairs. Three pairs are usable
(with 5, 2, and 1 packets), while the second is not due to a packet
loss. Thus, the average delay is (60 + 22 + 8)/(5 + 2 + 1).

stage
Sampling

Hash

p
2

p
3

p
1

n banks

accumulator
Timestamp

Packet
counter

m
 r

ow
s

Only one bank
updated per

packet
different loss rates

Probabilities
tuned toward

Packet

Figure 3: The Lossy Difference Aggregator (LDA) with n banks
of m rows each.

easily be done in a coordinated fashion at receiver and sender by
(once again) hashing the packet contents to compute a sampling
probability. Thus we ensure that a packet is sampled at the receiver
only if it is sampled at the sender. At sample rate p, we expect
the number of lost packets that are recorded by the LDA to be pL,
so that the expected number of usable rows is at least m− pL. Of
course, packet sampling also reduces the overall number of packets
counted by the LDA, reducing the accuracy of the latency estimate.
In Section 3.3 we will address this issue formally; intuitively, how-
ever, we can see that for p on the order of m/L, we can expect at
least a constant fraction of the accumulator-counter pairs to suffer
no loss and therefore be usable in the latency estimator.

3.1.4 Arbitrary loss rate
So far we have seen that a single bank of timestamp accumulators

and packet counters can be used to measure the average latency
when the loss rate is known a priori. In practice, of course, this is
not the case. To handle a range of loss rates, we can use multiple
LDA banks, each tuned to a different loss rate (Figure 3). (In our
experiments, we found that two banks are a reasonable choice.)

At first glance, maintaining multiple banks seems to require
maintaining each bank independently and then choosing the best

bank at the end of the measurement period for computing the es-
timate. However, we can structure a multi-bank LDA so that only
one bank needs to be updated per sampled packet.

The trick is to have disjoint sample sets, so that each packet is
sampled by a single bank, if at all. This way, only a single bank
needs to be updated and later, during post-processing, no packet is
double-counted. Furthermore, as a practical matter, a single row
hash function can be shared by all banks. Each packet is hashed
to a row uniformly and to a bank non-uniformly according to bank
sampling probabilities p1, p2, . . . , pn. For non-uniform sampling
probabilities that are powers of 1/2, this can be implemented by
hashing each packet to an integer uniformly and using the number
of leading zeros to determine the one bank that needs to be up-
dated. We can compute the average delay by combining all useable
elements across all banks. The full m × n LDA is shown in Fig-
ure 3.

Example. Consider two banks having sampling probabilities
p1 = 1/23 and p2 = 1/27. Each packet is hashed to an integer.
If the first seven bits are zero, then bank 2 is updated. Otherwise,
if the first three bits are zero, then bank 1 is updated. Otherwise, if
the first three bits are not all zero, the packet is not sampled.

3.2 Update procedure
Formally, the update procedure is as follows. Let x denote a

packet, h(x) the row hash function, and g(x) the bank sampling
hash function. The row hash function h(x) maps x to a row in-
dex distributed uniformly between 1 and m. The sampling hash
function g(x) maps x to bank j, where g(x) = j with probability
pj . In our analysis we assume that h and g are 4-universal (which
is amenable to efficient implementation), although in practice this
may not be necessary. We use the special value g(x) = 0 to de-
note that the packet is not sampled. Upon processing a packet x
at time τ , timestamp τ is added to the timestamp accumulator at
position (h(x), g(x)), and the corresponding packet counter is in-
cremented. If g(x) = 0, the the packet is simply ignored. Using
T to denote the m × n array of timestamp accumulators and S to
denote corresponding array packet counters, the procedure is:

1. i← h(x)
2. j ← g(x)
3. if j ≥ 0 then
4. T [i, j]← T [i, j] + τ
5. S[i, j]← S[i, j] + 1
6. end if

3.3 Average latency estimator
From the discussion above, estimating the average latency is

straightforward: For each accumulator-counter pair, we check if
the packet counters on the sender and receiver agree. If they do, we
subtract the sender’s timestamp accumulator from the receiver’s. If
they don’t, this accumulator-counter pair is considered unusable.
The average delay is then estimated by the sum of these differences
divided by the number of packets counted.

Formally, let TA[·, ·] and TB [·, ·] denote the m × n timestamp
accumulator arrays of the sender and receiver, respectively, and
SA[·, ·] and SB [·, ·] the corresponding packet counters. Call a posi-
tion (i, j) usable if SA[i, j] = SB [i, j]. Let uij be an indicator for
this event, that is, uij = 1 if (i, j) is usable and uij = 0 otherwise.
Define

TA =
mX

i=1

uijTA[i, j] and TB =
mX

i=1

uijTB [i, j];

TA and TB are the sum of the of the useable timestamp accu-
mulators on the sender and receiver, respectively. By definition

259

uijSA[i, j] = uijSB [i, j], so let

S =
mX

i=1

uijSA[i, j] =
mX

i=1

uijSB [i, j].

The estimate, then, is

D =
1

S

`
TB − TA

´
.

The quantity S is is the effective sample size from which the av-
erage latency is calculated. In other words, if one were to sample
and store packet timestamps, the number of packets sampled would
need to be at least S to achieve the same statistical accuracy as the
LDA. Using a Hoeffding inequality [13], it can be shown that

Pr[|D − μ| ≥ εμ] ≤ 2e−ε2Sμ2/2σ2
(1)

where μ and σ are the actual mean and standard deviation of the de-
lays. When σ ≈ μ the estimate is very accurate given a reasonable
effective sample size. Let R and L be the number of received and
lost packets, respectively, so that R+L = N . For a single bank and
L ≥ m, setting the packet sampling probability p = αm/(L + 1),
where α is a parameter to be optimized, gives an expected effective
sample size of

E[S] ≥ α(1− α) · m

L + 1
· R. (2)

Note that if we were to store the sampled packets, the expected
sample size would be just pR with a tight concentration around this
value; however because we are not storing the packets but record-
ing them in the LDA, we pay a constant factor (1 − α) penalty in
the effective sample size and a higher variance. To maximize the
bound, we set α = 0.5, the value we use in our experiments.

