
Packet Caches on Routers: The Implications of
Universal Redundant Traffic Elimination

Ashok Anand∗, Archit Gupta∗, Aditya Akella∗, Srinivasan Seshan† and Scott Shenker‡
∗UW-Madison, †CMU, ‡UC-Berkeley

{ashok,archit,akella}@cs.wisc.edu, srini@cs.cmu.edu, shenker@cs.berkeley.edu

ABSTRACT
Many past systems have explored how to eliminate redundant trans-
fers from network links and improve network efficiency. Several of
these systems operate at the application layer, while the more recent
systems operate on individual packets. A common aspect of these
systems is that they apply to localized settings, e.g. at stub network
access links. In this paper, we explore the benefits of deploying
packet-level redundant content elimination as a universal primitive
on all Internet routers. Such a universal deployment would imme-
diately reduce link loads everywhere. However, we argue that far
more significant network-wide benefits can be derived by redesign-
ing network routing protocols to leverage the universal deployment.
We develop “redundancy-aware” intra- and inter-domain routing al-
gorithms and show that they enable better traffic engineering, reduce
link usage costs, and enhance ISPs’ responsiveness to traffic varia-
tions. In particular, employing redundancy elimination approaches
across redundancy-aware routes can lower intra and inter-domain
link loads by 10-50%. We also address key challenges that may hin-
der implementation of redundancy elimination on fast routers. Our
current software router implementation can run at OC48 speeds.

Categories and Subject Descriptors: C.2.2 [Computer Communi-
cation Networks]: Routing Protocols

General Terms: Algorithms, Design, Measurement.

Keywords: Traffic Redundancy, Routing, Traffic Engineering.

1. INTRODUCTION
The basic property that some of the content on the Internet is

highly popular results some data being repeatedly transferred across
the network. A number of existing systems attempt to improve the
efficiency of the network by eliminating these redundant transfers.
There is wide-spread agreement that these approaches offer signifi-
cant benefits in practice.

A common property of existing systems is that they typically op-
erate in a localized fashion by eliminating the redundant transfers
either on the link, or of the application, directly connected to the
system. The goal of this paper is to explore some of the implications
of network-wide deployment of redundancy elimination technology.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

A majority of the redundancy-elimination systems have employed
application-layer object caching to eliminate redundant data trans-
fers. For example, Web proxy caches are an application-layer ap-
proach to reduce the bandwidth usage of static Web content within
ISPs and at large stub networks. Numerous studies [25, 11] have ex-
plored the effectiveness of such designs. In recent years, a number
of systems, both commercial [3, 4, 1, 2] and non-commercial [24],
have been developed which operate below the application layer and
attempt to eliminate any redundant strings of bytes that appear on
the network. Such systems enjoy two benefits. First, they are not
tied to a single application and can eliminate all forms of redundant
information. Second, past evaluations have shown that more redun-
dant information can be removed by focusing at the packet and byte
levels than at the object level.

In this paper, we consider the benefits of deploying of packet-
level redundant content elimination as a primitive IP-layer service
across the entire Internet. We start with the assumption that all fu-
ture routers will have the ability to strip redundant content from
network packets on the fly, by comparing packet contents against
those recently-forwarded packets which are stored in a cache. Rou-
ters immediately downstream can reconstruct full packets from their
own cache. Applying this technology at every link would provide
immediate performance benefits by reducing the overall load on the
network. It also enables new functionality: for example, it simpli-
fies application layer multicast by eliminating the need to be careful
about duplicate transmissions.

However, universal redundancy elimination can yield even greater
benefits if existing protocols are redesigned with redundancy elimi-
nation in mind. In this paper, we describe how wide-spread deploy-
ment of redundancy elimination can be leveraged by ISPs to change
the way they compute routes giving rise to new and improved tech-
niques for managing network resources. We analyze the benefits
of selecting routes which maximize the opportunity to eliminate re-
dundant content, versus routes which minimize hop count or other
cost functions; An example is shown in Figure 1.

We consider such “redundancy-aware” modifications to both intra-
and inter-domain routing. In our proposed approaches, ISPs first
compute estimates of how often content is replicated across diffe-
rent destinations—we call these estimates redundancy profiles—and
use these estimates in computing forwarding paths for their pack-
ets. We describe how ISP routers can compute redundancy profiles
in parallel with forwarding packets. We also describe how ISPs
can leverage centralized route control platforms (e.g. 4d [13] or
RCP [8]) to compute network-wide redundancy-aware routes in a
scalable and efficient fashion. In contrast with current state-of-the-
art practices, our redundancy-aware approaches can allow ISPs bet-
ter control over link loads, and offer them greater flexibility in meet-
ing traffic engineering goals and in reacting to sudden traffic surges.

219

Figure 1: In (a), we show shortest path routing where the net-
work carriers 18 packets in all). In (b), redundant packet elim-
ination is employed on the shortest paths resulting in 12 pack-
ets total, or a 33% reduction. In (c), we use redundancy-aware
routes which minimize the total number of packets carried by
the network resulting in 10 packets total, or a 44% reduction.

We have evaluated the full range benefits arising from a uni-
versal deployment of redundancy elimination, and from using our
redundancy-aware route selection algorithms. Our evaluations use
Rocketfuel topologies and workloads from full packet traces col-
lected at a large US university as well as synthetic traffic models
derived from the traces. When traditional shortest path routing is
used, we find that applying redundancy elimination on all network
links brings down the network-wide utilization by 10-50%. In con-
trast, when redundancy-aware routing is employed, we find that the
network-wide utilization is reduced by a further 10-25%. We also
study the effect of staleness of redundancy profiles on route qual-
ity. We find that the benefits from redundancy-aware routing are
significant even when traffic patterns change unexpectedly and the
route computation is unable to react to the change (as might happen
during flash-crowd events). Overall, we find that a wide-spread de-
ployment of redundancy elimination can be leveraged to obtain very
significant network-wide benefits. These benefits can quickly than
offset the initial high cost of deployment.

We also consider some key challenges that may hinder the de-
ployment of packet-level redundancy elimination in today’s high-
speed routers. Starting from the algorithm in [24], we make key
enhancements to the design of packet caches and to cache lookup
algorithms in order to reduce both the total amount of storage re-
quired and the number of memory accesses incurred per packet. We
have implemented these improvements in Click [18]. Our simplis-
tic implementation offers a throughput of 1Gbps in software on a
1.8GHz Linux box. We argue that, with better hardware support,
the throughput of the software implementation can easily exceed
2.5Gbps. Even higher throughputs can be attained in hardware.

This paper is structured as follows. In Section 2, we discuss a
prior approach for packet-level redundancy elimination and outline
the issues we consider in this paper. In Sections 3 and 4, we present
redundancy-aware intra- and inter-domain routing, respectively. In
Section 5, we present a measurement study of key properties of
redundant content observed in real packet traces. In Section 6,
we evaluate the benefits of universal redundancy elimination and
redundancy-aware routing. In Section 7, we present our software
router implementation of packet-level redundancy elimination. We
discuss related work in Section 8 and conclude in Section 9.

2. BACKGROUND
In this section, we present a brief outline of a popular mechanism

for packet-level redundancy elimination, and review current prac-
tices in routing and traffic engineering. We then discuss the chal-
lenges in updating routing to leverage a universal deployment of
redundancy elimination. We end with a preliminary empirical study
which points to the likely benefits of modifying routing in this way.

Figure 2: Packet-level redundancy detection.

2.1 Algorithm for Redundancy Elimination
We describe a fast algorithm for identifying chunks of redundant

content across packets. This algorithm has been employed in var-
ious forms in the past, e.g., for detecting duplicates in a file sys-
tem [16, 19] and for detecting worms [22]. The algorithm we dis-
cuss here was first conceived by Spring et. al [24] who applied it to
remove redundant content from access links. Their approach oper-
ates at access routers, as packets enter or leave a stub network.

For every packet going in a particular direction, the algorithm
computes a set of fingerprints by applying a hash function to each
64 byte sub-string of the packet’s payload. This choice of sub-string
size offers good performance in practice [24]. Thus, for an S-byte
packet (S ≥ 64), a total of S − 63 fingerprints are obtained. Rather
than use an MD5 hash, the algorithm uses a sliding hash function
called Rabin fingerprint [20], which significantly cuts down the hash
computation time per packet [24]. A subset of these fingerprints are
selected at random per packet as its representative fingerprints.

Representative fingerprints of all the packets observed over some
past interval of time are stored in a fingerprint store at the router.
The packet payloads are stored in a packet store. Pointers are stored
from each fingerprint to the corresponding packet (Figure 2).

After computing representative fingerprints for an arriving packet,
each fingerprint is checked against the fingerprint store to check if
the fingerprint already exists there. If a match is found, this means
that the incoming packet has a 64 byte sub-string that matches with
an in-cache packet. The matching packet is retrieved and the 64B
match region is expanded left and right to obtain the region of over-
lap between the two packets. The new packet is inserted into the
packet store, and the mapping in the fingerprint store is updated
so that the matching fingerprint points to the new packet. The re-
maining representative fingerprints of the arriving packet are also
inserted into the fingerprint store. In some situations, more than
one representative fingerprint of the incoming packet can observe a
match; this means that different regions of the arriving packet have
matched with distinct regions of one or more cached packets.

Each match region is removed from the incoming packet and
replaced with a shim which encodes the redundant content in the
packet. The shim provides the fingerprint which caused the match,
and byte range for the matching in-cache packet. The shim can be
used by a downstream router to reconstruct the packet from its own
local cache. It is assumed that that the cache on the downstream
router is consistent with the upstream cache.

