Issues with Network Address Translation for SCTP

David A. Hayes
dahayes@swin.edu.au

_ Jason But
jbut@swin.edu.au

Grenville Armitage
garmitage@swin.edu.au

Centre for Advanced Internet Architectures (CAIA)
Swinburne University of Technology
PO Box 218
Hawthorn, Victoria 3122, Australia

ABSTRACT

A Stream Control Transmission Protocol (SCTP) capable
Network Address Translation (NAT) device is necessary to
support the wider deployment of the SCTP protocol. The
key issues for an SCTP NAT are SCTP’s control chunk mul-
tiplexing and multi-homing features. Control chunk mul-
tiplexing can expose an SCTP NAT to possible Denial of
Service attacks. These can be mitigated through the use of
chunk and parameter processing limits.

Multiple and changing IP addresses during an SCTP as-
sociation, mean that SCTP NATSs cannot operate in the way
conventional UDP/TCP NATs operate. Tracking these mul-
tiple global IP addresses can help in avoiding lookup table
conflicts, however, it can also result in circumstances that
can lead to NAT state inconsistencies. Our analysis shows
that tracking global IP addresses is not necessary in most
expected practical installations.

We use our FreeBSD SCTP NAT implementation,
alias_sctp to examine the performance implications of
tracking global IP addresses. We find that typical mem-
ory usage doubles and that the processing requirements are
significant for installations that experience high association
arrival rates.

In conclusion we provide practical recommendations for a
secure stable SCTP NAT installation.

Categories and Subject Descriptors

C.2.6 [Internetworking]: Routers; C.2.6 [Internetworking]:

Standards; D.4.4 [Communications Management]|: Net-
work communication

General Terms

Algorithms, Design, Performance, Measurement

Keywords

Stream Control Transmission Protocol (SCTP), Network
Address Translation (NAT), FreeBSD, Libalias

1. INTRODUCTION

Network Address Translation (NAT) devices have been
deployed extensively in the Internet [1]. Unfortunately, the
Stream Control Transmission Protocol (SCTP) cannot tra-
verse currently deployed NATs. An SCTP NAT is critical in
order to facilitate the wider adoption of SCTP outside the
telecommunications industry.

ACM SIGCOMM Computer Communication Review

24

Recently, Tiixen and Stewart proposed a set of modifi-
cations to the SCTP protocol that provide mechanisms to
support the address translation of SCTP packets through
NATs [2, 3]. In this paper we explore some of the key is-
sues involved in NAT for SCTP. We draw on Tiixen’s and
Stewart’s work along with the experience we have gained
in implementing an SCTP NAT module, alias_sctp [4] for
FreeBSD’s ipfw2 NAT 1libalias kernel module.

The current proposals do not consider some of the secu-
rity implications for a NAT. We explore a number of Denial
of Service (DoS) attacks for which an SCTP NAT may be
vulnerable and recommend modifications to the NATs be-
haviour to mitigate these.

Another key issue relates to the concept of tracking global
TP addresses per association within the NAT. We explore the
impact of tracking global addresses by:

1. looking at situations where it is difficult for NATs to
gain the necessary association state information

2. modelling NAT lookup table conflicts to determine if
the reduction in conflict probabilities is operationally
significant

3. and by analysing our FreeBSD implementation of an
SCTP NAT to look at the relative performance

The paper is structured as follows: Section 2 provides a
background of SCTP and how to NAT SCTP packets, ac-
cording to Tiixen’s and Stewart’s proposals. Some security
aspects with the SCTP NAT design are discussed in sec-
tion 3. Section 4 examines scenarios where the tracking of
global IP addresses can lead to state inconsistencies within
NATSs while section 5 investigates the probabilities of lookup
table conflicts. Section 6 looks at the performance implica-
tions of global IP address tracking using our FreeBSD SCTP
NAT implementation (alias_sctp). We summarise our con-
clusions and findings in section 7, providing a list of practical
recommendations for SCTP NAT design.

2. BACKGROUND

The SCTP protocol, REC 4960 [5], was originally designed
to transport Public Switched Telephone Network (PSTN)
signalling over Internet Protocol (IP) networks, but has a far
wider applicability. SCTP is a peer protocol to the Trans-
mission Control Protocol (TCP) and the User Datagram
Protocol (UDP). However it has the ability to combine and

Volume 39, Number 1, January 2009

Host A Host B
r INIT
o INIT-ACK
hitiaiaion | <G00t £org

COOKIE-ACK

CTP(chunks)
SCTP(chunks

SHUTDOWN

Multi-stream
Communication

Shutdown S

Process HUTDOWN-ACK
SHUTDO\NN—COMP\‘ETE

Figure 1: SCTP Initialisation, communication and
shutdown

extend the functionality of both TCP and UDP. SCTP’s key
enhancements include:

e Multi-homing — Ability to use miltiple network inter-
faces to add network path fault tolerance

e Multiple streams within each connection

e Improved error detection and correction

The SCTP connection mechanism is outlined in the fol-
lowing section (Stewart’s and Xie’s book [6] provides further
description of various scenarios).

2.1 SCTP Streams

Streams are an important part of the SCTP protocol.
A single SCTP association can have up to 65535 con-
current end-to-end sub-flows (or streams) multiplexed to-
gether. This is made possible through SCTP’s building
blocks, Chunks. A packet can contain a mixture of control
and data chunks, depending on the state of the association.
For data transmission, this can prevent head-of-line blocking
when packets from a particular stream are lost.