3.4 Latency standard deviation
Note that we exploited the fact that the sum of the differences of

receive and send packet time stamps is the same as the difference
of their sum. While this reshuffling works for the sum, it does not
work for the sum of squares. Despite this obstacle, we now show
that the LDA can also be used to estimate the standard deviation
of the packet delays. This is crucial because an accurate measure
for standard deviation allows a network manager to compute tight
confidence intervals on the delay, a highly desirable feature in a
trading or high-performance computing applications.

Again, let’s start by assuming no loss; we can correct for loss
later using the same hashing technique as we used for the average.
Consider the two timestamp sums we already keep at the sender
and receiver, TA and TB . If we take the difference, this is just the
sum of packet delays. If we now square this difference, we getX

x

(bx − ax)2 +
X
x �=x′

(bx − ax)(bx′ − ax′)

The first sum (of delays squared) is exactly what we need for com-
puting the standard deviation, since

σ2 =
X

x

(bx − ax)2 − μ2, (3)

but we also get unwanted cross terms. Fortunately, the cross terms
can be eliminated using a technique introduced by Alon, Matias
and Szegedy [3]. The idea is to keep a slightly different timestamp
accumulator on the sender and receiver: instead of simply adding
the timestamp, we add or subtract with equal probability based on
a consistent hash. Using sx to denote the ±1 hash of the packet,
we now have:

„ X
x

sxbx −
X

x

sxax

«2

(4)

=

„ X
x

sx(bx − ax)

«2

=
X
x,x′

sxsx′(bx − ax)(bx′ − ax′)

=
X

x

s2
x(bx − ax)2 +

X
x �=x′

sxsx′(bx − ax)(bx′ − ax′)

The expectation of the cross terms E[sxsx′] is zero, giving us an
unbiased estimator for the square of the delays squared.

So far this implies that we keep a separate signed timestamp ac-
cumulator. Also, to deal with loss we would have to keep an array
of such counters, doubling the number of timestamp accumulators.
Fortunately, we can mine the existing LDA. Observe that the sign
hash sx above can be computed using the low-order bit of the hash
function we use to compute a row index in the full LDA. To achieve
the same effect without adding additional memory, we use this low-
order bit of the row hash value h(x) as the sign bit, “collapsing”
adjacent rows. (Thus the estimator uses 1

2
m rows.)

Define the collapsed 1
2
m×n timestamp accumulator and packet

counter arrays as:

T̃A(i, j) = TA[2i, j]− TA[2i − 1, j]

T̃B(i, j) = TB [2i, j]− TB[2i − 1, j]

S̃A(i, j) = SA[2i, j] + SA[2i− 1, j]

S̃B(i, j) = SB [2i, j] + SB [2i− 1, j]

Let ũij be an indicator for a position being usable; that is, ũij = 1
if S̃A(i, j) = S̃B(i, j), and ũij = 0 otherwise. As in the aver-
age latency estimator, let S̃ =

P
ũijSA(i, j). Our latency second

frequency moment estimator is

F =
1

S̃

m/2X
i=1

ũij

`
T̃B(i, ũi)− T̃A(i, ũi)

´2
. (5)

It is straightforward to show that

E[F] =
1

R

X
x

(bx − ax)2

We can then estimate the standard deviation of the delays using (3).
The variance of F is upper-bounded by

Var[F] =
1

R2

„
R− S̃

S̃

rec’dX
x

w4
x + 2

rec’dX
x �=x′

w2
xw2

x′

«
.

For comparison, the basic estimator (4), which does not handle
packet loss, has variance

2

R2

rec’dX
x �=x′

w2
xw2

x′ .

By averaging several instances of the estimator as in [3], the vari-
ance can be reduced arbitrarily. In our experiments, however, we
use the estimator (5) directly with satisfactory results. It is worth
remembering that this standard deviation estimate comes “for free”
by mining the LDA data structure (designed for estimating average)
for more information.

260

4. EVALUATION
Our evaluation has three major goals. First, we wish to empiri-

cally validate our analyses of an optimal LDA’s estimates, both in
terms of average delay and standard deviation. Second, we analyze
various tuning options to select a set of practical configuration op-
tions. Finally, we use the resulting parameter settings to compare
the efficacy of a practical LDA to the current cost-effective alter-
native: Poisson-modulated active probing. (We do not compare
against special-purpose passive monitoring devices [35], as they
are prohibitively expensive to deploy at scale.)

We have implemented a special-purpose simulator in C++ to fa-
cilitate our evaluation1. The simulator generates packet traces with
various loss and delay distributions and implements several differ-
ent variants of the LDA data structure, as well as active probing and
the associated estimators needed to compare LDA with the active
probing approach.

In an effort to evaluate LDA in realistic scenarios, we use de-
lay and loss distributions drawn from the literature. In particular,
Papagiannaki et al. report that packet delays recorded at a back-
bone router are well modeled by a Weibull distribution [28], with a
cumulative distribution function

P (X ≤ x) = 1− e(−x/α)β

with α and β representing the scale and shape respectively. Unless
otherwise noted, all of our experiments consider a Weibull distri-
bution with their recommended shape parameter (0.6 ≤ β ≤ 0.8).
For comparison purposes, we also simulated Pareto distribution
generated according to the function P (X ≤ x) = 1 − (x/α)−β

with α and β representing the scale and shape parameters respec-
tively and β chosen between 3 to 5 so that the delay values do
not become too skewed and to ensure that the distributions have
bounded variance.

