
Application Flow Control in YouTube Video Streams

Shane Alcock
University of Waikato

Hamilton, New Zealand
salcock@cs.waikato.ac.nz

Richard Nelson
University of Waikato

Hamilton, New Zealand
richardn@cs.waikato.ac.nz

ABSTRACT

This paper presents the results of an investigation into the
application flow control technique utilised by YouTube. We
reveal and describe the basic properties of YouTube appli-
cation flow control, which we term block sending, and show
that it is widely used by YouTube servers. We also exam-
ine how the block sending algorithm interacts with the flow
control provided by TCP and reveal that the block sending
approach was responsible for over 40% of packet loss events
in YouTube flows in a residential DSL dataset and the re-
transmission of over 1% of all YouTube data sent after the
application flow control began. We conclude by suggest-
ing that changing YouTube block sending to be less bursty
would improve the performance and reduce the bandwidth
usage of YouTube video streams.

Categories and Subject Descriptors

C.2.0 [Computer Communications Networks]: General

General Terms

Measurement, Performance

Keywords

YouTube, Flow Control, Block Sending, Packet Loss, DSL

1. INTRODUCTION
YouTube [1] is a video-on-demand service that allows users

to stream user-generated video content through their web
browser. According to the Alexa traffic rank [2], YouTube
is currently the third most popular website on the Internet
and has been noted in literature as being one of the primary
causes behind the recent increases in HTTP traffic observed
in measurement studies [3]. As a significant contributor to
traffic observed on the Internet, it is especially important
that YouTube traffic patterns are understood and modelled
correctly by Internet researchers. There has been a notable
quantity of work examining client behaviour, e.g. trends in
YouTube video popularity [4] [5], but there has been little
research into the behaviour of the YouTube servers them-
selves. Rather, there seems to be an implicit assumption
in the research community that YouTube traffic behaves in
much the same way as any other large HTTP download.

This paper presents an initial look at the application flow
control utilised by YouTube servers to conserve bandwidth
and prevent the client connection from being saturated. We
use passive packet header traces of YouTube traffic captured

from both an academic and a residential DSL network for
our analysis. The YouTube application flow control tech-
nique, which we term block sending, has not been previously
described in literature. We derive and describe some proper-
ties of the block sending algorithm, including the block size
and conditions for commencing block sending. We also ex-
amine how the algorithm performs in practice and identify
instances where the YouTube flow control interacts poorly
with the underlying TCP mechanisms, leading to increased
congestion and packet loss.

2. BACKGROUND
For most TCP applications, the control provided by TCP

is sufficient to ensure data is transmitted at a fair rate that
will not overwhelm the receiver or any of the links along
the path. Congestion control [6] prevents the sender from
congesting the path to the receiver, while the receive win-
dow [7] ensures that the receiver itself is not overwhelmed
with more data than it can handle. However, it may also
be desirable for the application to provide additional flow
control if it is not strictly necessary for the application data
to reach the client as fast as TCP would otherwise allow.
Instead, the application may limit the rate at which data
is passed to the network stack for transmission. The TCP
control mechanisms still apply, though, so the effect of the
application flow control may be reduced if the connection is
already limited by the receive or congestion window.

Video streaming applications, such as YouTube, are an ob-
vious example where application flow control can be useful.
Assuming the user watches the video from start to finish,
there is little benefit in sending the client data far ahead of
where they are currently viewing. Instead, the application
can reduce its sending rate to ensure the client has enough
data to play the video smoothly without congesting the net-
work. As a result, other applications that the client is using
can still achieve satisfactory throughput at the same time
and the server can avoid sending unwanted data to the client
if the user decides to cease watching the video early.

Application flow control can have a significant impact on
the models of network traffic that are used in research, such
as simulation studies. Conventional TCP traffic models will
not produce a realistic traffic pattern for applications that
do not conform to expected “greedy” sending behaviour and
instead implement their own flow control. Therefore, it is
important to measure and understand the application flow
control techniques used by major TCP applications, such as
YouTube, so that appropriate models can be developed.