Control chunks can be sent along with data chunks, pro-
viding multiple separate control channels for the associa-
tion. This makes an SCTP NAT’s task more difficult, since
it needs to search through the different control chunks to
find any that affect the current state of this association in
the NAT.

2.2 SCTP Association Management

SCTP end-to-end connections are called associations. The
general association initialisation and disconnection proce-
dure is depicted in Figure 1.

2.2.1 Verification tag (vtag)

The vtag is a 32 bit random number used by SCTP to help
discriminate between different associations. All packets, ex-
cept the INIT, use this identifier during communication.

ACM SIGCOMM Computer Communication Review

25

INIT packets use vtag = 0. Vtags are selected during as-
sociation initialisation. The use of the wvtag helps prevent
blind attacks.

Vtags form part of the flow identification tuple. As such,
multiple associations using the same IP address and port
number are allowed. We define the local vtag as the vtag
included in all packets sent from the local host, while the
global wvtag is included in all packets sent from the global
host.

2.2.2 Initialisation

SCTP uses a four-way handshake to initialise its associa-
tion. During the INIT /INIT-ACK exchange endpoints
provide each other with their capabilities, and initialisa-
tion for the data transfers. To protect against attacks like
the TCP-SYN flood attack [7], SCTP has a Cookie ex-
change before an association is considered to be up. The
first cookie is in the INIT-ACK, this needs to be echoed
with the COOKIE-ECHO, and then acknowledged with a
COOKIE-ACK.

2.2.3 Shutdown

SCTP wuses a three way handshake to close its connec-
tion. The SHUTDOWN chunk informs the end point
that the sender wishes to close the association. After re-
ceiving a shutdown notification an end point should send
any remaining data, and when ready to close the associa-
tion respond with a SHUTDOWN-ACK. To confirm the
closure, a SHUTDOWN-COMPLETE is sent.

Associations may also be terminated by sending an
ABORT chunk. This is an unreliable best effort means
of immediately shutting down an association. Unlike TCP,
there can be no half open connections in the SCTP protocol.

2.2.4 Multi-homing

SCTP hosts with more than one IP address (see Figure 3
as an example) include these in the association initialisa-
tion to add network path fault tolerance to the association.
An end-point uses separate round trip time measures and
congestion windows for each address. During normal com-
munication only one address should be used.

Extensions to the base protocol allow support for dy-
namic multi-homing through the ASCONF addition in
RFC5061 [7]. ASCONF chunks can add and remove IP
addresses connected with an association through use of their
AddIP and DelIP parameters.

Multi-homing presents a number of difficulties for a NAT.
No longer is it a simple task of matching address and port
numbers (as conventional TCP/UDP NATs do [8, 9]). The
IP addresses, may change during an association’s life. This
paper looks in some detail at these issues in sections 3—6.

2.3 Basic SCTP NAT

In order to translate the addresses of SCTP packets, the
NAT needs to uniquely identify all concurrent SCTP associ-
ations. Multi-homing presents a significant problem. Sin-
gle associations now potentially have multiple end-points
while individual packets handled by the NAT still have a
single source and destination address. Suggestions for how
an SCTP NAT should be implemented can be found in [3]
and the Internet Draft [2]. This design will hereafter be
refered to as Tiixen’s NAT.

Volume 39, Number 1, January 2009

Global

(a) Initialisation packet exchange

@ | idle | gvtag| gport| gaddr| | Iport | laddr|

(b) NAT association state after INIT

@ | UPp | gvtag| gport| gaddr| lvutag | Ilport | laddr|
(c) NAT association state after INIT-ACK

Figure 2: SCTP association initialisation in the
Tiixen NAT Architecture

In a TCP/UDP NAT port numbers are modified to re-
solve flow identification conflicts (two flows with the same
<address,port> tuple). An SCTP NAT should not do this
because:

e Due to multi-homing, an association may traverse mul-
tiple NATSs via a variety of network paths. Each NAT
would need to select the same port number, requiring
some form of synchronisation.

e SCTP’s checksum requires a full CRC-32C calculation
over the entire SCTP packet. Calculating this for ev-
ery packet traversing the NAT is computationally in-
tensive, and may degrade the performance of the NAT.

Instead, vtags are coupled with port numbers to provide a
unique identity for SCTP associations through the NAT.

Figure 2 shows how Tiixen’s NAT would discover the in-
formation necessary to identify SCTP associations from the
first two session initiation packets.

1. The NAT will store the local and global IP address,
source and destination ports, and the global side vtag
(gutag) as it forwards the SCTP INIT.

2. Upon receiving the corresponding INIT-ACK and
matching the <gvtag,ports, address> tuple, it will ob-
tain the local side vtag (lvtag).

Tiixen’s NAT recommends tracking global addresses in or-
der to minimise the probability of lookup table conflicts [3].
In addition to matching the <wtag,port> tuple, NATs will
need to store and match against a list of global IP addresses
for each association (see discussion in sections 4 and 5). As
this may overload small NATSs, Stewart and Tiixen [2] rec-
ommend that tracking global IP addresses be optional for
them.

The NAT now has enough information to translate the
addresses of all subsequent packets belonging to this asso-
ciation. The SCTP cookie exchange will be transparent to
the NAT.

Modifications to SCTP are proposed that restrict SCTP
end-points from including private IP addresses within the
INIT and INIT-ACK packets [2, 3]. Alternate addresses

ACM SIGCOMM Computer Communication Review

26

are added after initialisation using an ASCONF-AddIP.
NATSs parse these ASCONF chunks for the ASCONF-
VTag parameter, which contains both global and local
vtags. An ASCONF-ACK is used for confirmation.