In order to ensure that sampled delay values do not cause packet
reordering, we assign timestamps to packets such that two succes-
sive packets always differ by more than the delay of the first packet
drawn from the distribution. In other words, we ensure that there
is always only one packet in flight at any given instant by enforc-
ing that a given packet begins transmission only after the previ-
ous packet has reached the receiver. This does not bias our results
in any way since LDA does not care about the actual timestamps
themselves; it’s only the differences that matter.

LDA performance is independent of loss distribution within an
interval, so most experiments use a uniform loss model for simplic-
ity. For our comparisons with active probes—whose performance
depends on the loss distribution—we use exponentially distributed
loss episodes (as suggested by Misra et al. in their study of TCP
behavior [26]), where each episode involves dropping a burst of
packets (following the model of Sommers et al. [33]).

4.1 Validation
The main goal of the set of experiments described in this subsec-

tion is to empirically validate our analytical bounds using a simple
single-bank LDA. In particular, we study the accuracy of LDA’s
estimates over different delay and loss distributions.

For these simulations, we configure the LDA to use n = 1
bank of m = 1, 024 counters. We simulate a 10-Gbps OC-192
link which, assuming an average packet size of 250 bytes, carries
roughly five million packets per second at capacity. (The choice

1The main advantage of standard packages like ns2 is the library
of prexisting protocol implementations like TCP, the vast majority
of which are not needed in our experiments. Thus, we feel the
remaining benefits are outweighed by the simplicity and significant
speed up of a custom solution.

1

100

10000

1000000

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

S
am

pl
e

si
ze

Loss rate

LDA
Expected

Figure 4: The sample size obtained by a single-bank LDA as a
function of loss rate.

of 250-byte packets is arbitrary and results in round numbers; the
functionality of LDA is not impacted by packet size.) We simu-
late a measurement interval of one second (so N = 5, 000, 000
and an average delay of 0.2 μs). For different distributions, we en-
sure consistency by adjusting the scale parameters appropriately to
match the mean delay of 0.2 μs.

In order to isolate the effects of packet loss, for each experiment,
we first generate a packet trace according to the desired delay dis-
tribution using a particular random seed, and then impose varying
levels of loss. Each graph presented in this section uses the same
random seed for the delay distribution.

We first verify empirically that the actual sample size obtained
using our data structure matches expectation. For the purposes of
this experiment, we assume that we know a priori the loss rate l; we
compute the number of lost packets L = N · l and set the sampling
probability accordingly as p = αm/(L + 1), where α = 0.5.

Figure 4 shows the number of samples captured by the LDA as
we vary the loss rate from 0.5% to 20%, as well as the expected
value given by Equation 2. Two main observations can be made
from the figure: First, as expected, the sample size decreases as loss
rate increases. Second, our analytical bound is conservative; LDA
captures more samples in simulation than according to theory.

In Figure 5(a), we plot the average relative error (defined as
|true − estimated|/|true|) of LDA as we vary the loss rate. We
obtain the ground truth by maintaining the full delay distribution.
Each point corresponds to the average of the relative error across a
set of ten independent runs—i.e., the packet trace is the same, but
the LDA selects a different random set of packets to sample during
each run. The LDA is optimally configured for each loss rate as
in the previous subsection. As expected, the relative error of the
estimate increases as the loss rate increases because the number of
available samples decreases with loss rate. While the curves all
follow the same general trend, the estimates for the Weibull dis-
tributions are less accurate compared to Pareto. For the particu-
lar shape parameters we simulated, the Weibull distribution suffers
from a larger variance than Pareto—variance is 0.123 at β = 0.6
for Weibull as compared to 0.013 at β = 3 for Pareto. LDA there-
fore requires more samples for Weibull to obtain the same accuracy
level as Pareto. Even in the worst case of 20% loss, however, the
estimates have less than 4% error on average. At low loss rates (<
0.1%), LDA estimates have less than 0.3% error. Results from sim-
ilar experiments with a variety of random seeds are qualitatively
similar; the relative error at loss rates of even 6% across different
traces is never more than 3% with an average of about 0.2%.

261

 0.01

 0.02

 0.03

 0.04

 0.05

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

R
el

at
iv

e
er

ro
r

Loss rate

Weibull (0.133,0.6)
Weibull (0.158,0.7)
Weibull (0.177,0.8)
Pareto (0.133,3.0)
Pareto (0.150,4.0)
Pareto (0.160,5.0)

(a) Average relative error

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

D
el

ay
 (

us
ec

)

Loss rate

98% confidence

(b) Estimated average delay

Figure 5: Average relative error and 98% confidence bounds of
the delay estimates computed by LDA as a function of loss rate.
Actual mean delay is 0.2 μs in all cases. In (b), each curve rep-
resents an LDA with different random seed on the same trace.

Low error in expectation is nice, but some applications require
guarantees of accuracy in every instance. To validate our error
bounds, we focus on the delay distribution with the least accurate
estimates from above, namely the (α = 0.133, β = 0.6) Weibull
distribution. In Figure 5(b), rather than report relative error, we
graph the actual delay estimate computed by a representative five
of the ten constituent runs in Figure 5(a). In addition, we plot the
98%-confidence bounds computed using Equation 1. The actual
confidence bound depends on the number of samples obtained by
each LDA, and, therefore, varies across instances. Each error bar
shown in the figure corresponds to the most conservative bound
computed based on the run that collected the smallest number of
samples across the ten runs from Figure 5(a). While confidence
decreases with higher loss rates, all of the individual estimates re-
ported in our simulation remain quite close to the actual value. Re-
sults of other distributions are even tighter.