2.2 Intra and Inter-domain Routing
ISPs make intra-domain routing decisions on the basis of a packet’s

destination IP address. Since selecting static routes per destina-
tion (e.g., always using paths with small hop counts) could impact
their ability to control the load on network links, many ISPs em-
ploy traffic engineering (TE) techniques. These involve estimat-
ing expected volume of traffic between different locations (PoPs) in
a network [17] and computing routes so as to spread load evenly
across network links. Although ISPs are known to overprovision

220

their links, traffic engineering is crucial to manage resources in the
face of traffic variations.

When selecting inter-domain routes, ISPs attempt both to reduce
usage costs of expensive inter-domain links and to minimize the
impact of inter-domain traffic on intra-domain links. Typically, ISPs
statically select the most cost-effective AS as the next hop for a
destination. Packets are sent to the next hop either along the early-
exit route or, in some cases, along an exit point that is chosen based
on mutual agreements with the neighbor.

Meeting network-wide traffic engineering objectives effectively
is very challenging today (in part because of the difficulty in predict-
ing traffic volumes accurately). In particular, current intra-domain
routing and TE practices cannot easily adjust to variations in traffic
volumes. The variations could cause the load on intra-domain links
to increase beyond acceptable limits. Similarly, the load on expen-
sive and congested inter-domain links can increase significantly as
well. In both cases, this could lead to a violation of TE objectives
and of service level agreements (SLAs) with neighboring networks.

Applying redundancy elimination on network links improves the
effective utilization of the links and provides ISPs greater flexibility
in meeting their network-wide objectives. The flexibility is further
enhanced when routing and traffic engineering are modified to lever-
age link-level redundancy elimination.

2.3 Toward Redundancy-Aware Routing
We assume that redundancy elimination approaches such as the

one described in Section 2.1 are applied on input and output port
of Internet routers in a hop-by-hop manner. An upstream router
removes redundant content as a packet leaves it, while the router
immediately downstream reconstructs the packet as soon as it ar-
rives (assuming the packet has redundant content). All routers cache
packets that they have forwarded or received over a fixed short in-
terval of time (e.g., 10s). Upstream and downstream packet caches
should be the same size and the routers must employ the same hash
functions and random seeds to ensure consistency.

To leverage a universal deployment of redundancy elimination
and improve network-wide utilization, ISPs must change the way
routes are computed today, as well as how routers act on packets.

In particular, ISPs must perform three key tasks: (1) ISPs must
first track how packet content is replicated across different points
in their network; We call this information the “Traffic Redundancy
Profile”; (2) Based on the network-wide profile, ISPs must then con-
struct intra and inter-domain forwarding paths which maximize the
likelihood of duplicate data traversing the same network links and,
at the same time, allow ISPs to meet their network-wide objectives;
We call this “Redundancy-Aware Route Computation”. And, (3)
Router-level redundancy elimination techniques must operate on ev-
ery packet at every router along network paths.

Our goal is to systematically understand how ISPs may imple-
ment these tasks, and show that ISPs can obtain significant benefits
in terms of controlling the loads on their links, being able to meet
their TE objectives satisfactorily, being better prepared for sudden
traffic variations, and reducing usage costs and congestion on inter-
domain links. Next, we discuss initial measurements which point to
the potential benefits of employing redundancy-aware routes.

Preliminary Study. We conducted a preliminary measurement
study where we tracked packets originating from a high volume /24
prefix owned by a large US university (the packets are headed for
the commercial Internet). Traffic from the university enters its pri-
mary ISP at Chicago. We analyzed this traffic using the algorithm
in Section 2.1 and found that 45% of the packet contents were du-
plicated for a 150s traffic snapshot using a packet store that could
hold all packets in the snapshot; that is, the ratio of the total size

of the matched regions in all packets to the total size of all packets
was 0.45. Further, we dissected the /24 traffic leaving the primary
ISP’s network from its New York, Washington DC and Boston PoPs.
About 22% of the packet contents leaving New York were dupli-
cated in the 150s snapshot. The fraction was 18% for DC and 2%
for Boston. Also, the shortest paths from Chicago (close to where
the university is located) to these cities were non-overlapping. Thus,
simply employing redundancy elimination techniques in a hop-by-
hop manner can yield savings of 2-22% (when only considering the
bytes due to the /24) on the intra-domain links of the primary ISP.

Interestingly, 10% and 9% of the contents of packets going to
New York also appeared in packets going to Boston and Washing-
ton DC. Thus, if packets to Boston and Washington DC are routed
via New York (this does not cause significant path inflation) and
then redundancy elimination applied, the overall utilization of the
network links can be brought down even further.

3. INTRA-DOMAIN ROUTING
In this section, we present our redundancy-aware intra-domain

routing approach which can help ISPs manage link loads more ef-
fectively and reduce overall network utilization. As mentioned ear-
lier, the ISP gathers information on how content is duplicated within
its network over a certain interval of time, and construct routes
which maximize the potential for redundancy elimination. We as-
sume that all ISP routers employ redundancy elimination.

To begin with, we assume that the ISP has perfect and timely
knowledge of the prevailing patterns of redundancy in its network
and that it can configure redundancy-aware paths within the net-
work in a negligible amount of time. We also assume that packets
are duplicated in full, if at all. We start with a simple setting where
we consider packets originate from a single PoP in an ISP. We ex-
tend this to a network-wide setting and construct redundancy-aware
intra-domain routes between all pairs of PoPs in the ISP.

Following this, we discuss practical issues in redundancy-aware
intra-domain routing, such as fast approaches for estimating the
redundancy patterns, accounting for partial replication of content
across packets, and computing redundancy-aware routes.

3.1 A Single PoP
We use the following abstract model to develop our approach. We

represent the ISP using a graph G = (V, E). We focus on traffic
originating from a single ISP PoP, denoted by S (∈ V). We refer
to S as the source or ingress. Nodes D1, D2, . . . , Dm ∈ V denote
the egress PoPs or destinations through which traffic originating at
S exits the ISP. Other vertices in V represent ISP backbone routers.

We now model duplicated packets within the traffic originating
from S. Suppose that N distinct packets {P1, P2, . . . , PN} origi-
nate at S over a certain time duration T . All other packet originating
at S in this interval are duplicates of the N distinct packets. Each
distinct packet Pi can have one or more “copies”. We use the term
“copy” in a loose sense: specifically, we consider the original dis-
tinct packet to be the first copy. Some copies of the distinct packet
Pi may all be destined for the same destination Dj , while other
copies may be headed for other destinations.

We assume that the ISP has all information regarding destinations
of the different packet copies. Specifically, the ISP has a list of
constants cpyi,j defined so that cpyi,j = 1 if a copy of distinct
packet Pi is destined for egress Dj . For instance, say that distinct
packet P1 originating at S has four copies overall, two of which are
destined for PoP D1 and one each for PoPs D3, D5. Then, cpy1,1 =
cpy1,3 = cpy1,5 = 1, and cpy1,j = 0 for all other destinations Dj .

We call this list of cpy’s the redundancy profile for the traffic
originating from S in the time interval T . In practice, an ISP can

221

compute the profiles as packets enter its network (Section 3.3.2).
Next, we show how the ISP can use the redundancy profile to com-
pute redundancy-aware routes from S to the different Djs. We first
define a few variables which we employ in explaining our approach.

We refer to the traffic going from S to a particular destination
within the time interval T as a single flow. For each flow j (i.e.,
the traffic to destination Dj), we define variables rtej,e such that
rtej,e = 1 if the redundancy-aware route from S to Dj goes through
edge e, and rtej,e = 0 otherwise. Binary values for rtej,e ensure
that all traffic between S and Dj is routed along one path.

We use a variable FPi,e for an edge e and distinct packet Pi to de-
note the footprint of the copies of Pi on edge e. The footprint is the
amount of resources consumed on edge e when the copies of Pi are
routed toward their respective destinations using redundancy-aware
routes and all routers perform redundancy elimination. For instance,
if none of the copies of Pi is routed over e, then the footprint due
to Pi and its copies on edge e is zero, i.e., FPi,e = 0. If multiple
copies of Pi are routed over the edge e, then effectively only one
copy goes through e because the remaining copies are eliminated as
being redundant. In this case, the footprint of the copies of Pi on the
edge e is a function of the size of the distinct packet Pi. In this pa-
per, we pick the footprint function to equal the size of the packet Pi

multiplied by the latency of the link e, or FPi,e = late × |Pi|. The
intuition behind choosing this function is that a packet consumes
more network resources overall when it traverses high latency links
and/or when the packet size is large. Other functions reflecting net-
work usage can also be considered.

The ISP’s objective in computing redundancy-aware routes is to
compute the rte variables such that total footprint summed over all
network edges is minimized. In order words, the goal is to com-
pute routes from S which minimize the total network resources con-
sumed by traffic originating at S within the interval T when all rou-
ters perform redundancy elimination.

We formulate the ISP’s objective as the output of a Linear Pro-
gram (LP). We first describe the constraints for the LP, followed by
the optimization objective. We have the following constraints per
distinct packet Pi, based on the definition of the footprint function:

∀j, FPi,e ≥ late × cpyi,j × rtej,e × |Pi|
Since the footprint FPi,e cannot exceed resources consumed when
routing a single copy of Pi on e , we have, FPi,e ≤ |Pi| × late.

Next, we set up flow conservation constraints for nodes in V . For
backbones routers v, we have: ∀j, P

e∈δ+(v) rtej,e =
P

e∈δ−(v)

rtej,e, where, δ+ indicates flow entering node v, and δ− indicates
flow leaving node v. For source S and destinations Dj , we have:

∀j, P
e∈δ−(S) rtej,e −

P
e∈δ+(S) rtej,e = 1

∀j, P
e∈δ+(Dj) rtej,e −P

e∈δ−(Dj) rtej,e = 1

Finally, we require a set of constraints to ensure that link capacities
are obeyed. Suppose edge e cannot carry more than Cape packets
within the interval T (Cape can be derived from e’s raw capacity).
Then, we require: ∀e, 1

late

P
n FPn,e ≤ Cape. We use a normal-

izing factor 1
late

to obtain the total size of packets carried by e.
The objective of the LP is to lower the total network footprint

subject to the above constraints, or Minimize
P

e

P
i FPi,e.