An association will remain UP in the NAT until either:

1. A normal SCTP shutdown process is observed
2. An SCTP ABORT chunk is observed

3. An activity timeout occurs — after a predetermined pe-
riod of no traffic the NAT will consider the association
dead and release any resources it was using to track
that association

3. SOME SECURITY CONSIDERATIONS

SCTP’s features of control chunk multiplexing and multi-
homing present a number of potential security risks for
Tiixen’s NAT design. This section examines these and pro-
poses ways to mitigate them. The means through which
these risks are mitigated in our implementation [10] are out-
lined in Appendix A.

3.1 Chunk and parameter processing

SCTP packets may contain any number of chunks, each
of which may contain any number of parameters (within the
limits of the underlying IP packet size). The NAT requires
information found within the chunks and parameters to de-
termine whether it should update its internal state for the
association. Due to error (the NAT does not verify the CRC-
32C) or design (malicious or otherwise) a packet with a very
large number of chunks or a chunk with a very large number
of parameters may arrive at the NAT. The NAT will need
to parse this information.

3.1.1 Example: UP state processing

If a packet is part of an association that is currently in
the UP state, the NAT will need to scan the control chunks
foran ASCONF-AddIP, ASCONF-DellP, ABORT, or
SHUTDOWN-ACK chunk. The smallest possible chunk
size is 4 bytes, so in a typical IPv4 packet (1500 bytes)
the NAT could potentially have to parse up to 375 possi-
ble chunks.

3.1.2 Example: Initialisation

If an Initialisation chunk is received from a multi-homed
host, it may contain any number of IPv4 and IPv6 parame-
ters. If the SCTP NAT is to find and process these parame-
ters, it could potentially scan the entire packet. This prob-
lem is only applicable when tracking global IP addresses.

3.1.3 Protecting the SCTP NAT

The previous two examples illustrate how Tiixen’s NAT
could be exposed to a DoS type attack that consumes its pro-
cessing resources, preventing it from servicing valid packets.

Possible solutions to limit the vulnerability of the NAT to
SCTP packet processing DoS attacks are to:

1. Limit chunk processing — NAT relevant control chunks
should always be as near as practical to first in the
SCTP message.

INIT, INIT-ACK, and SHUTDOWN-COMPLETE

are specified as single chunk packets. It makes good
sense for SHUTDOWDN-ACK and ABORT chunks

Volume 39, Number 1, January 2009

to be single chunk packets as well, since it is of no prac-
tical use for them to contain other chunks. Since AS-
CONF chunks are authenticated, they need to be pre-
ceded by an AUTH chunk. Therefore, we recommend
limiting the the processing of control chunks within an
SCTP message to a maximum of two chunks.

2. Limit parameter processing — NAT relevant parameters
should always be within the first N parameters in a
chunk.

There is a practical limit to the number of addresses
a multi-homed host can have. We do not expect this
to exceed 25. Given this, we recommend that a NAT
should not parse more than N = 25 parameters, cus-
tomisable for a particular installation.

Having chunk and parameter processing limits could re-
sult in the NAT missing information important to an associ-
ation’s state. We consider the trade-off reasonable to protect
the resource consumption of the NAT. We also recommend
that the limits be configurable to cater for any given instal-
lation’s characteristics.

3.2 Address storage

An attacker could consume the memory resources within
Tiixen’s NAT by sending malicious ASCONF chunks that
request IP addresses to be added to an association’s state.
To do this an attacker needs to establish its own associa-
tion through the NAT, or correctly guess or sniff the global
<wtag,ports,address> tuple of an active association.

To protect against such an attack, an SCTP NAT should
limit the number of addresses that can be added to an as-
sociation (this problem does not exist if global IP addresses
are not tracked).

3.3 Packets sent in response to Errors

SCTP uses ABORT and ERROR chunks to notify the
communicating host that there is a problem with communi-
cation. Proposed additions to the protocol to better facili-
tate middle boxes [3] allow the NAT to respond to certain
errors. The middle box bit (M-bit) set to indicate that the
response came from the middle box and not the end host.
If the vtag for replying is not known the received packets
vtag may be reflected, with the T-bit set, to communicate
the error back to the sender.

ERROR-M chunks may be sent when the NAT receives
a packet for which it does not have the necessary informa-
tion to NAT. This mechanism helps a multi-homing host
that starts sending along a different route through the net-
work to provide a NAT with the information that it needs.
On receipt of the ERROR-M, the host will reply with an
ASCONF-AddIP.

Two possible scenarios exist for the NAT with missing
state information:

1. No matching association

If a NAT were to respond to any packet from the global
side in this way, an attacker could probe the NAT to
discover currently active associations. Responding to a
globally received packet with an ERROR-M implies
that the NAT will also accept an ASCONF-AddIP
from a global address for an association that it knows
nothing about. This allows an attacker to create mul-

ACM SIGCOMM Computer Communication Review

27

o (ot BF\ = |

Host A / | 3 _ 8 Host B

Private IP p,, p, I Global IP g, g,
NAT 2

Figure 3: Multi-homed Private and Public Host

tiple fake associations by sending ASCONF chunks
requesting the addition of IP addresses.

In this case we recommend that ERROR-M chunks
are not sent in response to packets on the global side
of the NAT.

2. <wtag,ports> match, but no global IP address
match

This situation will only occur if the NAT is track-
ing global IP addresses. In this case the NAT recog-
nises the association, but not the global address in
the packet. The ERROR-M will allow this multi-
homed host to add the new IP address via the use of
an ASCONF-AddIP.