For the same setup as above, we also measure the accuracy of the
LDA’s standard-deviation estimator (obtained from the variance es-
timator). We plot the average relative error incurred for different
distributions in Figure 6. Estimates suffer from about 20-50% rela-
tive error for Pareto to less than 10% error for Weibull distributions,
independent of loss rate. The magnitude of the relative error obvi-
ously depends on the actual standard deviation of the underlying
distribution, however. The true standard deviation of delay in the

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2

R
el

at
iv

e
er

ro
r

Loss rate

Weibull (0.133,0.6)
Weibull (0.158,0.7)
Weibull (0.177,0.8)
Pareto (0.133,3.0)
Pareto (0.150,4.0)
Pareto (0.160,5.0)

Figure 6: Average relative error of LDA’s standard-deviation
estimator as a function of loss rate.

Pareto- and Weibull-distributed traces is about 0.35 and 0.11 re-
spectively. Hence, the absolute error of LDA’s standard-deviation
estimator is similarly small in both cases. Delays in Internet routers
are reported to be well-modeled by a Weibull distribution [28], so
relative error is likely to be small in practice.

4.2 Handling unknown loss rates
Up to this point, we have configured each LDA optimally for

the actual loss rate. Obviously, any real deployment will need to
be configured for a range of loss rates. Here, we evaluate the effi-
cacy of various configurations of multi-bank LDAs over a range
of loss rates. In particular, each bank within the LDA is tuned
(p = αm/(L + 1), α = 0.5 as before) to a different target loss
rate. We consider three alternatives, each with the same total num-
ber (1,024) of counters: two banks of 512 counters tuned towards
loss rates of 0.005 and 0.1, three banks with roughly one-third of
the counters tuned towards loss rates of 0.001, 0.01 and 0.1, and, fi-
nally, four banks of 256 counters each tuned for loss rates of 0.001,
0.01, 0.05 and 0.1, respectively. These particular configurations are
arbitrary; operators may find others better suited for their networks.

We present results along the same three dimensions considered
previously—effective sample size, relative error of delay and stan-
dard deviation estimates—in Figure 7. To facilitate comparison,
we continue with the same uniform loss and Weibull delay distri-
butions and replot the optimal single-bank case configured for the
actual loss rate as shown in Figures 5 and 6.

Figure 7(a) shows that while practical configurations collect
fewer samples than optimal, the absolute value is not too far from
our analytical estimates for the single-bank case. The delay and
standard deviation curves in Figures 7(b) and 7(c) follow a similar
trend. The LDAs perform comparably across the ranges of loss,
although the four-bank LDA performs the worst of the three when
the loss rates are high. The number of buckets invested by the four-
bank LDA tuned towards high loss rates (10%) is low, so it strug-
gles to keep up. We note, however, that most real networks operate
at low loss rates—typically substantially less than 5%. In conclu-
sion, we expect a two-bank LDA configuration tuned to relatively
low loss rates will be appropriate for most deployments.

4.3 Comparison with active probes
We compare the accuracy of the delay and standard deviation es-

timates obtained using the two-bank LDA to those that are obtained
using Poisson-distributed active probes (such as those used by the
well-known zing tool [24]) for various probe frequencies. The ac-

262

1

100

10000

1000000

 0.05 0.1 0.15 0.2

E
ffe

ct
iv

e
sa

m
pl

e
si

ze

Loss rate

Single bank
Two banks

Three banks
Four banks

(a) Sample size

 0
 0.01
 0.02
 0.03
 0.04
 0.05
 0.06
 0.07
 0.08
 0.09

 0.05 0.1 0.15 0.2

R
el

at
iv

e
er

ro
r

Loss rate

Single bank
Two banks

Three banks
Four banks

(b) Delay

 0
 0.05

 0.1
 0.15

 0.2
 0.25

 0.3
 0.35

 0.4
 0.45

 0.5

 0.05 0.1 0.15 0.2

R
el

at
iv

e
er

ro
r

Loss rate

Single bank
Two banks

Three banks
Four banks

(c) Standard deviation

Figure 7: The performance of various multi-bank LDA configurations.

10-1

100

101

102

103

104

105

106

 0.0001 0.001 0.01 0.1

E
ffe

ct
iv

e
sa

m
pl

e
si

ze

Loss rate

LDA
10000 Hz
1000 Hz

144 Hz
7 Hz
1 Hz

(a) Sample size

0.001

0.01

0.1

1

10

 0.0001 0.001 0.01 0.1

A
ve

ra
ge

 r
el

at
iv

e
er

ro
r

Loss rate
(b) Delay

0.01

0.1

1

 0.0001 0.001 0.01 0.1

A
ve

ra
ge

 r
el

at
iv

e
er

ro
r

Loss rate
(c) Standard deviation

Figure 8: Sample size, delay and standard deviation estimates obtained using a two-bank LDA in comparison with active probing at
various frequencies. Log-scale axes.

curacy of the active probing approach depends critically upon the
frequency, so we provide a selection of natural comparison points.
One approach is to hold communication overhead constant. First,
we consider an active-probing mechanism that communicates as
frequently as LDA—once an interval, or 1 Hz. In practice, how-
ever, the LDA data structure is too large to fit into one MTU-sized
packet—an Ethernet implementation would actually need to send
seven separate packets per interval assuming 1,024 × 72 bits≈ 72
Kbits for the data structure and 1,500-byte packets. Thus, to be
fair in terms of number of packets per second, we also use a prob-
ing frequency of 7 Hz. Moreover, probe packets are much smaller
(containing only one timestamp and no counters), so holding band-
width constant—as opposed to packet count—results in a probing
rate of about 144 Hz (assuming probe packets of size 64 bytes).
As we shall see, however, none of these rates approach the accu-
racy of LDA; hence, we also plot a frequency that delivers roughly
equivalent performance: 10,000 Hz.