We allow fractional values for the variables rte in the solution for
the above LP. Fractional values indicate how traffic may split across
different possible paths between S and a destination.

3.2 Multiple Ingresses, Traffic Engineering
We extend the above approach for computing redundancy-aware

routes to a network-wide setting. The goal is to use redundancy-
awareness to help ISPs meet their traffic engineering goals more

effectively. Our network-wide approach tries to always obtain bet-
ter network-wide guarantees than existing TE approaches, such as
OSPF-based weight tuning [6]. We illustrate our approach using the
“Maximum load” objective, wherein the ISP employs traffic engi-
neering to minimize the maximum link utilization in its network.
Traffic can originate at any network PoP.

To explain our approach, we introduce a per-ingress parameter
cpyPn,i,Dj which is 1 if a copy of distinct packet Pn,i is destined
for Dj . Pn,i denotes the ith distinct packet originating from ingress
Sn within an interval T . Similarly we extend the link footprint vari-
able to capture the contribution of packets originating from different
ingresses to a particular link e; we denote this as FPPn,i,e. In a sim-
ilar fashion, we define variables rteSn,j,e which identify if the flow
between Sn and Dj flows through edge e. We assume that pack-
ets originating from different ingresses have no content in common.
(We omit several details for brevity.)

As with the single ingress case, we first formulate a network-wide
LP where the objective of the ISP is to lower the network footprint
due to traffic originating from all PoPs, or Minimize

P
e

P
i

P
n

FPPn,i,e. Next, we place link capacity constraints and incorporate
the “Max Load” objective as follows: Suppose that, based on the
measured network traffic matrix, the ISP estimates that traditional
traffic engineering approaches (e.g. OSPF-based approaches [6,
12]) can bound the link loads by a factor α < 1. ISPs today try
to maintain α ≈ 0.5. Given this, we normalize each link’s capacity
Cape using Cape ← Cap′

e = αCape and minimize the network-
wide footprint subject to the following new capacity constraints:

∀e, 1

late

X

i

X

n

FPPn,i,e ≤ Cap′
e

The solution to this LP is the set of rteSn,j,e variables. Due to nor-
malization of capacities and our objective of minimizing network
footprint, the maximum link load due to this solution is at least as
good as, if not much better, compared to traditional TE approaches.

3.3 Centralized Route Computation and
Practical Issues

Our redundancy-aware approaches can be applied by an ISP along-
side centralized routing platforms such as RCP [8] and 4D [13]. At
regular N minute intervals, border routers in the ISP can compute
the redundancy profiles (i.e. the constants cpyPn,i,Dj) for packets
observed during the first T seconds of the interval, and transmit the
profiles to a logically central route control platform. We discuss
how to track the redundancy profiles, especially when packet con-
tents may not be duplicated in full, towards the end of this section.

The controller formulates the network-wide Linear Program and
computes the routes (i.e. the rteSn,j,e variables). The computed
routes are configured on routers and used for rest of the N minutes.

In addition to the periodic updates, border routers could also track
the redundancy profiles on a minute-by-minute basis and inform the
route controllers of significant changes in the traffic redundancy pat-
terns. This allows the controller to respond better to sudden traffic
surges and changes in redundancy profiles.

3.3.1 Scalability
The input to the network-wide Linear Program includes the con-

stants for the redundancy profiles. The input size thus grows lin-
early in number of distinct packets observed during the interval T .
The size can be prohibitively large if millions of distinct packets ap-
pear in a short time. The amount of data to be transmitted to the
central route controller will be high, resulting in excessive control
overhead. Also, existing LP solvers cannot handle large input sizes.

We employ two simplifications to address the scalability issues.

222

Based on an empirical study of real traces, we observed that content
at an ingress PoP is rarely duplicated across ≥ 3 destination PoPs
(Section 5). Thus, we only consider content duplicated across 2
destinations and ignore duplication across > 2 destinations.

We make another simplification to improve the scalability. We
“combine” the redundant content in packets going to an identical
set of destinations into a larger aggregated packet; copies of the
aggregated packet are considered to be destined for the same set
of destinations as the individual packets. For example, suppose that
distinct packets P1, . . . , Pl all have two copies, with one copy going
to destination D1 and another to D2 (all traffic is observed in a time
interval T). We create an equivalent single aggregated packet of sizePl

1 Pi which goes to destinations D1 and D2. Thus, the aggregated
packet captures the total overlap in the content going to D1 and D2.
This aggregation approach reduces the total number of cpy variables
without changing the quality of the solution obtained for the LP —
the number of variables reduces from 2l to 2 in the above example.

With these two simplifications, the total number of variables for
the entire network is now on the order of the square of number of
PoPs in the network and the control overhead is thus much smaller.
We refer to the redundancy profiles captured using aggregated pack-
ets in the above fashion as the aggregated redundancy profiles.

Next, we describe an approximate approach for computing the
aggregated redundancy profiles at the ingress routers of an ISP net-
work as packets stream into a network. We also address issues aris-
ing from content being partially replicated across network packets.

3.3.2 Computing Redundancy Profiles
We discuss an extension to the algorithm in Section 2.1 to com-

pute the aggregated profiles in practice. The approach we describe is
run constantly on each ingress router. Suppose an incoming packet
P at an ingress router has a match with a single packet Pcache stored
at the router, and that P and Pcache are headed for different des-
tinations D1 and D2. We count the size of the matching region
|P ∩ Pcache| towards the total amount of content common to desti-
nations D1 and D2. If P and Pcache are both headed to the same
destination, say D1, then we count |P |+ |Pcache|−|P ∩Pcache| to-
wards content exchanged between the ingress and D1; in this man-
ner, we approximately track the total amount of unique content ex-
changed between the source and D1. If the incoming packet P has a
match with more than one cached packet, say P1,cache and P2,cache,
we count each match region separately towards the redundancy pro-
files; that is, we run the aforementioned tallying approach first for P
and P1,cache, and then for P and P2,cache. We also track packets in
the ingress router’s packet store which observe no matches during
the interval T . We group such packets by their destination and com-
pute the total size of the packets in each group. This total is then
added to the total volume of unique content exchanged between the
ingress and the corresponding destination.

At the end of interval T , the ingress router gathers aggregated
counts for: (1) the size of content shared between pairs of egresses,
and (2) the volume of unique content exchanged with different egresses.
This forms the aggregated redundancy profile for the ingress PoP,
and is transmitted to the route controller. Note that we only focus
on content that is duplicated across 2 destinations, if at all.

This approach clearly approximates the true redundancy profile
as described in Section 3.1. However, our trace-based evaluation
(Section 6) shows that the inaccuracies in our approach do not sig-
nificantly affect the quality of the routes we compute.

3.3.3 MPLS Networks
As mentioned before, we permit fractional solutions to the network-

wide Linear Program. The fractional solution can be implemented

in MPLS-based networks by establishing the appropriate “traffic
trunks”, or label switched paths (LSPs), between ISP PoPs [9]. Care
must be taken to construct LSPs and allot packets to them in a
redundancy-aware manner. This is crucial in order to extract the
maximum amount of redundant content from network traffic. Oth-
erwise, packets may be alloted to LSPs in such a manner that redun-
dant packets destined for different egresses are routed along LSPs
which have very few network links in common.

While a thorough investigation of how to establish LSPs and al-
locate packets is beyond the scope of this work, we have developed
a preliminary redundancy-aware heuristic which seems to offer sat-
isfactory performance in practice. The details can be found in [5].

4. INTER-DOMAIN ROUTING
In this section, we present redundancy-aware inter-domain rout-

ing which can help ISPs minimize the overall impact of inter-domain
traffic on internal and peering links. We consider as “inter-domain”
traffic the set of all packets traversing the ISP whose destinations are
routable only through peers of the ISP. We consider two approaches:
local and cooperative.

The local approach applies to an ISP selecting its next-hop ASes
in BGP, as well as the particular exit point(s) into the chosen next
hop. In this approach, an ISP aggregates its inter-domain traffic
over a selected set of next hops and the corresponding exit points so
as to aggregate potentially redundant traffic onto a small number of
network links. Thus, the ISP can significantly reduce the impact that
inter-domain traffic imposes on its internal and peering links. To
compute routes in this manner, the ISP must track (1) the amount of
redundant content that is common to different destination prefixes
and (2) the route announcements from peers to the destinations.

The cooperative approach applies to ISPs which are willing to
coordinate their inter-domain route selection decisions. In this ap-
proach, the ISPs compute routes which minimize the overall impact
of inter-domain traffic across the internal links of all ISPs involved
and the peering links between the ISPs. We explore the ideal bene-
fits from cooperation and ignore important issues such as the need
to maintain privacy of internal information.

4.1 Local Approach for an ISP
The intra-domain approach, presented in Section 3, can be ex-

tended in a straight-forward manner to perform next hop-AS selec-
tion. This simply requires a change to the input network graph G
and the overall objective of the ISP. Our approach described below
focuses on inter-domain traffic originating at a particular PoP in an
ISP and can be extended to all inter-domain traffic of the ISP. We
present the high level ideas and omit the details for brevity.