Another reason for measuring application flow control is

ACM SIGCOMM Computer Communication Review 25 Volume 41, Number 2, April 2011



3 MB

2 MB

1 MB

0 MB
30 s 20 s 10 s 0 

sequence offset

relative time

Data Flight

Receive

Acknowledged

Window

Data

Figure 1: A time sequence graph of a YouTube video

stream flow from the Auckland dataset.

to evaluate if it is performing as intended, particularly in
parallel with the underlying TCP control mechanisms. Ap-
plication behaviour that may seem like a good idea can have
unintended consequences at the TCP level, leading to ex-
cessive packet loss, congestion window reductions and less-
ened throughput. Discovering and highlighting such prob-
lems will enable the application developers to rectify them,
leading to improved application performance.

3. DATASETS
For this study, we have examined YouTube video streams

from two different packet header trace sets from the WITS
archive [8]. The Auckland data set was selected from the
Auckland X trace set that was captured in October 2009 at
the University of Auckland, New Zealand. At the time of
capture, KAREN (the New Zealand research and education
network) [9] peered directly with the Google autonomous
system that YouTube is hosted within. As a result, all con-
nections between Auckland and YouTube were over a re-
search network with high bandwidth and capacity. This en-
abled us to examine YouTube behaviour in a context where
congestion (and the resulting packet loss) was minimal.

The ISP data set was extracted from the ISP C-II trace set
that was captured from a New Zealand ISP in January 2010.
To examine the YouTube session behaviour where packet
loss due to path congestion was common, we filtered the
traces to only include residential DSL customers. In contrast
to the Auckland data, connections between the ISP users
and YouTube occurred over links with a much lower capacity
and bandwidth-per-user and are more representative of the
experience of the average New Zealand consumer.

We filtered the unencrypted packet traces to only include
traffic to and from IP addresses that resolved to known host-
names for YouTube video servers. The IP addresses were
provided by the authors of [10], meaning that local New
Zealand caches have been excluded from our analysis 1.

The filtered traces were then processed using the flight
analysis module included with libtcpcsm [11] to produce a
record of observed TCP flights and loss events for each
YouTube flow. Flows where the server transmitted less than

1Comparing local cache behaviour with the US-based
servers is one avenue of future work.

Name Duration Start Date Flows Bytes
Auckland 7 days 2009/10/21 95,500 846 GB

ISP 7 days 2010/01/07 14,656 109 GB

Table 1: YouTube traffic observed in our datasets.

1 MB data were discarded, as these were too short to pro-
vide reliable information about the application flow control.
For applications where the sender is unlikely to be waiting
on user interaction, such as video streams, the flight sizes
should match the largest amount of data that the sender
can transmit within the limits of the congestion and flow
control algorithms. We can therefore examine the sending
behaviour of the YouTube servers by analysing the pattern
of flights sent for each video stream. The resulting datasets
are described in Table 1. The filtered YouTube datasets rep-
resent 7.4% and 3.9% of the TCP port 80 traffic observed
in the Auckland and ISP traces respectively.

4. YOUTUBE FLOW CONTROL
Figure 1 is a time sequence graph created using tcptrace

[12] that depicts a typical YouTube video stream flow from
the Auckland dataset. The pattern of flights clearly changes
approximately eight seconds into the flow. Prior to that
point, the sending pattern conforms to the expected TCP
slow-start behaviour, where the sending rate grows as data
is successfully received and acknowledged by the client. Af-
terwards, the sender transmits data at a constant rate that
is much slower that what had been achieved earlier. As no
packets were lost, the sender should not be limited by its
congestion window and the large gap between flights sug-
gests that the TCP buffer has not been restricted. The
receive window line also clearly indicates that the client can
accept more data than the server is providing.

Therefore, we conclude that the YouTube application is
responsible for the decreased sending rate. We observe that
the application is writing consistently sized blocks to the
network stack at a reduced rate to limit the amount of data
that is sent to the client. The YouTube server sends the
video as fast as possible for an initial buffering period before
settling into the constant sending rate. This rate is probably
at or slightly above the playback speed, so as to maintain
the buffer and ensure smooth playback for the client while
minimising the amount of bandwidth used by the flow.

Based on manual inspection of the flight records and time
sequence graphs for individual YouTube flows, we summarise
the primary characteristics of the YouTube application flow
control (which we shall henceforth refer to as block sending)
as follows:

• The gap between blocks greatly exceeds the inter-flight
gaps observed during the initial buffering phase. This gap
often exceeds one round-trip time (RTT).