We generate Poisson-modulated active probes by injecting probe
packets at intervals distributed according to a Poisson process with
the desired average inter-arrival time, and then subjecting the probe
packets to the same delay distribution as the regular traffic. In a nor-
mal queue, adding an active probe affects the queuing dynamics—
for example, it may cause packets behind to experience higher de-
lays and in some cases, even be dropped. We do not, however, re-
create such effects on packets behind active probes, because packet
delays are already based on a distribution and simulating such af-
fects will cause delays to deviate from the distribution. Thus, the
delays of regular packets are not impacted by the presence of active
probes; only their timestamps are shifted.

For these experiments, we continue to use the same Weibull de-
lay distribution as before, but with exponentially distributed (as op-

posed to uniform) loss episodes with each episode consisting of
about 100 packets. We plot two sets of graphs. First, in Figure 8, we
compare the effective sample size, average relative error in the de-
lay and standard deviation estimators using active probes at various
frequencies as well as LDA. In Figure 9, we show the confidence
bounds obtained for LDA. (We refrain from presenting confidence
intervals for active probes, as the bounds that can be derived are
unfairly loose.)

Figure 8(a) clearly shows the impact of increased probe fre-
quency: more samples. As before, each point represents the aver-
age of ten runs. The number of samples collected by active probes
decreases by a small amount as the loss rate increases due to the
lost probes. While the number of effective samples obtained by
LDA decreases more rapidly, the sample size remains far larger
than those obtained by all but the most aggressive active probing
rates under significant (> 1%) loss. Consequently, the average rel-
ative error observed by LDA (0.2–4%) is significantly lower than
that for active probes with an equivalent number of packets (almost
100%) as shown in Figure 8(b). Even when we hold the measure-
ment bandwidth steady across LDA and active probes (144 Hz),
we observe at least an order of magnitude (11% compared to less
than 1% at loss rates less than 1%) difference in the relative er-
ror between the two. While the improvement in standard deviation
estimates is not as stable as the average delay estimates, LDA is
still considerably more accurate (3%–9% vs. ≈ 15%) over realistic
(< 5%) loss rates. Overall, only the 10,000 Hz probing rate pro-
vides accuracy approaching LDA. Said another way, active probing
requires 50–60 times as much bandwidth to achieve similar results.

Perhaps more importantly, however, LDA is significantly more
reliable. Figure 9 shows that the 98%-confidence intervals for the
constituent LDA runs from Figure 8(a) are quite small—generally

263

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.0001 0.001 0.01 0.1

D
el

ay
 (

us
ec

)

Loss Rate

98% Confidence

Figure 9: Delay estimates and 98% confidence bounds from a
two-bank LDA. Actual mean delay is 0.2 μs.

within 25% of the mean (for loss rates less than 0.1%) and less
than a factor of two even at 10% loss. Empirically, however, each
estimate is well inside the analytical envelope. Focusing on loss
rate regimes that the LDA was tuned for, e.g., 0.16%, the maximum
relative error across all runs of LDA was 0.17%. The same cannot
be said for active probing, however, which had runs with relative
errors as large as 87% for 7 Hz and 13% for 144 Hz. Once again,
only 10,000-Hz probes were competitive, with a maximum relative
error of 0.15%.

5. REALIZATION
In this section, we discus two separate aspects of LDA deploy-

ment. First, we explain how LDAs can be implemented within a
router by presenting a sample design. Then, we describe how LDAs
could be deployed across routers (i.e., to measure links) and used
for fault localization.

5.1 Hardware implementation
We have sketched out the base logic for LDA that we estimate

takes less than 1% of a low-end 10 mm× 10 mm networking ASIC,
based on the standard 400-MHz 65-nm process currently being em-
ployed by most networking chipset vendors. The logic is flow-
through—in other words, it can be inserted into the path of a link
between the sender and receiver end without changing any other
logic—allowing LDA to be incrementally deployed within existing
router designs.

A minimal implementation would place a single LDA together
with MAC logic at ingress and egress links; ingress-egress paths
pass through a number of points within a router where packets can
be queued and, therefore, delayed or lost. We envision, however,
that deployed LDAs will contain a packet classifier that identifies
a particular class of traffic, such as flows to a specified TCP port.
Hence, it may be useful to include multiple LDAs on a single line
card. Most mid-range ASICs should be able to afford up to ten
separate copies of the LDA logic to handle various traffic classes
and/or priority levels. Finally, we observe that while many routers
internally stripe packets at various points in the router which would
break our FIFO assumption, packets are resequenced at various
points. Thus, rather than placing LDA logic on every striped path,
it may be cheaper to place the LDA receiver logic where resequenc-
ing takes place.

Figure 10 shows a schematic of our initial design. The logic at
sender and receiver is nearly identical. At the sender (receiver) the
first X bytes of the packet—say fifty—are sent to the logic. The

Counter TS_Sum Counter TS_Sum

Classifier

Hash

Extract

Update Logic

Control Logic

Bank 1 Bank M
Packet

Control ?

Figure 10: Potential LDA chip schematic

logic first determines if it is a control or data packet using, say, an
Ethernet type field.

If the received packet is a data packet, a classifier is used to se-
lect the type of packet being measured. The update logic extracts
some fixed bytes from the packet (say bytes 50–100) and computes
a hash. H3 hash functions [29], for example, can be implemented
efficiently in hardware using XOR arrays and can be easily modi-
fied. Our estimates use a Rabin hash whose loop is unrolled to run
at 40 Gbps using around 20,000 gates.