The ISP’s network footprint objective encompasses the footprint
FPi,e of both the internal edges of the ISP and its peering links.
The input graph G = (V, E) is constructed as follows: the set V
is composed of three subsets V1, V2, and V3 (Figure 3). V1 is the
set of all intra-domain routers or the PoPs of the ISP, including the
ingress PoP S where the inter-domain traffic originates. V3 is the
set of destination prefixes D1, D2, . . . , Dm. These are the prefixes
to which the inter-domain traffic from S must finally reach. We as-
sume that the ISP computes aggregated redundancy profiles across
the m destinations. To derive the ideal benefits of redundancy elim-
ination, all possible destination ASes must be considered in the set
V3. However, in practice, it may suffice to focus on just the top few
destination prefixes by volume. Finally, the set V2 is composed of
“intermediate nodes” which model possible next hop ASes for each
destination, as well as their peering locations with the ISP.

The set of edges, E, is composed of three subsets: E1, the set of
intra-domain edges, E2, the full set of peering edges between the

223

Figure 3: Input graph for the local inter-domain approach.

ISP in question and each of its peers, and E3, which are “interme-
diate edges” between nodes in V2 and V3. We construct an interme-
diate edge between an intermediate node v and a destination Dj if
the ISP corresponding to v has announced a route to Dj . We only
include edges and vertices for a peer if the peer is among those who
have a path with the smallest number of AS hops to the destination.

The rest of the inter-domain route selection approach is simi-
lar to the intra-domain case. Again, a centralized route controller
may be employed to compute routes which minimize the footprint
due to inter-domain traffic. The ingress router at S could com-
pute the inter-domain redundancy profile using the approach in Sec-
tion 3.3.2, and transfer the profile to the router controller. The output
from the route controller is the next-hop AS and the internal route
to the exit point into the next-hop for each destination prefix.

4.2 Cooperative Approach for Two ISPs
For simplicity we consider the case where just two ISPs coordi-

nate their inter-domain route selection. Our approach can be ex-
tended to multiple ISPs. Our approach works as follows: rather
than compute inter-domain routes in isolation, each ISP tries to ag-
gregate the redundant content in inter-domain traffic together with
the redundant content in its intra-domain traffic, so as to bring down
the overall utilization of all participating networks.

Thus, the key difference from the intra-domain routing formula-
tion is that the input graph used by either ISP is the union of the
topologies of the two networks and peering links. The inputs to
an ISP’s Linear Program are its intra-domain redundancy profiles
and the inter-domain profile for traffic between ingresses in itself
and egresses in the neighbor. The output of an ISP’s formulation
include its intra-domain routes and a list of exit points for traffic
destined to egresses in the neighbor (and how to split inter-domain
traffic across the exit points).

5. MEASUREMENT RESULTS
We present a brief study of key properties of content redundancy

observed at the packet-level in real traces. We focus on the extent
to which content is duplicated across two or more destinations. Our
observations shed light on the potential for redundancy-aware rout-
ing. They also justify the key choices we have made in designing
the approaches outlined in Sections 3 and 4. We also leverage the
observations to construct synthetic traces which we use extensively
in Section 6. For brevity, we only focus on intra-domain settings.

Traces. We collected full packet traces at a large US university’s
access link to the commercial Internet. We collected multiple 150s-
snapshots at the beginning of every hour starting at 10am and ending
at 7pm on Jan 26, 2007. In addition, we also separately monitored
the traffic originating from a high volume /24 prefix owned by the
university, which hosted some of the most popular servers on cam-
pus (during the same time-period). The latter traces are likely to be
representative of a moderate-sized data center.

Extent of redundancy. We used the approach outlined in Sec-
tion 2 to quantify packet-level content redundancy. In the case of
Internet-bound traffic on the University access link, we found that

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1 2 3 4 5 6 7 8 9 10

%
 o

f 6
4-

by
te

 c
hu

nk
s

No. of Egresses

CDF (low redundancy)
CDF (High Redundancy)

 0

 0.2

 0.4

 0.6

 0.8

 1

 1e-04 0.001 0.01 0.1

F
ra

ct
io

n
of

 P
oP

 p
ai

rs

sharing fraction(log scale)

CDF-sharing

(a) 64B chunks duplicated across multiple PoPs (b) Content shared between pairs of PoPs

Figure 4: Duplication across multiple destination POPs

the average redundancy percentage was 16% using 400MB packet
store, meaning that the ratio of the total size of the matched regions
in all packets to the total size of packets was 0.16. When we used
a 2GB packet store, the average redundancy proportion increased to
20%. For traffic originating from the high-volume /24 prefix, the re-
dundancy proportion was 50% on average with a 2GB packet store.
These observations show that when redundancy elimination is ap-
plied in a localized fashion on individual access links, the utilization
of the links can be reduced by 16-50%.

Extent of duplication across destinations. Our redundancy-
aware approaches are most effective when content is duplicated across
multiple destinations. To examine the benefits of redundancy aware-
ness, we emulate a scenario where traffic originating at our vantage
points (i.e. the University access link and the /24 prefix) is routed
across the internal network of a tier-1 ISP (SprintLink). For both
cases, we assume that the traffic enters the ISP at its Chicago PoP.
Using traceroute and undns [23] we mapped the destination prefixes
observed in traces to PoPs of the tier-1 ISP. We then examined how
often content is duplicated across different ISP PoPs.

In Figure 4(a), we show the number of different PoPs to which a
distinct 64B chunk observed in a trace was destined to. We study
a full University trace (redundancy proportion of 17%) and a trace
of traffic from the high-volume /24 prefix (redundancy of 48%). In
the former case, we note that for 97% of the chunks, either there
were no duplicates or the duplicates went to the same PoP as the
original. In 3% of the cases, the duplicate and original chunks were
destined to 2 distinct PoPs. For the trace of the /24 prefix, we see
more significant duplication across PoPs, with duplicates destined
for 2 PoPs in nearly 10% of the cases. In general, very few chunks
are duplicated across ≥ 3 PoPs in either set of traces. We exam-
ined several other traces and observed similar trends. This justifies
our approach of focusing only on the amount of content duplicated
across pairs of destinations when computing redundancy profiles.

Next, we examine whether content duplicated across a set of des-
tinations amounts to a significant proportion of all traffic sent to
the destinations. In Figure 4(b), we show the total volume of traf-
fic originating from the high-volume /24 prefix which is duplicated
across a pair of destination PoPs, relative to the total volume of traf-
fic from the /24 to the two PoPs. We see that the proportion of
shared content varies significantly across different pairs of destina-
tion PoPs. In many cases, there is very little sharing of redundant
content: the proportion of shared content is < 1% for nearly 80% of
the PoP pairs. For roughly 10% of PoP pairs, the extent of sharing is
very significant, ranging between 5 and 15% of the total traffic. We
studied other traces of the /24 prefix and observed a similar trend
of a few PoP pairs sharing a significant amount of content. Further-
more, we also found signs of positive correlation between the total
volume of traffic of the PoP pair and the extent of content shared
(the results are omitted for brevity).

6. EVALUATION
In this section, we present results from an extensive study of the

benefits of redundancy elimination both when applied to traditional

224

routes and when applied along with redundancy-aware routes. We
consider both intra and inter-domain settings. We also examine the
impact of network topology on the benefits derived. Finally, we
study the ability of redundancy elimination and redundancy-aware
approaches to absorb sudden traffic surges.

Unless otherwise stated, our metric of comparison is the network
footprint which reflects the aggregate utilization of an ISP’s network
resources. A significant reduction in network footprint implies that
an ISP is able to better control the usage of its network resources
and meet its traffic engineering goals in a more effective fashion.

We mostly focus on benefits in the ideal case, in that we assume
networks have perfect information regarding the redundancy pro-
files and can compute redundancy-aware routes instantaneously. We
do study the impact of practical limitations from staleness of redun-
dancy profiles. Our evaluation is based both on the real packet traces
(Section 5), and synthetic traces which are described next.

Our study indicates that redundancy elimination and redundancy-
awareness can reduce network footprint to a very significant extent.
Thus, the benefits of a universal deployment of redundancy elimi-
nation seem to easily offset the initial cost of deploying the mecha-
nisms on multiple network routers.

Generating Synthetic Traces. Synthetic traces allow us to ex-
plore the relationship between various redundancy profiles and the
overall benefits offered by our approaches. We construct synthetic
traces based on key properties of real packet traces.

In what follows, we first outline how to generate a synthetic intra-
domain trace for traffic originating at a single PoP of an ISP’s topol-
ogy. This can be extended trivially to network-wide intra-domain
traces, as well as to inter-domain traces.

Packets are of the same size in all synthetic traces. Each synthetic
trace has three parameters: ρoverall ∈ [0, 0.5] and ρintra, ρinter ∈
[0, 1]. These determine if there are duplicate packets, and whether
the duplicate packets are all headed for the same destination.

To elaborate, ρoverall is the total fraction of redundancy in the
traffic; For instance, when ρoverall = 0.5, only 50% of the pack-
ets are unique. In general, no packet has more than one duplicate
in all our synthetic traces. Thus, we do not model duplication of
content across 3 or more destinations. As our empirical study in the
previous section showed, this approximation is unlikely to affect the
representativeness of our synthetic trace-based analyses.

To construct the trace, we first create a large number of unique
packets. Each packet has a duplicate with probability ρoverall

(1−ρoverall)
.

If a packet has no duplicate (with probability (1−2ρoverall)
(1−ρoverall)

), we
“send” the packet to a PoP in the ISP selected with a probability pro-
portional to the population of the city represented by the PoP (this is
based on the gravity model for network traffic volumes [21]). If the
packet has a duplicate, we create the duplicate, and with probability
ρintra, we send the packet and its duplicate to the same destination,
where the destination is selected according to the gravity model;
thus, ρintra controls the number of packets which are duplicated
between a pair of PoPs. With a probability ρinter = 1− ρintra, we
select two different destinations according to the gravity model, and
send them a copy each; thus, ρinter controls the number of packets
duplicated across two different destinations.

We assume that routers have sufficient memory to store all pack-
ets within a synthetic trace that are forwarded to them.