• The packet rate when transmitting blocks is very high;
flights sent during block sending have very short dura-
tions, i.e. time between the first and last packet.

• The block writes are typically a multiple of 64 kilobytes
in size, with some rare exceptions (see §5.2).

• Flight sizes during block sending will never exceed the
congestion or receive windows, so a block can be (and
often is) split over multiple flights.

ACM SIGCOMM Computer Communication Review 26 Volume 41, Number 2, April 2011



• The time between each block write is very consistent. Any
additional delay in sending a block is compensated for
when transmitting subsequent blocks, so that the constant
sending rate is maintained overall.

• After packet loss, block sending usually concludes and
the congestion window will dominate the sending pattern
again. However, once the congestion window has recov-
ered sufficiently, block sending may then resume.

5. ANALYSIS
To examine YouTube application flow control in more de-

tail, we developed a tool to detect block writes from the
flight records for each YouTube flow that we had extracted
earlier using libtcpcsm. The block detection algorithm is
based heavily on the block properties described in §4, albeit
with many refinements to correct misclassifications identi-
fied during testing. In basic terms, the algorithm searches
for the next flight that could be the start of a block based
on the inter-flight gap and flight duration. A block may be
made up of multiple flights, so the end of the possible block
is determined by searching for either the next loss event or
large inter-flight gap. Finally, the potential block is verified
as to whether it is a genuine block, i.e. checking that flight
sizes, inter-flight gaps, etc. within the block meet expecta-
tions. For example, one such criteria is that no individual
flight within a block exceeds 64 KB and that the first flight
is always the largest flight 2.

The minimum complete block size supported by our tool
is 64 KB, as this was the smallest block size observed dur-
ing our initial analysis. The tool can also detect instances
where the server appeared to be sending a block but was
interrupted by a loss event before 64 KB was sent. For each
block detected, our tool reports the block size, duration,
start time, number of prior loss events and the block trans-
mission rate (BTR). The BTR is calculated by dividing the
size of the block by the time difference between the start of
the block and the start of the next one. If no block imme-
diately follows the current block, the BTR is not reported.
Our tool also calculates the median BTR for each flow. As
we have defined block sending behaviour as having a consis-
tent transmission rate, our tool requires at least half of the
BTR values to be within 2% of the median to report a valid
BTR for a flow.

5.1 Prevalence of Block Sending
Firstly, we investigated whether block sending behaviour

is commonplace in both datasets, producing the results re-
ported in Table 2. The rate of block sending in the ISP
dataset was surprisingly low (only 56.7% compared with
87.6% in the Auckland data), so we investigated the flows
that did not block send in greater detail to determine if there
was a reason that could prevent the server from employing
block sending. First, we used simple deep packet inspec-
tion to identify flows that were not FLV video streams and
therefore unlikely to be using the YouTube application flow
control. This was done by searching for a packet where the
first three bytes of payload were “FLV”. This was possible
because the original trace files had retained four bytes of
application payload for each packet.

2More detail about the algorithm can be found in the source
code for the tool, which can be found at http://www.wand.
net.nz/~salcock/youtube/.

Auckland ISP
YouTube Flows 95,500 14,656
Block Sending Flows 83732 (87.6%) 8313 (56.7%)
Not a Video Stream 1996 (2.1%) 602 (4.1%)
Recv. Win. Limited 309 (0.3%) 993 (6.8%)
Cong. Win. Limited 40 (0.04%) 2044 (13.9%)
High Loss Rate 231 (0.2%) 988 (6.7%)
Unclassified 9192 (9.6%) 1716 (11.7%)

Table 2: Number of flows in each dataset where

block sending was detected. The additional cate-

gories describe possible situations where a flow is

unlikely to block send.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  64  128  192  256

C
D

F

Block Size (KB)

Auckland ISP

Figure 2: Distribution of the size of blocks sent by

YouTube servers during the block sending phase.

The X-axis has been truncated at 300 KB.