The hash output supplies a 64-bit number which is passed to the
update logic. The high-order bits select the sampling probability
which in turn determines which bank is selected. For example, if
there are two banks, that are selected with probabilities 1/2 and
1/64, the six high-order bits are used. If the first six bits are zero,
the second bank is selected; if the first six bits are non-zero and the
first bit is zero, the first bank is selected.

If a bank is selected, the low-order bits of the hash are used to
post a read to the corresponding bank. For example, if each bank
has 1,024 counters, we use the ten low-order bits. The update logic
then reads the 72-bit value stored at the indicated location. The first
32 bits are a simple packet counter that is incremented. The last 40
bits are a time stamp sum (allows nanosecond precision) to which
the current value of the hardware clock is added. The updated value
is then written back to the same location.

The sender-side logic conceptually generates control packets
at the end of each measurement interval. Control packets are
sequence-numbered so that loss of control packets translate into
a measurement interval being ignored. When the receiver logic re-
ceives the sender’s control packets and updates its own, it sends
the control packets to a line-card processor which computes delay,
loss, and variance estimates in software which it can then report to
a management station on demand.

The control logic can work in two ways. The simplest way is to
keep two copies of each counter so that the control logic can work
on reading and zeroing LDA counters for a prior interval into con-
trol packet(s) concurrently with the update process. Alternately,
two control packets can be used: one to record the end of an in-
terval, and a second control packet sent T ′ seconds later to denote
the start of the next interval. During the intervening period, the up-
date logic is disabled to allow the control logic to read all counters.
The disadvantage is that though T ′ can be small, a small number of
samples (say 100) are ignored.

The logic for counters is placed in SRAM while the remaining
logic is implemented in flops. In a 65-nm 400-Mhz process, 1,000

264

SRAM counters of 72 bits each takes 0.13 mm2. While the size for
the hash logic is about 20,000 gates, we conservatively estimate an-
other 30,000 gates for the classifier (a simple mask-and-compare to
one specified header), header extraction, and counter update, yield-
ing a total of around 50,000, or approximately 0.1 mm2 in a 65-nm
process. The grand total is around ≈ 0.23 mm2. Even if we dou-
ble the width of the counters and keep two copies of the entire data
structure (to handle sender and receiver logic), an LDA still repre-
sents less than 1% of the area of the lowest-end (10 mm × 10 mm)
ASICs on the market today.

5.2 Deployment and fault localization
The easiest path to deployment is to first deploy within individ-

ual routers where the majority of loss and delay occur. It may also
be useful to deploy across links because of optical device (e.g.,
SONET) reconfigurations and degradations. The difficulty with de-
ploying across links is the need for microsecond precision and the
need for a protocol change. Fortunately, a solution to both prob-
lems can be found in terms of a new precision time-synchronization
standard called IEEE 1588 [15] being deployed by major router
vendors. IEEE 1588 uses synchronization messages that are inter-
cepted by hardware. IEEE 1588 can easily be extended to handle
LDA using a few extra control message types and the logic de-
scribed above.

Significant benefits can be derived from a full deployment, where
LDAs are deployed at each and every router and link. In par-
ticular, performance fault localization—traditionally a very chal-
lenging problem [18, 39]—becomes straightforward. We envision
the presence of a centralized monitoring station which could use
a topology monitor (such as OSPF monitor [32]) to decompose a
misbehaving end-to-end path into segments, and query each seg-
ment to isolate the misbehaving (e.g., high-delay) segment. Scal-
ing to hundreds or even thousands of collectors seems straightfor-
ward, as each summary structure is only a few kilobits in size. Even
maintaining one-second intervals—which may be overkill for large
deployments—the bandwidth requirement at the collection point
would be on the order of a megabit per second for a thousand mea-
surement points.

Even stopping short of pervasive deployment, LDA can be ex-
tended to include virtual links between pairs of upgraded routers, in
an overlay topology consisting of just upgraded routers connected
via legacy router hops. We omit the details for lack of space, but
our experiments with RocketFuel topologies show that upgrading
1/6th of the routers in the Sprint topology reduces the localization
granularity (the average path length between upgraded routers) to
around 1.5.

6. RELATED WORK
Traditionally, network operators determined link and hop proper-

ties using active measurement tools and inference algorithms. For
example, the work by Chen et al. [6] and Duffield et al. [8] solve the
problem of predicting the per-hop loss and latency characteristics
based on end-to-end measurements (e.g., conducted using active
probing tools [33, 24]) and routing information obtained from the
network (e.g., using OSPF monitoring [32]). The advantages of our
approach in comparison are two fold. First, LDA computes path
and link properties by passively monitoring traffic in a router, so
it does not interfere with measurements or waste bandwidth by in-
jecting any active probes. Second, LDA captures fine-grain latency
measurements that can be only be matched by extremely high fre-
quency active probes (as discussed in Section 4.3). Further, in our
evaluation, we compared against localized active probes (i.e., be-
tween every pair of adjacent routers), which are more fine-grain

than the current best practice (end-to-end probing) as it does not
scale, requiring the monitoring of O(m) ≈ O(n2) segments where
m is the number of links, n is the number of routers.

We are not the first to suggest router extensions in support of
fine-grain measurement. For example, Machiraju et al. argue
for a measurement-friendly network architecture where individ-
ual routers provide separate priority levels for active probes [23].
Duffield et al. suggest the use of router support for sampling packet
trajectories [10]. Passive measurement of loss and delay by directly
comparing trajectory samples of the same packet observed at dif-
ferent points has been studied by Zseby et al. [40] and Duffield
et al. [9]. Many high-speed router primitives have also been sug-
gested in the literature for measuring flow statistics and detecting
heavy-hitters [7, 11].