Evaluation strategy. Given a trace, synthetic or real, and a net-
work topology, we compute aggregate redundancy profiles using the
approach described in Sec 3.3.2. We compute routes according to
the redundancy-aware algorithms of Sections 3 and 4. We use real-
istic ISP topologies (with link latencies) from Rocketfuel [23].

In all cases, we compare redundancy-aware routing algorithms,

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1

re
du

ct
io

n
in

to

ta
l n

et
w

or
k

fo
ot

pr
in

t

intra redundancy fraction

SP-RE
RA

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.1 0.2 0.3 0.4 0.5

re
du

ct
io

n
in

to

ta
l n

et
w

or
k

fo
ot

pr
in

t

overall redundancy

SP-RE
RA

(a) ρoverall = 0.5 (b) ρintra = 0

Figure 5: Intra-domain, single-ingress (Seattle, WA) for ATT
(AS7018). Link capacities are unlimited.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

in
gr

es
s

fr
ac

tio
n

reduction in network footprint

SP-RE
RA

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

209 1239 1668 2914 4323 7018

m
ea

n
fo

ot
pr

in
t r

ed
uc

tio
n

ISP AS numbers

SP-RE
RA

(a) CDF across multiple ATT ingresses (b) View across multiple ISPs

Figure 6: Impact of topology in the intra-domain setting.

denoted as “RA”, and traditional shortest path routing with hop-
by-hop redundancy elimination, denoted as “SP-RE”, against tra-
ditional routing without redundancy elimination, denoted as “SP”.

6.1 Benefits in the Intra-Domain Setting
We first evaluate the benefits of redundancy-aware routing in an

uncapacitated intra-domain setting with traffic from a single ingress.
Synthetic traces. First, we employ a variety of synthetic traces

to examine the benefits. In Figure 5, we compare SP-RE and RA
against SP for traffic originating from the Seattle PoP in the ATT
network topology (AS7018). In Figure (a), we present the reduction
in network footprint under a range of different inter- and intra-flow
redundancy proportions (i.e. ρinter and ρintra values), but the over-
all redundancy fraction remains unchanged (ρoverall = 0.5). From
Figure 5(a), we note that the benefits of redundancy elimination in
general are quite significant: the network footprint reduces 27-50%
with RA and 6-50% with SP-RE.

We also note that RA offers substantial reduction in network foot-
print compared to SP-RE. In particular, when redundant content is
duplicated across multiple destination PoPs (i.e., as ρinter → 1),
RA is significantly better (27% reduction due to RA compared with
6% due to SP-RE). At the other extreme, when most duplicated
packets travel between the same source-destination pair (i.e. as
ρintra → 1), the benefits of RA relative SP-RE start to diminish,
and RA eventually becomes identical to SP-RE.

In Figure 5(b) we vary ρoverall while keeping ρinter = 1. At a
low fraction of the overall redundancy proportion (ρoverall < 0.1),
RA and SP-RE are essentially indistinguishable. When ρoverall ≥
0.2, we see that RA offers significant benefits compared to SP-RE:
RA can reduce the network footprint but a further 6-20%.

These observations indicate that redundancy awareness generally
offers substantial improvements in network utilization under a wide
range of possible redundancy profiles, compared both to current
routing and to simple redundancy elimination.

Next, we analyze the impact of topology on the benefits of re-
dundancy awareness. In Figure 6(a), we plot a distribution of the
benefits due to RA and SP-RE as we change the ingress PoP in the
ATT network. We set ρoverall = 0.5 and ρinter = 1. We see that
the benefits from both RA and SP-RE vary with the ingress PoP, but,
in general, RA offers significant improvements over SP-RE. While
SP-RE alone can reduce the footprint by 2-22%, the benefits of RA
are even better: between 6% and 27%.

In Figure 6(b), we compare how the mean improvements in net-

225

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.1 0.2 0.3 0.4 0.5

In
gr

es
s

F
ra

ct
io

n

reduction in Network footprint

SP-RE
RA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

in
gr

es
s

fr
ac

tio
n

reduction in network footprint

SP-RE
RA

(a) High redundancy trace (50%) (b) Low redundancy trace (17%)

Figure 7: Trace-based analysis for SprintLink.
work footprint vary across 6 different tier-1 ISP topologies, where
the mean is computed over all PoPs in an ISP. We see that the mean
improvement is between 2 and 12% for SP-RE and between 11%
and 17% for RA. We note that in some situations, e.g., AS1668,
which has a very sparse topology, the benefits from RA are marginal
compared to SP-RE. For sparse networks, simple redundancy elim-
ination is sufficient to bring down the network footprint.

Real traces. Next, we analyze the benefits of RA and SP-RE us-
ing real packet traces. We conduct our analysis over the network
topology of SprintLink (AS1239). Our approach is to vary the ori-
gin PoP of the packet trace and study the benefits of RA and SP-RE
assuming all packets in the trace are destined for SprintLink’s cus-
tomers. To model where the intra-domain traffic would exit Sprint-
Link’s network, we map the top 2500 destination prefixes in the
traces to a US city using “undns” [23] and traceroute. We then map
the city to the nearest SprintLink PoP. We assume that each router
has a 2GB packet store.

Our trace-based analysis is representative of a real-world app-
lication of redundancy elimination and redundancy aware routing.
Using the traces, we first compute the redundancy profiles (Sec-
tion 3.3.2). Then, we compute redundancy-aware routes, route pack-
ets in the trace on the computed paths, and simulate redundancy
elimination on each router (Section 2.1).

In Figure 7(a), we show the distribution (CDF) of the improve-
ment in network footprint when different PoPs in AS1239 are cho-
sen as the ingress. Here, we use a trace of the high-volume /24 pre-
fix, which had a redundancy proportion of nearly 50%. We see that
both SP-RE and RA offer substantial reductions in network foot-
print. In particular, we note that the benefit from RA is > 40%
for roughly 10% of the ingresses. One of these ingresses was Seat-
tle; RA aggregates traffic originating from Seattle and destined for
NYC, Boston and Dallas (which receive 36% of traffic in total) to-
gether with destined for Chicago (which receives 40% of the traffic),
and routes all traffic on the single Seattle-Chicago link.

We also conducted trace-based analysis of a full packet trace of
the University access link (Figure 7(b)). The aggregate redundancy
proportion in this trace was 17%. We observe little difference be-
tween SP-RE and RA. This is because, as shown in Figure 4(a), a
very small fraction of the content in this case is duplicated across
PoPs. We do note that redundancy elimination was generally very
beneficial, resulting in 10-20% reduction in the network footprint.

Benefits in intra-domain Traffic Engineering (TE). Next, we
show that redundancy elimination and redundancy-awareness can
help an ISP better meet its network-wide TE goals. We use synthetic
traces in this analysis. In contrast with the earlier study, we now
impose capacity constraints on network links. In particular, given a
Rocketfuel ISP topology, we annotate links with capacities chosen
uniformly at random from {2.5, 10}Gbps.

We generate one synthetic trace per PoP in the ISP topology. For
simplicity, the traffic from all PoPs has the same ρoverall and ρinter .
However, each trace differs in the aggregate traffic volume, which
is chosen to be proportional to the population of the PoP’s location.

Given the traffic proportions, we compute (redundancy-agnostic)
routes which minimize the maximum link utilization in the network.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 (50,1.0) (20,1.0) (50,0.5) (20,0.5) re
du

ct
io

n
in

 m
ax

 li
nk

 u
til

iz
at

io
n

(Overall redundancy, inter fraction)

SP-RE
RA

Figure 8: Traffic engineering with different redundancy profiles
(ATT network). The baseline for comparison is SP-MaxLoad.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5 4 4.5 5

m
ax

 li
nk

 u
til

iz
at

io
n

volume increment factor

SP-MaxLoad
SP-RE

RA

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 1.5 2 2.5 3 3.5 4 4.5

m
ax

 li
nk

 u
til

iz
at

io
n

volume increment factor

SP-MaxLoad
SP-RE

RA

(a) ρoverall = 0.5, ρintra = 0.25 (b)ρoverall = 0.5, ρintra = 0.75

Figure 9: A simulated flash crowd, where traffic from Chicago
in ATT increases suddenly. The original redundancy profile was
ρoverall = 0.2 and ρintra = 0.5.

We refer to this approach as SP-MaxLoad (We abuse notation here:
the inter-PoP paths may not be shortest in terms of latency). The
aggregate volumes between PoPs in the network are then scaled up
so that the maximum link utilization is 80%.

We first employ hop-by-hop redundancy elimination along the
routes obtained above. In Figure 8, the bars labeled “SP-RE” show
the resulting improvement in the maximum link utilization (again,
we abuse notation here). We see that redundancy elimination can
improve maximum link load when coupled with traditional traffic
engineering: the improvement ranges between 1% when (ρoverall,
ρinter) = (0.2, 1), and 25% when (ρoverall, ρinter) = (0.5, 0.5).
The bars labeled “RA” show the benefits of employing redundancy-
aware routes. We note that the improvements in this case are very
substantial: the maximum link load is 10%-37% lower. Such heavy
reduction in the maximum link utilization is extremely valuable to
ISPs because it creates additional capacity within the networks and
allows them to meet service-level objectives more effectively.

Sudden traffic variations. We now examine how our approaches
can mitigate the impact of sudden spikes in traffic load as might oc-
cur during flash crowd events. We use the same set-up as above
for simulating the flash crowd: We start with a network-wide trace
where we set ρoverall = 0.2 and ρinter = 0.5 for traffic from all
ingresses. The traffic volumes are such that the maximum link uti-
lization due to SP-MaxLoad is 50%. Given this set-up, we compute
redundancy-aware network routes.

We then make a sudden change - a factor of f increase over-
all - to the volume of traffic originating from an ingress picked at
random. We also change the redundancy profile, i.e. ρoverall and
ρinter , of the traffic from the ingress. However, we do not recom-
pute new redundancy-aware routes; instead, we study how routes
which match the stale profiles perform.