In this case we recommend that the NAT should re-
spond with an ERROR-M since the host has identi-
fied all other aspects of an existing association.

4. NAT STATE INCONSISTENCIES WHEN

TRACKING GLOBAL IP ADDRESSES

Tiixen’s NAT recommends tracking global addresses.
However, tracking global IP addresses within an associa-
tion can lead to situations where Tiixen’s NAT may not be
aware of all IP addresses involved within that association.
Consider the network as portrayed in Figure 3 (the same
scenario illustrated in Section 4-2 of [2]). We wish to ex-
plore the situation where Host A wishes to establish an
association with Host B.

The exchange of packets, illustrated in Figure 4, will be
processed as follows:

1. A will begin by sending an INIT from IP Address p:
via NAT1 to one of the global addresses on B — say
g1. Since an INIT can only include public (or global)
IP addresses, A will not include p2 in the INIT.

As the INIT traverses NAT1, the NAT will store the
destination IP address g; in its lookup tables for the
new association.

2. B will respond with an INIT-ACK from g; via
NAT1. Included in the INIT-ACK will be B’s alter-
nate public IP address go. When this packet traverses
NAT1, it will add the IP address g2 to the lookup
table for this association

3. Once the association is up, A may seek to add its al-
ternate path by sending an ASCONF-AddIP packet
from address p2 to B(g1) via NAT2. NAT2 will:

e Extract both wvtags from the ASCONF-Vtag
parameter.

Volume 39, Number 1, January 2009

Host A Host B
p, P, 9, 9,
I

“

SCONF-AddIP

ASCONF-ACK

CHOENCINC

Packet Dropped
by NAT2

®

-~

3

Figure 4: Establishing a multi-homed association
through multiple NATSs

| NAT | state | gutag | gport | gaddr | lvtag | lport | laddr |

1 Uup gv gp gl Iv Ip pl
g2
2 UP | gv gp gl Iv Ip p2

Table 1: Association state in NAT1 and NAT2

e Store the destination IP address of the ASCONEF'-
AddIP(g1)

4. B will respond with an ASCONF-ACK via NAT2.
Since there are no IP addresses within the ASCONF-
ACK, NAT2 will not learn of B’s alternate IP ad-
dress g2 as NAT1 did from the INIT-ACK.

5. Suppose that A, using address p2, now wishes to send a
packet to B, destination address g2. Since NAT2 does
not know g2 is valid for this association (see Table 1)
it will not forward the packet to B.

4.1 Inconsistency in NAT states

The normal response to send an ERROR-M packet back
to A will not result in anything useful occurring as A cannot
inform NAT2 of the information it needs to successfully
NAT the packet.

In order for NAT2 to learn the alternate address g2, B has
to send an ASCONF-AddIP to A via NAT2. At present,
there is no mechanism for B to realise that this needs to
be done, leaving NAT2 with incomplete information of the
association’s state.

NAT2 does not have the necessary state to NAT the
packet. Hence, this valid packet, and any future valid pack-
ets for this association, will be dropped.

ACM SIGCOMM Computer Communication Review

28

Host A Host B
P, b, 9 9
Packet Dropped
by NAT2
ErrorM
@ NAT2

=y
/

®
®

ASCONF-AddIP
ASCONF-ACK

Figure 5: Extension of ERROR-M to handle NAT
state inconsistencies

4.2 Possible Solutions

There are a number of possible ways to ensure that both
NAT1 and NAT2 have the complete association’s state.

4.2.1 Mediation entity

Stewart and Tiixen suggest that an inter-NAT communi-
cation or an external management scheme may be a solu-
tion [2]. In this simple example, NAT1 and NAT2 need
to know of each others existence and then communicate di-
rectly with each other. However in more complex scenarios
a mediation entity (or individual NATSs) will need to:

1. be known by and know all relevant NATs

2. be trusted by all relevant NAT's

3. gather association state information from NATSs
4.

propagate association state information (possibly on
demand) to NATs

This will make practical implementations more difficult.

4.2.2 Extend the use of ERROR-M

Another possible solution to force B to generate the re-
quired ASCONF-AddIP is shown in Figure 5.

1. Upon receipt of the problem packet from A, NAT2
could send an ERROR-M to B(g2).

2. B should then respond with an ASCONF-AddIP so
that NAT2 can add B’s alternate IP address, g2, to
its lookup table.

This extends the proposed use of the ERROR-M chunk,
which replies to the destination address of the packet it was
unable to forward. Extending the use of the ERROR-
M chunk could prove a security issue for the end-host
SCTP stack. An attacker could use unsolicited ERROR-
M chunks to generate a DoS attack, especially since the re-
sultant ASCONF-AddIP will be larger than the original
ERROR-M.

Further, the original packet from A to B remains dropped
and will have to be resent at a later time.

Volume 39, Number 1, January 2009

4.2.3 Do not track global addresses

If global IP addresses are not tracked this problem will
not occur. Referring again to the packet sent from Host A
via NAT 2 in Figure 4:

5. The packet received at NAT2 will be correctly for-
warded since its <vtag,ports> tuple match the lookup
table’s values.

More complicated case scenarios are also resolved by remov-
ing the global address from the tuple.

Not tracking global IP addresses makes it easier to ran-
domly guess the <wvtag,ports> tuple of an active association.
This could allow an attacker to inject packets through the
NAT to the internal end host. Since an SCTP host does
track IP addresses, it will not accept these packets. Despite
this, the authors’ believe that the state and security prob-
lems that occur when the NAT tracks global IP addresses
are a greater problem than the vulnerability of a local host
to the aforementioned attack in most circumstances.