Papagiannaki et al. used GPS-synchronized (to microsecond ac-
curacy) passive monitoring cards to trace all packets entering and
leaving a Sprint backbone router [28]. Each packet generates a
fixed-size time-stamped record, allowing exact delays, as well as
other statistics, to be computed to within clock accuracy. From a
measurement standpoint, their approach represents the ideal: exact
packet-for-packet accounting. Unfortunately, as they themselves
point out, such an approach is “computationally intensive and de-
manding in terms of storage,” making wide-spread production de-
ployment infeasible. Hohn et al. describe a mechanism to obtain
router delay information using the amplitude and duration of busy
periods [14]. While their approach provides only an approximate
distribution, it can be effective in determining the order of magni-
tude of delay.

7. CONCLUSION
This paper proposes a mechanism that vendors can embed di-

rectly in routers to cheaply provide fine-grain delay and loss mea-
surement. Starting from the simple idea of keeping a sum of sent
timestamps and a sum of receive timestamps which is not resilient
to loss, we developed a strategy to cope with loss using multiple
hash buckets, and multiple sampling granularities to deal with un-
known loss values. Further, we adapt the classic approach to L2-
norm estimation in a single stream to also calculate the standard
deviation of delay. Loss estimation, of course, falls out trivially
from these data structures.

We emphasize that our mechanism complements—but does not
replace—end-to-end probes. Customers will continue to use end-
to-end probes to monitor the end-to-end performance of their appli-
cations. Further, it is unlikely that LDA will be deployed at all links
along many paths in the near future. However, LDA probes can
proactively discover latency issues, especially at very fine scales,
that a network manager can then address. Further, if an end-to-end
probe detects a problem, a manager can use the LDA mechanism
on routers along the path to better localize the problem.

While our setting begs comparisons to streaming, we introduce
a new streaming problem: two-party coordinated streaming with
loss. In this setting, problems that were trivial in the single-party
streaming setting (such as identifying the maximum value) are now
provably hard. Thus, we believe coordinated streaming may be
an interesting research area in its own right: Which coordinated
functions can be computed with low memory? Further, there are
functions which would be useful in practice (e.g., loss distributions)
that we do not yet know how to compute efficiently.

From a router-vendor standpoint, the efficiency of the proposed
technique seems acceptable. Moreover, we observe that all mi-
crochips today have a component called JTAG whose overhead
chip vendors happily pay for the benefit of increased ease of con-
figuration and debugging. Our broader vision is that all networking

265

chips should also have a small “MTAG” component to facilitate
fine-grain measurement of latency and loss. The LDA primitives
described in this paper would be a candidate for such an MTAG
component. With such a component universally deployed, the net-
work manager of the future could pin-point loss spikes anywhere
in the networking path of a critical network application with mi-
crosecond accuracy.

Acknowledgments
Hilary Finucane first observed that arbitrary columns of the LDA
can be summed to compute a more accurate estimate. In addition,
the authors are indebted to John Huber of Cisco Systems for provid-
ing sizing information critical to our hardware design; and Michael
Mitzenmacher, Subhash Suri, the anonymous reviewers, and Dar-
ryl Veitch, our shepherd, for comments on previous versions of this
manuscript. This work was supported in part by NSF awards CNS-
0347949, CNS-0831647, and a grant from Cisco Systems.

8. REFERENCES
[1] Corvil, Ltd. http://www.corvil.com.
[2] Multicast-based intference of network-internal characteristics.

http://gaia.cs.umass.edu/minc/.
[3] ALON, N., MATIAS, Y., AND SZEGEDY, M. The space complexity

of approximating the frequency moments. J. Computer and System
Sciences 58, 1 (Feb. 1999), 137–147.

[4] ARISTA NETWORKS, INC. 7100 series datasheet. http://www.
aristanetworks.com/en/7100_datasheet.pdf, 2008.

[5] BEIGBEDER, T., COUGHLAN, R., LUSHER, C., PLUNKETT, J.,
AGU, E., AND CLAYPOOL, M. The effects of loss and latency on
user performance in Unreal Tournament 2003. In Proceedings of the
ACM SIGCOMM Workshop on Network Games (Aug. 2004).

[6] CHEN, Y., BINDEL, D., SONG, H., AND KATZ, R. H. An algebraic
approach to practical and scalable overlay network monitoring. In
ACM SIGCOMM (Sept. 2004).

[7] DOBRA, A., GAROFALAKIS, M., GEHRKE, J. E., AND RASTOGI,
R. Processing complex aggregate queries over data streams. In
Proceedings of ACM SIGMOD (June 2002).

[8] DUFFIELD, N. Simple network performance tomography. In
Proceedings of USENIX/ACM Internet Measurement Conference
(Oct. 2003).

[9] DUFFIELD, N., GERBER, A., AND GROSSGLAUSER, M. Trajectory
engine: A backend for trajectory sampling. In Proceedings of IEEE
Network Operations and Management Symposium (Apr. 2002).

[10] DUFFIELD, N., AND GROSSGLAUSER, M. Trajectory sampling for
direct traffic observation. In Proceedings of ACM SIGCOMM (Aug.
2000).

[11] ESTAN, C., AND VARGHESE, G. New directions in traffic
measurement and accounting: Focusing on the elephants, ignoring
the mice. ACM Transactions on Computer Systems 21, 3 (Aug. 2003).

[12] ESTAN, C., VARGHESE, G., AND FISK, M. Bitmap algorithms for
counting active flows on high speed links. In Proceedings of the
USENIX/ACM Internet Measurement Conference (Oct. 2003).