In Figure 9, we show the results from two different flash crowd
simulations. In both cases, we increase ρoverall to 0.5.In the first
case, the flash crowd causes a higher fraction of duplicate packets to
be distributed across multiple destinations; in particular, ρinter in-
creases from 0.5 to 0.75. The performance of the different schemes
is shown in Figure 9(a). We see that redundancy elimination, whether
coupled with redundancy-awareness or not, offers clear benefits in
terms of mitigating the impact of the sudden increase. When the
traffic volume increases by f = 3.5X, the maximum link load due
to SP-RE is 85% and that due to RA is 75%. Without any form of
redundancy elimination (SP-MaxLoad), the maximum load is 95%.

226

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

t-1 t-2 t-3 t-4 t-5re
du

ct
io

n
in

 n
et

w
or

k
fo

ot
pr

in
t

 High Volume /24 Traces

SP-RE
RA

RA-stale

Figure 10: Impact of stale redundancy profiles.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1re
du

ct
io

n
in

 n
et

w
or

k
fo

ot
pr

in
t

intra redundancy fraction

SP-RE-PrefNeigh
SP-RE-LatNeigh

RA-RANeigh

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

in
gr

es
s

fr
ac

tio
n

reduction in network footprint

SP-RE-PrefNeigh
RA-PrefNeigh

SP-RE-LatNeigh
RA-RANeigh

(a) Chicago as ingress, ρoverall = 0.5 (b) ρoverall = 0.5, ρinter = 1, all PoPs

Figure 11: Reduction in network footprint for the Inter-domain
local approach in ATT’s Network topology.

We analyzed another flash crowd situation where a smaller frac-
tion of bytes are duplicated across destinations compared to the
baseline situation (ρintra increases from 0.5 to 0.75). The results
in this case are shown in Figure 9(b). We see that the benefits from
redundancy elimination are much better than the first situation: the
maximum link loads at f = 3.5X are brought down to 61% with
RA and 68% with SP-RE. The difference between RA and SP-RE
is small because most of the redundancy is confined to traffic within
ingress-egress pairs, and thus redundancy-aware route construction
is not highly beneficial compared to shortest-paths.

Staleness of profiles. We conduct a separate analysis of the im-
pact of employing routes computed using stale redundancy profiles.
We use real traces corresponding to the high volume /24 prefix in
this analysis. We assume that the traffic in the trace originates at
the Chicago PoP in the SprintLink Network (AS1239). We focus
on SprintLink’s intra-domain routes for this traffic. We compute
routes that were optimal for the trace collected at a certain time,
and evaluate the network footprint when using these routes for the
traffic in 5 traces which were collected 10, 20,..., 50 minutes after
the original trace. Figure 10 shows the network footprints from em-
ploying the stale redundancy-aware routes (RA-Stale) to route the
traffic in these 5 traces. We see that RA-Stale is very close to the
optimal (wherein the redundancy-aware routes are computed using
current profiles; denoted by RA), and significantly better than SP-
RE. We repeated the analysis for traces collected at other times of
the day and observed that RA-Stale always offered reasonable per-
formance. We also changed the source PoP for the traffic to see if
there were topology-related biases in our observations. However,
the performance of RA-Stale was consistently good (See our tech-
nical report [5] for full results). While a more thorough analysis of
the impact of staleness is necessary, these observations seem to in-
dicate that redundancy-aware routes computed at a certain time will
continue to offer reasonable performance for few 10s of minutes.

6.2 Benefits in the Inter-domain Setting
We now present a comparison of the benefits of redundancy aware

routing, simple redundancy elimination, and traditional routing in
the inter-domain context. We assume link capacities are uncon-
strained. We first consider an ISP’s local approach for inter-domain
traffic originating from a single PoP in the ISP. Our baseline for
comparison is BGP-based choice of the next-hop AS, with early
exit routing to the next-hop’s peering location.

In Figure 11, we present the reduction in network footprint for
the ATT network (AS7018). The footprint is computed over ATT’s

internal and peering links. We consider inter-domain traffic origi-
nating at a single ATT PoP. We use synthetic traces. The destination
ASes for the inter-domain traffic are modeled along those observed
in real traces: we identify the top 75 destination ASes by volume
in the packet traces for which ATT only has peer-announced routes.
We assume that the traffic volume to these destinations follows a
Zipf distribution. We use Rocketfuel maps to obtain locations where
ATT peers with its neighbors. We used ATT’s public BGP tables to
obtain the preferred next hop ASes for each destination AS.

For the results shown in Figure 11(a) the traffic originates from
the Chicago PoP in the ATT network. We first examine the curve
labeled “SP-RE-PrefNeigh” which corresponds to ATT using early-
exit routing internally to reach the BGP-preferred next hop neighbor
for a destination. Simple redundancy elimination is then employed
on all network links. We note that even this simplistic application
of redundancy elimination offers substantial reduction in network
footprint, ranging between 4-50% for a trace where ρoverall = 0.5.

We also study “RA-PrefNeigh”, which corresponds to ATT rout-
ing via the BGP-preferred next hop neighbor, but using a peering lo-
cation which is selected in a redundancy-aware manner. This is not
shown in Figure 11(a) since it offered very similar performance as
SP-RE-PrefNeigh. The similarity arises because ATT is connected
to most of its peers in Chicago, and the exit points chosen by RA-
PrefNeigh are the same as that due to early exit routing.

Next we focus on the curve labeled “RA-RANeigh” where, in a
departure from traditional BGP route selection, ATT makes a selec-
tion of both the next hop neighbor and exit point in a redundancy-
aware manner using the algorithm outlined in Section 4.1. We see
that by making both choices in a redundancy aware fashion, ATT
improves the load on its internal and peering links by 0-11% com-
pared to redundancy-agnostic next hop AS selection (i.e. RA-Pref-
Neigh, which is identical to SP-RE-PrefNeigh).

In Figure 11(b) we plot the distribution of the reduction in net-
work footprint as we vary the ingress PoP in the ATT network. We
see that the benefits of redundancy awareness are very high: in some
cases, RA-RANeigh reduces the network footprint by > 85%.

Note that in contrast to traditional BGP routing, an ISP using
RA-RANeigh may select a peer which has the nearest exit point
as the preferred next hop for a destination. For example, say that
peer A1 is ATT’s BGP-preferred next hop for a destination prefix
P and A1’s closest exit point is 10ms away from the source PoP.
Another peer A2 which has also announced route to P has an exit
point which is just 5ms away. RA-RANeigh may prefer A2 over A1

because choosing lower latency internal paths helps RA-RANeigh
reduce the overall network footprint significantly.

Next, we examine the benefits of an ISP choosing the next-hop
AS using the following latency-driven approach: among all peers
who have announced a route to a destination, pick the one with
the nearest exit point. The key difference between this and RA-
RANeigh is that the selection of the inter-domain route is not made
in an explicit redundancy-aware manner. We analyze the perfor-
mance of the above latency-based approach to inter-domain route
selection and show the results using the curve labeled “SP-RE-Lat-
Neigh” in Figure 11. Two key points emerge from comparing SP-
RE-LatNeigh against RA-RANeigh: For nearly 20% of the ingresses,
the performance of SP-RE-LatNeigh is close, if not identical, to
RA-RANeigh; In these cases RA-RANeigh selects neighbors with
nearest exit points as the next hops just like SP-RE-LatNeigh does.

For the remaining ingresses, however, selecting neighbors purely
on the basis of the latency to the exit point seems to be quite sub-
optimal. Two factors contribute to the superiority of RA-RANeigh
here: (1) First, selecting a peer with a farther away exit point as
the preferred next hop for a destination may offer better opportu-

227

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

in
gr

es
s

fr
ac

tio
n

reduction in network footprint

SP-RE-PrefNeigh
RA-PrefNeigh

SP-RE-LatNeigh
RA-RANeigh

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

in
gr

es
s

fr
ac

tio
n

reduction in network footprint

SP-RE-PrefNeigh
RA-PrefNeigh

SP-RE-LatNeigh
RA-RANeigh

(a) High redundancy trace (50%) (b) Low redundancy trace (17%)

Figure 12: Trace-based analysis for ATT.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 0.2 0.4 0.6 0.8 1re
du

ct
io

n
in

 n
et

w
or

k
fo

ot
pr

in
t

intra redundancy fraction

RA-Opt
RA-HP

SP-Opt-RE
SP-HP-RE

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.05 0.1 0.15 0.2 0.25 0.3

in
gr

es
s

fr
ac

tio
n

reduction in network footprint

RA-Opt
SP-Opt-RE

(a) Chicago as source, ρoverall = 0.5 (b) ρoverall = 0.5, ρinter = 1

Figure 13: Inter-domain routing, Cooperative approach be-
tween ATT and SprintLink networks.

nities for aggregating redundant content. For instance, say a peer
A2 has announced a route to some prefix P and has an exit point
located 15ms away from the source PoP. Another peer A1 has also
announced a route to P , and has a closer exit point located just 5ms
away. Aggregating on the peering link to A2 all inter-domain traffic
to prefix P , together with traffic to other prefixes for which only A2

has announced routes, can significantly reduce the overall network
footprint. In contrast, simply using A1 to send traffic to P may not
offer similar benefits. (2) Second, RA-RANeigh attempts to aggre-
gate traffic to destinations which share redundant content onto the
same peering links. In contrast, SP-LatNeigh may aggregate desti-
nations across which content is seldom replicated.