5. NAT LOOKUP TABLE CONFLICTS

We have identified in the previous sections some prob-
lems that can arise when an SCTP NAT tracks global IP
addresses. A lookup table conflict occurs when two asso-
ciations have the same identifying tuple. Tracking global
IP addresses extends the state space of a <wtag,ports>
tuple by adding a list of global addresses to the tuple
<vtag,ports,address>.

Section 4 demonstrates that tracking global TP addresses
can lead to situations where valid packets are dropped by a
NAT. The full association state has not been communicated
to all NATs. If global addresses are not tracked this will
not occur (see 4.2.3). We examine the extent of the con-
flict problem to determine if tracking global IP addresses is
necessary, even in large NATSs.

5.1 Model of lookup table process

Since current use of SCTP is in the telecommunications
industry, we use Internet telephony type traffic as a base for
our model. We assume that calls traversing the NAT can
be modelled as having independent Poisson arrivals with
exponentially distributed holding times. Looking at calls
in one direction, the lookup table system can be modeled
as shown in Figure 6. Telephony calls, in this case SCTP
associations, arrive at rate A. The lookup table is modelled
as m servers, which remain busy for the life of the call 1/pu.
SCTP sources randomly choose a vtag and source port. This
is modelled by association arrivals being randomly directed
to a particular server (lookup table element). If the server is
busy (a conflict), the association initialisation is retried with
a newly generated vtag. This results in an RA increase to
the arrival rate. We approximate this retry rate as a Poisson
rate of RA, which can be added to the new association arrival
rate to give a total arrival rate of A + RA.

Since the choice of server is random and independent, each
server can be modelled using the Markov process depicted in
figure 7 where: A = A/m, r = R/m, and 1/u is the average
time an association remains in the table (holding time). The
retry rate, 7\ is the proportion of incoming traffic that finds
the system busy (r = P[1]).

ACM SIGCOMM Computer Communication Review

29

Figure 6: Model of the lookup table process for A
INIT arrivals per second

A+ A

(o)

u

Figure 7: A single lookup table element, receiving
the fraction A = A/m INIT arrivals per second

Solving the balance equations gives (see appendix B):

Plconflict] = P[1] = (1 " (2/;)2)5 - %

P1] is the probability that an association wishing to use this
element in the lookup table will find it already in use. Since
the choice of element is uniformly random, P[con flict] is also
the probability that an arriving association finds a lookup
table conflict. We would like the NAT to operate with a low
Plconflict]. If Plconflict] < 1, then A < p and 7\ = 0, the
probability of a conflict may be approximated as simply:
A

Pconflict] ~ Ao A
o mp

(1)

(2)

5.2 Two extreme scenarios

In this section we calculate Pconflict] for two extreme
scenarios. In the first scenario the lookup table state space
is defined only by the wtag. In the second, more realistic,
scenario the lookup table state space is defined by the vtag
and port combination.

5.2.1 Vtag sized state space

In the theoretical worst case all local hosts attempt to
initiate associations to the same destination port from the
same source port numbers. A conflict occurs when two local
hosts coincidentally generate the same vtag. Tracking global
IP addresses would resolve this conflict if the destination
addresses were different. However, when global IP addresses
are not tracked, the lookup table state space is limited to
m = 232 — 1 (32bit vtag, with 0 reserved).

Figure 8 shows a plot of Equation (1) where the average
association holding time (1/p) is 180s. Table 2 lists the
Plconflict] for various NAT capacities.

Volume 39, Number 1, January 2009

— : vtag only

F?' --- ! vtag and port

(]

-

4
4
4
4
e

[’
= A e AN
S o 4
=
c
[=}
O,
o

[Te]

g

(]

—

N~

o

& I

—

le+01 le+03 1le+05 le+07 le+09

A (assocls)

Figure 8: Probabilities of a NAT lookup table con-
flict versus association arrival rate for the two ex-
treme scenarios (average association holding time of
180s)

arrivals/s 10 10° 10° 107

concurrent|| 1.8 x 10* | 1.8 x 10° | 1.8 x 107 |1.8 x 10°
(see note)

Plconflict]| 4.2 x 1077 [4.2 x 107°4.2 x 107%| 0.36

(vtag)

Plconflict]| 2.6 x 107 2.6 x 107°{2.6 x 1077 |2.6 x 107°

(vtag/port)

Note: At 107 arrivals/s, the vtag only state space has a high P[con flict], re-

sulting in a lower number of concurrent associations, 1.5 x 109.

Table 2: Association arrival rates and number of
concurrent associations for the two scenarios (aver-
age association holding time of 180 s)

A NAT that keeps Plconflict] < 10™% has a working ca-
pacity of up to 2.3 x 10* association arrivals per second.
On average there can be up to 4.2 x 10° concurrent asso-
ciations. This will result in an average of 23 conflicts per
second, each which will cause an ABORT-M! reply. The
local hosts will then retry with a new vtag. The probability
of a host having to initiate the same association more than
twice is (P[conflict])? = 107°.

5.2.2 Vtag and port sized state space

In a real system, local hosts will randomly generate their
16 bit port number, using ephemeral ports (IANA recom-
mended range 49152 through 65535)[11]. An extreme case
is where all local hosts are initiating associations to the same
service (destination port)?. This extends the state space to

![2] recommends that NATSs resolve conflicts by sending an
ABORT chunk with the middle box bit set.