[13] HOEFFDING, W. Probability inequalities for sums of bounded
random variables. J. American Statistical Association 58, 301 (March
1963), 13–30.

[14] HOHN, N., VEITCH, D., PAPAGIANNAKI, K., AND DIOT, C.
Bridging router performance and queuing theory. In Proceedings of
ACM SIGMETRICS (June 2004).

[15] IEEE. Standard for a Precision Clock Synchronization Protocol for
Networked Measurement and Control Systems, 2002. IEEE/ANSI
1588 Standard.

[16] INCITS. Fibre channel backbone-5 (FC-BB-5), Oct. 2008. Ver. 1.03.
[17] KANDULA, S., KATABI, D., AND VASSEUR, J. P. Shrink: A tool for

failure diagnosis in IP networks. In Proceedings of ACM SIGCOMM
MineNet Workshop (Aug. 2005).

[18] KOMPELLA, R. R., YATES, J., GREENBERG, A., AND SNOEREN,
A. C. Detection and localization of network black holes. In
Proceedings of IEEE Infocom (May 2007).

[19] KUMAR, A., SUNG, M., XU, J., AND ZEGURA, E. W. A data
streaming algorithm for estimating subpopulation flow size
distribution. In Proceedings of ACM SIGMETRICS (June 2005).

[20] LALL, A., SEKAR, V., OGIHARA, M., XU, J., AND ZHANG, H.
Data streaming algorithms for estimating entropy of network traffic.
In Proceedings of ACM SIGMETRICS (June 2006).

[21] LONDON STOCK EXCHANGE PLC. Launch of exchange hosting
creates sub-millisecond access to its markets.
http://www.londonstockexchange.com/NR/exeres/
04192D02-B949-423D-94E2-683D7506C530.htm, Sept.
2008.

[22] LU, Y., MONTANARI, A., PRABHAKAR, B., DHARMAPURIKAR,
S., AND KABBANI, A. Counter braids: a novel counter architecture
for per-flow measurement. In Proceedings of ACM SIGMETRICS
(June 2008).

[23] MACHIRAJU, S., AND VEITCH, D. A measurement-friendly
network (MFN) architecture. In Proceedings of ACM SIGCOMM
Workshop on Internet Network Management (Sept. 2006).

[24] MAHDAVI, J., PAXSON, V., ADAMS, A., AND MATHIS, M.
Creating a scalable architecture for internet measurement. In
Proceedings of INET (July 1998).

[25] MARTIN, R. Wall street’s quest to process data at the speed of light.
http://www.informationweek.com/news/
infrastructure/showArticle.
jhtml?articleID=199200297.

[26] MISRA, V., GONG, W.-B., AND TOWSLEY, D. Stochastic
differential equation modeling and analysis of tcp windowsize
behavior. In Proceedings of IFIP WG 7.3 Performance (Nov. 1999).

[27] NGUYEN, H. X., AND THIRAN, P. Network loss inference with
second order statistics of end-to-end flows. In Proceedings of ACM
Internet Measurement Conference (Oct. 2007).

[28] PAPAGIANNAKI, K., MOON, S., FRALEIGH, C., THIRAN, P.,
TOBAGI, F., AND DIOT, C. Analaysis of measured single-hop delay
from an operational backbone network. IEEE Journal on Selected
Areas in Communications 21, 6 (Aug. 2003).

[29] RAMAKRISHNA, M., FU, E., AND BAHCEKAPILI, E. Efficient
hardware hashing functions for high performance computers. IEEE
Transactions on Computers 46, 12 (Dec. 1997).

[30] RISKA, M., MALIK, D., AND KESSLER, A. Trading flow
architecture. Tech. rep., Cisco Systems, Inc.
http://www.cisco.com/en/US/docs/solutions/
Verticals/Trading_Floor_Architecture-E.pdf.

[31] SAVAGE, S. Sting: a TCP-based network measurement tool. In
Proceedings of USENIX Symposium on Internet Technologies and
Systems (Oct. 1999).

[32] SHAIKH, A., AND GREENBERG, A. OSPF monitoring:
Architecture, design and deployment experience. In Proceedings of
USENIX NSDI (Mar. 2004).

[33] SOMMERS, J., BARFORD, P., DUFFIELD, N., AND RON, A.
Improving accuracy in end-to-end packet loss measurement. In
Proceedings of ACM SIGCOMM (Aug. 2005).

[34] SZIGETI, T., AND HATTINGH, C. Quality of service design
overview. http://www.ciscopress.com/articles/
article.asp?p=357102&seqNum=2, Dec. 2004.

[35] TOOMEY, F. Monitoring and analysis of traffic for low-latency
trading networks. Tech. rep., Corvil, Ltd., 2008.

[36] VARDI, Y. Network tomography: estimating source-destination
traffic intensities from link data. J. American Statistical Association
91 (1996), 365–377.

[37] WOVEN SYSTEMS, INC. EFX switch series overview.
http://www.wovensystems.com/pdfs/products/
Woven_EFX_Series.pdf, 2008.

[38] ZHANG, Y., ROUGHAN, M., DUFFIELD, N., AND GREENBERG, A.
Fast accurate computation of large-scale IP traffic matrices from link
loads. In Proceedings of ACM SIGMETRICS (June 2003).

[39] ZHAO, Y., CHEN, Y., AND BINDEL, D. Towards unbiased
end-to-end network diagnosis. In Proceedings of ACM SIGCOMM
(Sept. 2006).

[40] ZSEBY, T., ZANDER, S., AND CARLE, G. Evaluation of building
blocks for passive one-way-delay measurements. In Proceedings of
Passive and Active Measurement Workshop (Apr. 2001).

266

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