Trace-Based Analysis. In Figure 12, we present the results from
our evaluation of the inter-domain local approach using real packet
traces. In Figure 12(a), we present the results for the traffic traces
from the high volume /24 prefix, where the overall redundancy pro-
portion was 50%. We observe very significant reductions in network
footprint from employing redundancy elimination, irrespective of
whether redundancy-aware routing is used or not. Also, as before,
we note that the difference between SP-LatNeigh and RA-RANeigh
is quite substantial for more than 50% of the ingress PoPs. In Fig-
ure 12(a), we present the results for a full trace of the University
access link, where the redundancy proportion was observed to be
17%. In this case, there was very little duplication of content across
destinations, and hence the benefits from redundancy-awareness are
low relative to simple redundancy elimination.
Cooperative Approach. In Figure 13(a), we examine the bene-
fits from cooperation between ISPs in computing redundancy aware
routes between each other. We employ synthetic traces in our anal-
ysis. We focus our analysis on the Sprintlink and ATT networks
both of which are tier-1 ISPs. They peer with each other at multi-
ple locations. We consider traffic originating from Chicago in ATT
and going both to PoPs in SprintLink and PoPs in ATT. We assume
that 80% of all traffic originating at Chicago in ATT is inter-domain
traffic, while 20% goes to intra-domain destinations. We considered
other traffic distributions, but the results were qualitatively similar.

As before, we compare RA and SP-RE against SP. We consider
two variants of each approach, namely Opt (for Optimal) and HP
(for Hot Potato). These two variants model a network’s exit point
selection for routing inter-domain traffic into its neighbor. When
using Opt, a network computes exit points for the inter-domain traf-
fic destined to its neighbor in a cooperative, globally optimal way.
In SP-Opt-RE, the cooperative routes minimize the sum total la-

(a) Packet and FP stores (b) Fingerprint Hash table
Figure 14: Architecture of the fingerprint and packet stores.

tency of all network paths (inter and intra-domain). In RA-Opt the
cooperative routes minimize the network footprint across both net-
works; RA-Opt is exactly the algorithm we descried in Section 4.2.
In early-exit or hot potato routing (HP), each network tries to opti-
mize its own local objective. In SP-HP-RE, each network uses early
exit routing into the other network. In RA-HP, each network selects
peering locations which minimize its own network footprint. The
baseline for comparison is SP-HP. Our metric of comparison is the
network footprint computed over both ISP networks.

Comparing RA-Opt with SP, we see that the reduction in network
footprint is very impressive, ranging between 28% and 50%. Also,
we note that SP-Opt-RE is not much better than SP-HP-RE. This is
because early-exit paths origination from the Chicago PoP in ATT
already have close-to-optimal latencies to the PoPs in SprintLink.
More importantly, we observe that SP-Opt-RE is inferior compared
to RA-HP. This further underscores the importance of redundancy-
aware route computation in reducing the network-wide utilization.

In Figure 13(b), we show a distribution of the reduction in net-
work footprints when different ATT PoPs are chosen as the sources
of the inter-domain traffic. As with our prior analyses, we see that
redundancy elimination in general is vastly beneficial, but redun-
dancy awareness offers greater overall improvement.

Evaluation Summary. Our extensive study has shown the vast
benefits of network-wide support for redundancy elimination, and
in particular, of changing network routing to be redundancy-aware.
We see that the impact of traffic on ISP network resources can be
reduced significantly. This is especially useful to control link loads
in situations of sudden overload. Finally, using routes computed on
the basis of stale profiles does not seem to undermine the benefits of
our approaches. Of course, the initial cost of deployment of redun-
dancy elimination mechanisms on multiple network routers will be
quite high. However, our analysis shows that the long-term benefits
of a wide-spread deployment are high enough to offset the cost.

Note that we assumed throughout that each router carries fully
decoded packets internally. But our proposals can be extended so
that routers switch smaller encoded packets (perhaps combining
multiple related small packets into a larger packet), with decod-
ing/reconstruction occurring only where necessary. This can help
overcome technology bottlenecks inside routers, in addition to sav-
ing bandwidth on links.

7. IMPLEMENTATION
In this section, we examine some of the key challenges that may

hinder the deployment of redundancy elimination mechanisms on
fast routers. We offer preliminary solutions to the challenges. We
evaluate the trade-offs introduced by our solutions via a software
implementation based on the Click modular router [18]. Our imple-
mentation extends the base algorithm of Spring et. al [24].

An important bottleneck in performing redundancy elimination at
high speeds is the number of memory accesses required during the
various stages of redundancy elimination, such as on-the-fly lookup,
insertion, deletion, and encoding the redundant region in a packet.

228

A second challenge is controlling the amount of memory required
to store the key data structures at routers, namely the fingerprint
and the packet stores. Our implementation is focused on developing
memory efficient ways to organize and access the data structures.
These issues have not been considered carefully in prior work.

Another key component is the computation of the hash function to
obtain fingerprints for each packet. Rabin finger-prints used in [24]
are well-suited for high-speed implementation. In particular, be-
cause Rabin fingerprint computation relies on use sliding hashes,
the fingerprints can be computed in parallel with CRC checks, even
as the bytes in a packet arrive into a router.

7.1 Packet Store
The layout of the packet store in our implementation is showed

in Figure 14(a). We implement the packet store as a FIFO buffer. In
particular, we use a circular buffer with a maximum of T fixed-size
entries. With FIFO buffering, the oldest packet in the packet store is
evicted when there is no room to insert a new packet. We considered
using other policies for eviction (such as Least-Recently-Used), but
a preliminary study of these policies showed that FIFO offers nearly
the same performance (in terms of the amount of redundant content
identified), but is simpler to implement (See [14] for details).

We use a global variable called “MaxPktID” (4B) to aid packet
insertions and deletions. This is incremented before inserting a new
packet. The current value of MaxPktID is assigned to a variable
PktID which becomes a unique identifier for the packet. The packet
itself is stored at the location PktID % T in the store. Thus PktID
also indicates the starting memory address of the packet’s location.

We take a short digression and describe the fingerprint store to
provide context for the rest of the design of the packet store. The fin-
gerprint store holds meta-data for representative fingerprints, which
includes the fingerprint itself, the unique ID for the packet (i.e., the
PktID) referred to by the fingerprint, and the byte offset in the packet
where the region represented by the fingerprint starts.

When the packet store is full, we simply overwrite the new packet
at the tail of the circular store. We must also ensure that the finger-
prints pointing to the evicted old packet are invalidated. Rather than
invalidate the associated fingerprints one-by-one (which can require
a large number of memory accesses), we can leverage the MaxP-
ktID variable and the PktID stored in the fingerprint meta-data: To
see why, note that if (PktID < MaxPktID−T), then the packet
has been evicted and thus the fingerprint is invalid.

The fingerprints for a new packet are hashed into random loca-
tions in the fingerprint store (discussed next).

7.2 Fingerprint Store
The fingerprint store must support fast insertions and efficient

lookups when checking for redundant content. To support these
properties, we implement the fingerprint store as a hash table.

If we use standard hash table implementations, then we will need
the fingerprint table to be very sparse to avoid collisions, and ensure
fast inserts and lookups. A quick calculation shows that, at OC48
speeds, if we store 10s worth of packets (i.e., a 3GB packet store),
the fingerprint table must be > 20GB in size. Even at this large size,
there is no real guarantee of collision-freeness and hash chaining.

To improve hash table storage efficiency while still ensuring O(1)
lookups and inserts, we use CuckooHash [10] to design the fin-
gerprint store. The CuckooHash-based design is illustrated in Fig-
ure 14(b). Each hash entry is divided into B buckets. Each bucket
stores a key, which is a fingerprint entry in our case. A set of k ≤ 2
independent hash functions are used during insertion of a represen-
tative fingerprint into the hash table: If any of the k × B locations
are found empty, the fingerprint is inserted at the first empty loca-

NumHashes → 1 2
f ↓
1.2 15.1% 11.5%
1.5 12.4% 7.8%
2 9.5% 4.6%

NumHashes → 1 2
f ↓
1.2 5.0% 0.06%
1.5 3.4% 0.02%
2 2.0% 0.003%

(a) B = 1 (b) B = 2

Table 1: Fraction of fingerprints that we fail to insert.
tion. If no bucket is empty, the fingerprint is simply not inserted (in
this case, we consider the insertion to have “failed”).

In Table 1, we explore the trade-offs between hash table size, the
number of buckets B, and the number of hash functions k. In par-
ticular, we examine the fraction of representative fingerprints that
we fail to insert for a real packet trace selected at random. The more
fingerprints we fail to insert, the lesser the extent of redundancy we
can identify and remove. The hash table size is a factor f larger
than the target number of fingerprints we want to store; Note that
the target number is fixed (approximately) for a given packet store
size and a given number of representative fingerprints per packet;
We fix the number of representative fingerprints at 16 per packet.

From Tables 1(a) and (b), we note that using multiple hash buck-
ets offers better performance irrespective of the number of hash
functions used. We see from Table 1(b) that for k = 1 and f = 2,
we fail to insert just 2% of the fingerprints. When k = 2 hash func-
tions are used, the probability of failure is essentially zero for any
f . Note, however, that we incur twice as many memory accesses
(during lookups) when using two hash functions instead of one.

Our implementation uses a single hash function, two buckets, and
f = 2, as this offers a reasonable middle-ground in terms of the
redundancy identified and memory accesses per packet. This design
also brings the fingerprint store size to≤ 1.5GB at OC48 speeds.

7.3 Encoding
The approach we use to encode duplicated chunks is the same as

Spring et. al [24]: For each duplicated byte string found, we remove
the matched region from the incoming packet and replace it with
a “shim layer” containing the matching packet’s PktID (4B), 2B
each for the starting byte positions of the current and the matching
packet, and 2B for the length of the match. When a packet matches
multiple fingerprints, we store one shim per match, ensuring that the
matching byte regions identified by each shim are non-overlapping.