We also attempted to identify flows where the TCP con-
trol mechanisms were likely to prevent the sender from block
sending in a detectable fashion. For instance, if the re-
ceive or congestion windows are too small, a flow will never
achieve a sufficient transmission rate for block sending to
be apparent. For the purposes of this study, flows where
the receive window never exceeded 20 KB were classed as
receive window limited. 20 KB was selected as a threshold
to exclude all flows that would take more then 3 RTTs to
transmit a typical 64 KB block, as most servers would fail to
transmit the block before the next one appears in the queue.

Finally, flows that had a high rate of packet loss (we used
an arbitrary value of less than 250 KB of new data per loss
event as the threshold, based on observations of some obvi-
ously lossy flows in our data set) were classed as high loss
flows. Table 2 describes the number of flows that matched
each of these categories. Ignoring high loss, window limited
and non-video flows, we see that the proportion of flows
where our analysis tool detected block sending increased to
90.1% for Auckland and 82.8% for the ISP dataset. This sug-
gests that block sending is standard practice for YouTube
servers.

5.2 Block Sizes
Figure 2 shows the distribution of block sizes in the Auck-

land and ISP datasets. 64 KB is easily the most common
block size, accounting for 97% of blocks in the Auckland
data and 79% of blocks in the ISP data. Block sizes that
are a multiple of 64 KB are also prominent in the ISP dis-
tribution, mainly due to delays in the path causing multiple
64 KB blocks to be merged and indistinct by the time they

ACM SIGCOMM Computer Communication Review 27 Volume 41, Number 2, April 2011



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0  5000 10000 15000 20000 25000 30000 35000

B
lo

c
k
 T

ra
n

s
m

is
s
io

n
 R

a
te

 (
K

b
p

s
)

Initial Buffer Size (KB)

(a) Auckland

 0

 200

 400

 600

 800

 1000

 1200

 0  2000  4000  6000  8000 10000 12000 14000

B
lo

c
k
 T

ra
n

s
m

is
s
io

n
 R

a
te

 (
K

b
p

s
)

Initial Buffer Size (KB)

(b) ISP

Figure 3: Scatter plots showing the relationship between the number of bytes sent during the initial buffering

phase and the block transmission rate for each YouTube flow.

reached the passive monitor. Blocks smaller than 64 KB, as
observed in the ISP data, were blocks that were interrupted
by packet loss before the block was completed. Nearly 10%
of all blocks in the ISP data were interrupted in this fash-
ion. Finally, we note that a small proportion of blocks in
the Auckland data range between 96 and 128 KB in size.
Manual validation has shown that the blocks were correct,
but we are yet to find a suitable explanation.

We believe that the 64 KB block size arises from the video
files being stored on servers using the Google File System
(GFS) [13]. GFS divides files into 64 MB chunks, which are
then further split into 64 KB blocks for checksumming pur-
poses. To maximise performance, a YouTube server reads
and writes the 64 KB blocks directly wherever possible, pro-
ducing the results shown in Figure 2.

5.3 Initial Buffering
We examined the initial buffering period to determine the

conditions that must be met for a YouTube server to com-
mence block sending. We deemed the initial buffering period
to be over once our analysis tool detected a block (complete
or interrupted). There was no consistent flow duration or
bytes sent before each flow began block sending, but we did
find that there was a strong linear relationship between the
number of bytes sent during the buffering phase and the
median block transmission rate, as shown in Figure 3.

Only flows for which we could determine a valid median
BTR are represented in Figure 3. This proved problematic
for the ISP dataset, as many blocks were immediately fol-
lowed by packet loss events that ended block sending (we
examine this problem in §5.4), preventing us from calculat-
ing the BTR. As a result, only 45% of the 8313 ISP flows
are represented in Figure 3(b). By contrast, 81% of block-
sending flows from the Auckland data are shown in Fig-
ure 3(a). We see that video streams utilising a higher bit-
rate during block sending transmit a proportionately larger
amount of data during the buffering phase. The Auckland
data has some horizontal banding, which may be due to a
minimum block transmission rate being used for some flows.