2When the possibility of different services is considered, the
state space is extended even further.

ACM SIGCOMM Computer Communication Review

30

m = (22 —1)2'". A conflict occurs when two local hosts
coincidentally generate the same vtag and source port.

A NAT that keeps P[conflict] < 1072 then has a working
capacity of up to 3.8 x 10% association arrivals per second.
On average there can be up to 6.8 x 10*° concurrent associa-
tions (see Figure 8). Table 2 lists the P[con flict] for various
NAT capacities.

5.3 Other traffic types

A NAT on a general purpose network may see a large vari-
ety of different traffic types with arrival processes and hold-
ing time distributions which are not completely independent
and have heavier tails. This will cause wider fluctuations in
the number of concurrent associations, increasing the prob-
ability of conflict. Even so, we suggest that the probability
of a lookup table conflict when not tracking global IP ad-
dresses will be very low in all small or large SCTP NAT
installations.

6. PERFORMANCE ANALYSIS

We have discussed some of the issues that arise tracking
global TP addresses in a NAT. Another aspect to tracking
global IP addresses is the processing requirements in doing
so. Here we evaluate this using our FreeBSD SCTP NAT
implementation (alias_sctp) under two scenarios:

Experiment 1 High association arrival/departure rate
with a low data rate. This provides an idea of the
increased work involved in parsing INIT packets
to extract and add global IP addresses to the NAT
lookup tables.

Experiment 2 A static number of active associations
with a high data traffic rate. This provides an idea
of the increased work involved in searching the NAT
lookup tables when translating the addresses of each
SCTP packet.

In each experiment, we run trials under three different
scenarios:

1. Tracking — Tracking global addresses
2. No tracking — Not tracking global address;

3. Baseline — no SCTP packet processing (see discussion
in section 6.3)

6.1 Alias_sctp

Alias_sctp is a FreeBSD kernel based NAT implemen-
tation that extends ipfw2’s libalias kernel module [10].
Version 0.2 of alias_sctp supports:

e Configurable NAT management parameters
e Optional tracking of global IP addresses

e Limitations on levels of SCTP chunk/parameter pro-
cessing

6.2 Experimental testbed

An experimental testbed is configured as shown in Fig-
ure 9. Each machine, including the NAT, consists of a Pen-
tium Core 2 Duo running at 2.33 GHz with 1 GB of RAM
running the FreeBSD 8.x (kernel revision 180784) operating
system.

The existing SCTP stack is not used to generate the test
traffic because:

Volume 39, Number 1, January 2009

INIT-ACK »

jum |

LOCAL

NAT DATA

< GLOBAL

Figure 9: Experimental setup for performance tests

e The stack chooses randomly available port numbers
and vtags.

e The end host processing load is too high. There is a
lot of work in generating, managing, and serving thou-
sands of concurrent SCTP associations and high data
rates.

Instead a number of custom test scripts are used:

e SCTP packets are manually generated using raw IP
sockets. We select ports and vtags to ensure there are
no lookup table conflicts. While the probability of a
conflict is low, the guarantee ensures that the number
of associations is deterministic.

e Only the packets necessary for the NAT to establish
and terminate associations are used in the initialisation
and shutdown phases.

e The CRC-32C is not generated since the NAT does not
check this.

e Only INIT and SHUTDOWN-ACK packets are
parsed and responded to with appropriate SCTP re-
sponse packets returned to the sender (A firewall rule
stops incoming SCTP packets, otherwise the local
SCTP stack will respond with ABORTS).

6.3 Measuring NAT load

Our objective is to measure the relative CPU use of the
SCTP NAT when tracking and not tracking global TP ad-
dresses. We use the unix ps command to obtain the CPU
time of the kernel process. It gives the cumulative execution
time, including interrupt handling, rounded to 0.01s.

Apart from running the alias_sctp module, the kernel
process includes:

e Bidirectional work of the firewall processing incoming
and outgoing packets.

e All other kernel tasks

A baseline experiment is run to measure the work the
kernel process performs for everything except alias_sctp.
To do this a modified alias_sctp is loaded which writes a
hard coded source or destination IP address on each packet
it receives. It returns without any parsing or table lookups.
Subtracting the baseline measurements from the tracking
and no tracking experiments gives an estimate of the CPU
load of alias_sctp.

6.4 Experiment 1 — High association arrival
rate

In this experiment a single client on the global side of the
NAT establishes many short associations with a single server
on the local side of the NAT. Details are as follows:

ACM SIGCOMM Computer Communication Review

31

kernel Total alias_sctp
cpu time Mean (s) | Variance (s?) | (—=base) (s)
tracking 177.46 0.062 33.56
not tracking 165.52 0.067 21.62
baseline 143.90 0.058 —
increase due to
tracking 7.2% — 55.2%

Table 3: Experiment 1 (High association arrival rate
— 1500 assocs/s) results

e Each second, 20 blocks of 75 associations are started
(association arrival rate = 1500 assoc/s). This rate en-
sures that the source, sink and NAT are highly loaded,
but not overloaded.

e Collision free environment. Vtags are artificially cho-
sen to be unique

e Association lifetime approximately 10s. This results
in about 15000 concurrent associations.

e Each association, once up, sends at a rate of 1 packet
per second (about 15000 packets/s overall).

e Four IP address parameters are contained within each
INIT. This simulates a global host with five IP ad-
dresses (the packet’s source address is not included in
the INIT).

The experiment is run for 150 minutes under each of the
three scenarios. The kernel CPU time is sampled at 15
minute intervals.