In summary, memory accesses are incurred by routers during in-
sertion of a packet and its representative fingerprints, and during
retrieval of matching packets to perform encoding. Since we use 16
representative fingerprints per packet (by default) and not all pack-
ets see matches, the former set of accesses are likely to dominate
the per packet memory access overhead. Note that the number of
memory accesses grows with the number of finger-prints stored per
packet, but so does the amount of redundancy identified.

7.4 Benchmarking Results
We have implemented packet-level redundancy elimination using

the aforementioned data structures in the Click modular router [18].
Our current implementation runs on a 1.8GHz AMD Opteron pro-
cessor with 8GB of RAM (64-bit Linux version 2.6.9). We con-
figured the packet store to use 400MB of memory. This results in
a 200MB fingerprint store when using 16 fingerprints per packet.
Hash computation, packet and fingerprint insertion, and encoding
are all done serially in our software implementation.

We evaluated the throughput performance of our implementa-
tion using real packet traces. To estimate the maximum possible
throughput, we read the packet trace from main memory instead
of receiving packets over the network (to avoid delays due to in-
terrupt processing). Our implementation achieved a throughput of
1.05Gbps on average across multiple packet traces.

229

Max FPs Overall No No Click Updated machine Redundancy
per Pkt speed Click or Hashing No Click or Hashing percentage

32 0.67 0.71 1.0 1.39 17.3%
16 1.05 1.17 1.34 1.93 15.8%
10 1.15 1.3 1.62 2.31 14.67%

Table 2: Throughput of software implementation (in Gbps) for
a random packet trace.

We profiled Click’s processing overhead and, upon accounting
for it, found that we achieved a throughput of 1.17Gbps (Table 2).

Next, we examine how memory access latencies affect the per-
formance of our implementation. To do this, we precomputed the
finger prints for all packets to avoid hash computation. The through-
put due to the rest of the components of our implementation is
shown in Table 2. This includes fingerprint insertions, packet in-
sertions, packet retrievals, match region computations, and encod-
ing the match regions. We ran microprocessor performance bench-
marks to confirm that the software is memory-bound. We see that
when using 16 FPs per packet, our implementation runs at 1.4Gbps.

Memory benchmarks for our test machine showed read/write la-
tencies to be 120ns per access. In contrast, today’s high-end DRAMs
operate at 50ns or faster. To understand the likely improvement with
faster DRAMs, we ran our implementation on an updated machine
with a 2.4GHz processor running a 32-bit Linux (see Table 2). The
memory latency on this desktop was benchmarked at 90ns. We con-
sistently observed a speed-up of 1.4X: with ≤ 16 fingerprints, we
were able to obtain close to 2Gbps. With fewer fingerprints (10 per
packet, which resulted in an 18-22% drop in redundancy proportion
identified), we obtained 2.3Gbps. Thus with 50ns DRAM latencies,
it seems likely that we can easily reach OC-48 speeds in software.

8. OTHER RELATED WORK
We discussed past studies most relevant to our work in Section 2.

Below, we discuss a few other pieces of related work.
Several past studies have examined the benefits of cooperative

caching of Web objects [25, 11]. These studies are similar in spirit to
our work, but we take the much broader view of making redundant
content elimination as a universal router primitive.

Our redundancy-aware routing algorithms are somewhat similar
to multicast routing algorithms [7]. The algorithms we develop es-
sentially build efficient multicast distribution trees. The shape and
structure of our trees are influenced by destinations which observe
significant overlap in bytes accessed. In contrast, multicast tree con-
struction simply tracks the location of multicast participants.

Recent traffic engineering proposals have tried to improve the re-
sponsiveness to real time traffic variations [15]. While we leave a
full comparison of our techniques against these approaches for fu-
ture work, we do believe that the benefits of the recent approaches
can be further enhanced by making them redundancy-aware.

9. CONCLUSIONS
In this paper, we explored the implications of deploying packet-

level redundant content elimination as a primitive service on all rou-
ters. Using real packet traces as well as synthetic workloads, we
showed that applying redundancy elimination on network links can
reduce resource utilization by 10-50% in ISP networks. However,
the network-wide benefits can be further enhanced by modifying
network protocols, in particular, the routing protocols, to leverage
link-level redundancy elimination. We presented and analyzed a
suite of redundancy-aware intra- and inter-domain routing proto-
cols. We showed that they offer ISPs much better control over link
loads, a great degree of flexibility in meeting traffic engineering ob-
jectives, and greater ability to offer consistent performance under
sudden traffic variations. We have developed a software prototype

of a high-speed packet-level redundancy elimination mechanism.
Our implementation uses simple techniques to control the amount
of memory and the number of memory accesses required for redun-
dancy elimination. Our implementation can run at OC48 speeds.
Hardware implementation speeds are likely to be much higher.

Our focus was on studying the benefits in the context of a univer-
sal deployment. However, our redundancy-aware techniques can be
applied to limited-scale partial deployments of redundancy elimina-
tion across specific network links (e.g. across cross-country intra-
domain links, or congested peering links).

Of course, deploying redundancy elimination mechanisms on mul-
tiple network routers is likely to be expensive to start with. How-
ever, we believe that the significant long term benefits of our ap-
proaches offer great incentives for networks to adopt them.

Acknowledgments. We wish to thank the following people for their
advice: Fred Baker, Paul Barford, Mike Blodgett, Perry Brunelli,
Paul Francis, Bruce Davie, Randy Katz, George Varghese, Jia Wang
and Ty Znati. We thank the anonymous Sigcomm reviewers whose
comments helped improve our paper. This work was supported in
part by NSF grants CNS-0746531, CNS-0626889 and CNS-0435382.

10. REFERENCES
[1] Netequalizer Bandwidth Shaper. http://www.netequalizer.com/.
[2] Packeteer WAN optimization solutions. http://www.packeteer.com/.
[3] Peribit WAN Optimization. http://www.juniper.net/.
[4] Riverbed Networks. http://www.riverbed.com.
[5] A. Anand, A. Gupta, A. Akella, S. Seshan, and S. Shenker. Packet Caches on

Routers: The Implications of Universal Redundant Traffic Elimination
(Extended Version). Technical Report 1636, UW-Madison, June 2008.

[6] B. Fortz and M. Thorup. Internet Traffic Engineering by Optimizing OSPF
Weights. In Infocom, 2000.

[7] T. Ballardie, P. Francis, and J. Crowcroft. Core based trees (CBT). SIGCOMM
Comput. Commun. Rev., 23(4):85–95, 1993.

[8] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh, and J. van der
Merwe. Design and implementation of RCP. In NSDI, 2005.

[9] B. Davie and Y. Rekhter. MPLS: technology and applications. Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 2000.

[10] U. Erlingsson, M. Manasse, and F. McSherry. A cool and practical alternative to
traditional hash tables. In WDAS, 2006.

[11] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary cache: a scalable
wide-area Web cache sharing protocol. In ACM SIGCOMM, 1998.

[12] B. Fortz, J. Rexford, and M. Thorup. Traffic engineering with traditional IP
routing protocols. In Infocom, 2002.

[13] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Myers, J. Rexford, G. Xie,
H. Yan, J. Zhan, and H. Zhang. A clean slate 4D approach to network control
and management. SIGCOMM Comput. Commun. Rev., 35(5):41–54, 2005.

[14] A. Gupta, A. Akella, S. Seshan, S. Shenker, and J. Wang. Understanding and
Exploiting Network Traffic Redundancy. Technical Report 1592, UW-Madison,
April 2007.

[15] S. Kandula, D. Katabi, B. Davie, and A. Charny. Walking the tightrope:
responsive yet stable traffic engineering. In ACM SIGCOMM, 2005.

[16] U. Manber. Finding similar files in a large file system. In USENIX Winter
Technical Conference, 1994.

[17] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot. Traffic matrix
estimation: existing techniques and new directions. In ACM SIGCOMM, 2002.

[18] R. Morris, E. Kohler, J. Jannotti, and M. F. Kaashoek. The Click modular router.
SIGOPS Oper. Syst. Rev., 33(5):217–231, 1999.

[19] A. Muthitacharoen, B. Chen, and D. Mazières. A low-bandwidth network file
system. SIGOPS Oper. Syst. Rev., 35(5), 2001.

[20] M. Rabin. Fingerprinting by Random Polynomials. Technical report, Harvard
University, 1981. Technical Report, TR-15-81.

[21] M. Roughan, M. Thorup, and Y. Zhang. Performance of estimated traffic
matrices in traffic engineering. In ACM SIGMETRICS, 2003.

[22] S. Singh, C. Estan, G. Varghese, and S. Savage. Automated worm fingerprinting.
In OSDI, 2004.

[23] N. Spring, R. Mahajan, and D. Wetherall. Measuring ISP Topologies with
Rocketfuel. In ACM SIGCOMM, 2002.

[24] N. Spring and D. Wetherall. A protocol-independent technique for eliminating
redundant network traffic. In ACM SIGCOMM, 2000.

[25] A. Wolman et al. On the scale and performance of cooperative Web proxy
caching. In ACM Symposium on Operating Systems Principles, 1999.

230

http://www.netequalizer.com/
http://www.packeteer.com/
http://www.juniper.net/
http://www.riverbed.com

	Introduction
	Background
	Algorithm for Redundancy Elimination
	Intra and Inter-domain Routing
	Toward Redundancy-Aware Routing

	Intra-Domain Routing
	A Single PoP
	Multiple Ingresses, Traffic Engineering
	Centralized Route Computation andPractical Issues
	Scalability
	Computing Redundancy Profiles
	MPLS Networks

	Inter-Domain Routing
	Local Approach for an ISP
	Cooperative Approach for Two ISPs

	Measurement Results
	Evaluation
	Benefits in the Intra-Domain Setting
	Benefits in the Inter-domain Setting

	Implementation
	Packet Store
	Fingerprint Store
	Encoding
	Benchmarking Results

	Other Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