For each flow, we also divided the initial buffer size by the
median BTR to calculate the time that would have been
required to transmit the initial buffer using block sending.
The distribution of those values is presented in Figure 4,
which shows that the initial buffer was equivalent to 32 sec-
onds of block sending for the vast majority of YouTube flows

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  16  32  48  64  80  96

C
D

F
Seconds to Transmit Initial Buffer at Block Rate

Auckland ISP

Figure 4: CDF of the time needed to transmit the

initial buffer for a YouTube flow using the subse-

quent block sending rate. The X-axis has been trun-

cated at 100 seconds.

in both datasets. This proves that the relationship between
the BTR and the initial buffer size depicted in Figure 3 is
the same for both Auckland and the ISP, although we have
not been able to determine the exact reasoning behind the
selection of 32 seconds as a threshold.

5.4 Interaction with TCP
Figure 5 is a time sequence graph showing part of a flow

from the ISP dataset. The first 12 seconds of the flow (which
we have mostly omitted) covers the initial buffering period.
The first block can be identified by the long pause prior to
a large burst of packets. This is immediately followed by a
packet loss event, as indicated in the graph, which results
in the TCP congestion control reverting to slow start. In
this context, a packet loss event refers to a retransmit that
leads to TCP loss recovery (either a fast retransmit or a
retransmit timeout). Multiple packets may be retransmitted
in response to a loss event. Once the congestion window has
grown again, there are two more attempts at block sending
which are both immediately followed by packet loss as well.

Therefore, we suggest that block sending is responsible for
the packet loss, especially given that no loss was observed
during the initial buffering phase. The application delays
pushing the block onto the TCP stack, meaning that the
congestion and receive windows are empty by the time the
block is written. As a result, the entire block is transmit-

ACM SIGCOMM Computer Communication Review 28 Volume 41, Number 2, April 2011



2.0 MB

1.8 MB

1.6 MB

1.4 MB

20 s 15 s 

sequence offset

relative time

RRRRRRRRRRRRRR3

Loss Events

RRRRRRRRRRRRRRRRR3

RRRRRRRRRRRRRR3

Figure 5: A time sequence graph showing a YouTube

flow from the ISP dataset. Every attempt at block

sending is immediately followed by packet loss.

ted immediately as a burst of packets, effectively creating
congestion. The idle time prior to writing the block is not
long enough for congestion window reduction [14] to be em-
ployed, yet other competing flows may have increased their
congestion window in the interim, further contributing to
path congestion.

This short-term congestion leads to a much higher prob-
ability of packet loss, resulting in otherwise avoidable re-
transmissions as well as forcing the TCP implementation to
reduce the congestion window, lessening the throughput for
the video stream until the window recovers (note that this
does not necessarily mean that the playback buffer has re-
covered!). If this problem is widespread, it would suggest
that the YouTube application flow control may be detri-
mental, rather than beneficial, to the client experience and
should be re-evaluated by the YouTube developers.

We have used two different definitions to determine if a
packet loss event in our datasets was caused by block send-
ing. The first and strictest definition states that a loss event
was caused by block sending if preceded by one (and only
one) block, similar to the events depicted in Figure 5. Hence-
forth, we shall refer to this definition as definition A. The
second definition (definiton B) states that if a loss event is
preceded by either one or two blocks then it was caused by
block sending. The reasoning is that the first block can of-
ten be transmitted without packet loss but will still create
congestion that leads to the following block being disrupted.

Table 3 presents the proportion of loss events and retrans-
missions that can be attributed to the YouTube application
flow control, along with some general statistics about the
overall loss and block rates. For this analysis, we have ig-
nored loss events, retransmits and bytes sent prior to the
first block observed for each flow, i.e. the initial buffering
period. Also, when calculating the number of bytes retrans-
mitted, we have assumed a worst-case scenario of 1500 bytes
per retransmitted packet, as this is the MTU commonly em-
ployed by YouTube clients.