6.4.1 Results

Table 3 shows the mean and variance of the 15 minute
sampled kernel CPU time for experiment 1, along with an
estimate of the time spent in the alias_sctp module. These
numbers indicate that the NAT is not overloaded. About 3
minutes® of each 15 minute sample period is being used by
the kernel. The SCTP NAT module uses less than one fifth
of the overall processing requirements of the kernel.

Setting up associations is the most CPU intensive task
that the SCTP NAT performs. Operations specific to an
SCTP NAT are:

1. Parse the packet for the <wvtag,ports,[address|> tuple

2. Parse INIT chunk for inittag and, if tracking, extract
all global IP addresses

3. Check for conflicts and add association details to the
lookup table

These results show an increase of 55 % in the alias_sctp
workload when tracking global addresses, with a 7 % increase
in the overall kernel workload. In real installations the in-
creased work will depend on the proportion of associations
that connect to multi-homed global hosts and the association
arrival rate. The proportion of multi-homed associations is
potentially quite large, since much through NAT communi-
cation is to large multi-homed WWW servers.

33 minutes of cpu time of one of the 2 cores in the system

Volume 39, Number 1, January 2009

This result is important for both small and large NAT
devices. Small home routers, although dealing with quite
low association arrival rates, have limited processing power.
At the other end of the spectrum, corporate or ISP NATSs
will need to deal with very high association rates making
the increase in work load especially significant.

In this experiment there were no <wtag,ports> conflicts.
When tracking is employed, determining if a conflict exists
requires the comparison of all the global addresses in each
matching association entry with each of the global addresses
contained in the INIT/INIT-ACK. Each matching associ-
ation requires an O(N M) search, where N is the number of
addresses in the incoming INIT /INIT-ACK, and M is the
number of addresses in the otherwise matching association
in the table.

6.5 Experiment 2 — High packet rate

The same testbed configuration shown in Figure 9 is used.
In this experiment a single client on the global side of the
NAT establishes multiple long-term associations with a sin-
gle server on the local side of the NAT'. Details are as follows:

e 2000 concurrent permanent associations
e Collision free environment

e FEach association tries to send at a rate of 100 pack-
ets/s. The total traffic rate is 2 x 10° packets/s, flood-
ing the 100 Mbps link.

e Each association has 5 global IP addresses.

The experiment is run for 150 minutes under each of the
three scenarios. The CPU kernel load is sampled at 15
minute intervals.

6.5.1 Results

When tracking global addresses, a <vtag,ports> lookup
table match must be searched to ensure that the packet’s
global address is valid for this association. For this scenario
we need to search through 5 address, of which the 5" is a
match. Table 4 summarises the results. As per the previous
experiment, the NAT is not overloaded. About 4 minutes of
each 15 minute sample period is being used by the kernel.
The SCTP NAT module is using less than 5 % of the overall
kernel processing requirements.

The 31% increase in alias_sctp’s work when tracking
global addresses in this scenario is not significant. Even
though the NAT is handling over five times the amount of
traffic as in Experiment 1, alias_sctp is only using about
one quarter of the CPU time. Unless there are very high
numbers of global IP addresses in each association, the ex-
tra workload of tracking global IP addresses when NATing
regular packets is minimal.

6.6 Memory usage

A NAT needs to store state for each current association
traversing it. In our FreeBSD SCTP NAT implementation
each association’s state uses 60 bytes of memory, with each
stored global IP address adding 12 bytes (4 bytes for the IP
address, and 8 bytes for the two pointers in the doubly linked
list).

In general, the total memory usage can be described as:

n
M =8h+60n+12 g; bytes (3)

=1

ACM SIGCOMM Computer Communication Review

32

kernel Total alias_sctp
cpu time Mean (s) | Variance (s?) | (—=base) (s)
tracking 231.63 0.068 8.48
not tracking 229.61 0.063 6.46
baseline 223.15 0.130 —
increase due to
tracking 0.9% — 31.3%

Table 4: Experiment 2 (High packet rate — 200 000
pkt/s) results

Tracking

1.8 x 10° bytes
2.4 x 10° bytes

Not tracking

9.0 x 10° bytes
1.2 x 10° bytes

Memory usage

Experiment 1

Experiment 2

Table 5: Estimated association state memory con-
sumption

where h is the hash table size (4 byte pointers for local and
global tables), n is the number of associations, and g; is the
number of global IP addresses for association 4.

Table 5 lists the memory requirements for storing associ-
ation state, ignoring the hash table, in these experiments?.

In our implementation, tracking global IP addresses in-
creases the association state memory requirements by 100 %
where the SCTP servers are multi-homed with five IP ad-
dresses. When multi-homed SCTP servers become common
in the internet, NAT-enabled routers can expect a large in-
crease in their memory requirements when they track global
IP addresses.

7. CONCLUSIONS

Enabling SCTP to work seamlessly through NAT devices
will be an important enabler of SCTP’s broader adoption in
the public Internet. Experience we have gained through our
development of a FreeBSD SCTP in kernel NAT module,
alias_sctp, has helped us gain insight into many of the
issues involved.

SCTP’s multi-homing leads to some complex issues re-
garding global IP address management. We have demon-
strated that tracking global IP addresses within the NAT
can lead to scenarios of inconsistent state. Some NATS in-
volved in the association may not be aware of all the global
IP addresses involved. This can result in a situation where
packets are dropped unnecessarily by the NAT. When global
IP addresses are not tracked the problem goes away.