The results show that, unsurprisingly, loss events and re-
transmissions are much more common in the ISP data. ISP
flows also transmitted fewer blocks than Auckland flows,
presumably because the higher loss rate frequently disrupted
the block sending process. Up to 40% of all loss events
and nearly half of all retransmits in the ISP dataset could

Auckland ISP
Block Sending Flows 83,732 8,313
Avg. Megabytes per Flow 8.13 6.53
Avg. Loss Events per Flow 2.13 21.91
Avg. Blocks per Flow 115.88 18.10
Avg. Blocks per Loss Event 54.3 0.83
Avg. Retxs per Flow 9.94 139.15
Avg. Retxs per Loss Event 4.66 6.35
Loss Events matching def. A 5.8% 27.8%
Loss Events matching def. B 9.8% 40.1%
Retxs matching def. A 4.6% 36.0%
Retxs matching def. B 8.1% 47.5%
Bytes retransmitted (def. A) < 0.01% 1.1%
Bytes retransmitted (def. B) < 0.01% 1.5%

Table 3: Statistics describing the proportion of loss

events and retransmits that can be attributed to

block sending using definitions A and B.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  0.2  0.4  0.6  0.8  1
C

C
D

F
Block Loss Rate

Auckland (A)
Auckland (B)

ISP (A)
ISP (B)

Figure 6: CCDF of loss events against the flow block

loss rate.

be attributed to congestion caused by block sending. This
resulted in between 1 and 1.5% of the YouTube traffic in
the ISP dataset being retransmitted due to block sending.
The impact on the Auckland data was not negligible either;
nearly 10% of loss events were attributable to block sending,
although the overall proportion of traffic retransmitted was
very low. However, this suggests that the bursty nature of
block sending can still create congestion even in excellent
network conditions.

Finally, we examined the block loss rate (BLR), which we
defined as the proportion of loss events for a given flow that
could be attributed to block sending. Figure 6 is a CCDF
showing the distribution of loss events in terms of the BLR
of the flow that they occurred in. The Auckland results show
that the vast majority of loss events occurred in flows with
a low BLR value, meaning that block sending was seldom
the leading the cause of packet loss in Auckland flows. A
significant proportion of loss events occurred in flows where
the BLR was zero, i.e. no loss events could be attributed to
block sending.

By contrast, almost all ISP flows have a BLR greater than
zero; block sending was responsible for at least one loss in al-
most every flow where block sending was detected. Also, the
impact of block sending is much greater in the ISP dataset
compared with Auckland. Using definition B, over 40% of
loss events occurred in flows where the BLR is greater than
0.5. This suggests that many residential DSL users would

ACM SIGCOMM Computer Communication Review 29 Volume 41, Number 2, April 2011



see a significant improvement in YouTube performance if the
application flow control was changed to be less bursty.

6. RELATED WORK
Unsurprisingly, YouTube has been a popular research topic

in the Internet measurement community recently. Much of
this work has focused on the characteristics of YouTube con-
tent, such as file size, bit-rate and popularity. Examples of
such work are [4], [5], [15] and [16]. By contrast, our research
has examined individual YouTube flows in greater detail to
investigate how the YouTube content is delivered to clients
and characterise the behaviour of the YouTube server ap-
plication. There is some overlap, though; for instance, our
results suggested there is a much broader range of video bit-
rates than demonstrated previously. We suspect this is due
to YouTube supporting a greater variety of video resolutions
than when the earlier studies were conducted.

[17] noted that YouTube content delivery is rate limited,
with a maximum transfer rate of approximately 1.25 Mbits/s.
Our work elaborates on this finding by revealing how the
rate limiting is performed and evaluating the effect on stream-
ing performance. The authors of [17] also found that many
YouTube transfers achieved low throughput over DSL con-
nections but claimed that the application was not responsi-
ble for the poor performance. Our results disagree with the
latter claim, as we have found that block sending by the ap-
plication can cause congestion and packet loss, particularly
for DSL clients, which may account for the low through-
put observed by [17]. Finally, [10] developed a technique for
identifying traffic flows for various video streaming applica-
tions, including YouTube. The authors generously provided
us with their list of YouTube server IP addresses which we
used to create our own datasets.

7. CONCLUSION
There are two principal conclusions that we draw from this

research. Firstly, YouTube implements a previously undoc-
umented form of flow control at the application level, which
we call block sending, that operates in addition to tradi-
tional TCP flow control mechanisms. We have been able
to detect block sending in over 80% of YouTube flows that
we examined, from both residential DSL and academic net-
works. We have also presented research that examines block
sending in more detail, showing that the blocks are typically
64 KB in size (matching the block size used by GFS) and
that the amount of data sent during the initial buffering
period is equivalent to 32 seconds of block sending.