Stewart and Tiixen suggest that tracking global IP ad-
dresses is necessary in practical implementations to avoid
lookup table conflicts. Our analysis of the probability of
lookup table conflicts suggest that in all practical imple-
mentations (up to many millions of concurrent associations)
tracking global addresses is not necessary.

Analysis of the performance of alias_sctp 0.2 show a
significant increase in a NAT’s memory requirements when
tracking global IP addresses. The work involved in setting
up and pulling down associations in the NAT also increases

4Memory consumption for Experiment 1 can fluctuate due
to the nature of the experiment.

Volume 39, Number 1, January 2009

when tracking global IP addresses, but the overall increase
in kernel load is less significant.

Other considerations include the need to secure both
the NAT and the internal LAN against different attacks.
SCTP’s multiplexing of control chunks can make an SCTP
NAT particularly vulnerable to certain types of DoS attacks.
The current NAT proposal provides most of mechanisms
necessary for an SCTP NAT. However, it does not specifi-
cally consider a number of these cases. To provide a secure
and robust SCTP NAT installation we recommend:

e Limiting the number of chunks (2) and parameters (25)
processed by the NAT when analysing packets

e Global IP address tracking should be disabled by de-
fault

e If global IP address tracking is enabled, to limit the
numbers of IP addresses to be tracked for each associ-
ation to 25

e Not to respond to an unexpected packet arriving from
outside the NAT (unless the NAT is tracking global
IP addresses and <wtags,ports> matches an existing
association)

8. ACKNOWLEDGMENTS

The development of the SCTP NAT enhancements to
FreeBSD’s libalias is part of the SONATA [10] project and
was made possible in part by a grant from the Cisco Uni-
versity Research Program Fund at Community Foundation
Silicon Valley.

The authors would also like to thank Randall Stewart and
Michael Tiixen for their vigorous email discussions and help
with clarifying some of the issues, CAIA colleague Hai Vu
for his helpful discussions on some of the analysis, and the
reviewers for their suggestions that have improved the paper.

9.
1]

REFERENCES

L. Zhang, “A retrospective view of NAT,” IETF
Journal, vol. 3, no. 2, Oct. 2007. [Online]. Available:
http://www.isoc.org/tools/blogs/ietfjournal /?7p=157
R. Stewart and M. Tiixen, “Stream control
transmission protocol (SCTP) network address
translation,” Internet-Draft, Jul. 2008.

M. Tiixen, I. Riingeler, R. Stewart, and E. P.
Rathgeb, “Network address translation (NAT) for the
stream control transmission protocol (SCTP),” IEEE
Network, vol. 22, no. 5, pp. 26-32, September/October
2008.

D. A. Hayes and J. But, “Alias_sctp NAT module,”
viewed 30 October 2008. [Online]. Available:
http://caia.swin.edu.au/urp/sonata/downloads.html
R. Stewart, “Stream control transmission protocol,”
IETF, RFC 4960, Sep. 2007.

R. R. Stewart and Q. Xie, Stream Control
Transmission Protocol (SCTP). Addison-Wesley,
2002.

P. Ferguson and D. Senie, “Network ingress filtering:
Defeating denial of service attacks which employ ip
source address spoofing,” IETF, RFC 2827, May 2000.
P. Srisuresh and M. Holdrege, “IP network address
translator (NAT) terminology and considerations,”
IETF, RFC 2663, Aug. 1999.

2

ACM SIGCOMM Computer Communication Review

33

[9] P. Srisuresh and K. Egevang, “Traditional IP network
address translator (traditional NAT),” IETF, RFC
3022, Jan. 2001.

CAIA, “SONATA — SCTP over NAT adaptation,”
viewed 28 August 2008. [Online]. Available:
http://caia.swin.edu.au/urp/sonata

I. A. N. A. (IANA), “Port numbers,” viewed 23
October 2008, Oct. 2008. [Online]. Available:
http://www.iana.org/assignments/port-numbers

(10]

(11]

APPENDIX

A. ALIAS_SCTP

Our FreeBSD SCTP NAT implementation [10] mitigates
the attacks outlined in Section 3 through the use of system
parameters configured through FreeBSD’s sysctl interface:

e error_on_ootb — Configures how the NAT responds to
packets belonging to an association which it does not
have the necessary information to NAT (0 — do not
respond, 1 — local response only, 2 — local and global)

e accept_global_ootb_addip — If > 0 the NAT will ac-
cept global side ASCONF-AddIP requests for asso-
ciations it knows nothing about

e initialising_ chunk_proc_limit — Limits the number
of chunks that will be processed if an association is
being initialised

e chunk_proc_limit — Limit on the number of chunks
that will be processed for an existing association

e param_proc_limit — Limit on the number of parame-
ters within a chunk that will be processed

e track_global_addresses — Configures the global ad-
dress tracking option within the NAT (0 — Global track-
ing is disabled, > 0 — enables tracking but limits the
number of global IP addresses to this value)

B. LOOKUP TABLE PROCESS MODEL

Solving the balance equations for the Markov model de-
picted in Figure 7:

po(A 4+ p1A) = pip, where po = P[0] and p; = P[1] (4)
and
p1+pr=1 (5)

substituting (5) into (4)

A
pips —1=0
I

factorising
2\ 3
a3 a3
p1+2>\+<1+(2)\))]
1
o B\ E|
Pt oy <1+(2A)>]_0 (7)

the non-negative root, since 0 < p; <1
2\ 2
PJconflict] = P[1] = (1 + (%)) — %

Volume 39, Number 1, January 2009