The second conclusion is that block sending can have a
detrimental effect on YouTube flow performance, particu-
larly if the client is streaming the video over a congested
link. Blocks are typically transmitted as a large burst of
packets, creating additional congestion and often leading
to packet loss and significantly reduced throughput. Our
analysis showed that over 40% of the packet loss events ob-
served by YouTube clients using residential DSL could be
attributed to congestion caused by block sending. These
loss events resulted in a data retransmission rate of 1.5% of
all bytes sent once block sending began. Given the popular-
ity of YouTube, this is a significant quantity of data.

We have presented these results to engineers at YouTube
and their parent company, Google. They have acknowledged
that this is a legitimate problem and are currently working

on modifying the block sending algorithm to be less bursty.
We believe that this will offer improved YouTube perfor-
mance for users and reduce YouTube’s bandwidth require-
ments. The largest improvements will be seen by YouTube
clients using congested connections, but well-connected clients
should also see some benefit.

8. REFERENCES
[1] “YouTube,” http://www.youtube.com.

[2] Alexa, “Top 500 Global Sites,”
http://www.alexa.com/topsites.

[3] G. Maier, A. Feldmann, V. Paxson, and M. Allman,
“On Dominant Characteristics of Residential
Broadband Internet Traffic,” in IMC ’09: Proc. of the

9th ACM SIGCOMM Conference on Internet

Measurement Conference. New York, NY, USA:
ACM, 2009, pp. 90–102.

[4] M. Cha, H. Kwak, P. Rodriguez, Y.-Y. Ahn, and
S. Moon, “I Tube, You Tube, Everybody Tubes:
Analyzing the World’s Largest User Generated
Content Video System,” in IMC ’07: Proc. of the 7th

ACM SIGCOMM conference on Internet

measurement. New York, NY, USA: ACM, 2007, pp.
1–14.

[5] M. Zink, K. Suh, Y. Gu, and J. Kurose,
“Characteristics of YouTube Network Traffic at a
Campus Network - Measurements, Models, and
Implications,” Comput. Netw., vol. 53, no. 4, pp.
501–514, 2009.

[6] M. Allman, V. Paxson, and E. Blanton, “RFC 5681 -
TCP Congestion Control,” September 2009.

[7] J. Postel, “RFC 793 - Transmission Control Protocol,”
September 1981.

[8] WAND Network Research Group, “WITS,”
http://www.wand.net.nz/wits/.

[9] “KAREN: Kiwi Advanced Research and Education
Network,” http://karen.net.nz/home/.

[10] T. Mori, R. Kawahara, H. Hasegawa, and
S. Shimogawa, “Characterizing traffic flows originating
from large-scale video sharing services,” in Traffic

Monitoring and Analysis: Second International

Workshop, TMA 2010. Springer, 2010, pp. 17–31.

[11] WAND Network Research Group, “libtcpcsm,”
http://research.wand.net.nz/software/tcpcsm.php.

[12] S. Ostermann, “tcptrace,” http://www.tcptrace.org/.

[13] S. Ghemawat, H. Gobioff, and S.-T. Leung, “The
Google File System,” SIGOPS Oper. Syst. Rev.,
vol. 37, no. 5, pp. 29–43, 2003.

[14] M. Handley, J. Padhye, and S. Floyd, “RFC 2861 -
TCP Congestion Window Validation,” June 2000.

[15] X. Cheng, C. Dale, and J. Liu, “Statistics and Social
Network of YouTube Videos,” in Proc. of IEEE

IWQoS, 2008.

[16] P. Gill, M. Arlitt, Z. Li, and A. Mahanti, “YouTube
Traffic Characterization: a View from the Edge,” in
IMC ’07: Proceedings of the 7th ACM SIGCOMM

conference on Internet measurement. New York, NY,
USA: ACM, 2007, pp. 15–28.

[17] L. Plissonneau, T. En-Najjary, and G. Urvoy-Keller,
“Revisiting Web Traffic from a DSL Provider
Perspective: the Case of YouTube,” in Proc. of the

19th ITC Specialist Seminar, 2008.

ACM SIGCOMM Computer Communication Review 30 Volume 41, Number 2, April 2011


