
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•
•

Public Review for
Flow Processing and the Rise

of Commodity Network Hardware
Adam Greenhalgh, Mark Handley, Mickael Hoerdt, Felipe Huici,

Laurent Mathy, and Panagiotis Papadimitriou

Network functionalities such as intrusion detection and load balancing are often implemented in special-
ized expensive middleboxes plugged inside the network. But, with the advent of commodity hardware and
network switches, it is time to think about leveraging these new and cheap resources to support the same
functionalities with lower cost without compromising efficiency. This is in the same spirit that software
radio, virtual machines and virtual routers, have been introduced. The implementation of network function-
alities in a kind of software environment has the further advantage of making them easily manageable and
extendable to other applications (on software timescales).

The architecture introduced in this paper is called Flowstream. It proposes the implementation of network
functionalities in virtualized machines/servers/routers run on top of commodity PCs. The flow of traffic
among these virtual network entities is controlled by a programmable network switch implementing
Openflow. The papers motivates the problem and discusses the architecture and its main components, plus
a description of some potential applications. Even though there are no validation results, all reviewers
appreciate the idea and agree on the fact that it will trigger discussions among CCR readers and the mem-
bers of the networking community. This is a new research area that involves several tradeoffs (technical vs.
economical, reliability vs. programmability) to be clearly understood and evaluated.

Programmable flow forwarding using Openflow has been already proposed in an operating system context
as for example in the NOX architecture that has appeared as an editorial note in the CCR July 2008 issue.
The novelty of this new paper is in combining flow forwarding and virtualization to replace network mid-
dlebox functionalities.

Public review written by
Chadi Barakat

Planète Research Group
INRIA Sophia Antipolis

a c m s i g c o m m

ACM SIGCOMM Computer Communication Review 20 Volume 39, Number 2, April 2009

Flow Processing and the Rise of
Commodity Network Hardware

Adam Greenhalgh
University College London, UK
a.greenhalgh@cs.ucl.ac.uk

Felipe Huici
NEC Europe Ltd, Germany

felipe.huici@nw.neclab.eu

Mickael Hoerdt
Lancaster University, UK

m.hoerdt@lancaster.ac.uk

Panagiotis Papadimitriou
Lancaster University, UK

p.papadimitriou
@lancaster.ac.uk

Mark Handley
University College London, UK
m.handley@cs.ucl.ac.uk

Laurent Mathy
Lancaster University, UK

l.mathy@lancaster.ac.uk

ABSTRACT
The Internet has seen a proliferation of specialized middle-
box devices that carry out crucial network functionality such
as load balancing, packet inspection and intrusion detec-
tion. Recent advances in CPU power, memory, buses and
network connectivity have turned commodity PC hardware
into a powerful network platform. Furthermore, commod-
ity switch technologies have recently emerged offering the
possibility to control the switching of flows in a fine-grained
manner. Exploiting these new technologies, we present a
new class of network architectures which enables flow pro-
cessing and forwarding at unprecedented flexibility and low
cost.

Categories and Subject Descriptors
C.2.1 [Computer Communication Networks]: [Network
Architecture and Design]

General Terms
Design

Keywords
Architecture, Flow processing, Virtualization, Internet

1. INTRODUCTION
In the last few years two trends have started to reshape the

Internet. The first of these is steady encroachment of eco-
nomic reality on the architecture of the network itself; pri-
marily this takes the form of embedding higher level knowl-
edge inside the network to enhance the ability to manage
services, make better use of limited resources and control
costs. Usually this means using middleboxes such as fire-
walls[11], traffic shapers[15], load balancers[14], intrusion
detection (IDS) and prevention systems (IPS)[6], and ap-
plication enhancement boxes[17, 18, 19]. It has become rare
to find an end-to-end path that does not encounter at least
one such device.

Middleboxes have become a multi-billion dollar market,
but network operators do not spend all this money without
good reason: such technologies have become essential to pro-
viding high levels of service for key applications. The great
merit of the original Internet architecture was its ability to

support as-yet-unforeseen applications, but the downside is
that the network does not know when the applications it
supports are actually working. To prosper, enterprises need
additional control, and middleboxes provide this.

The second trend lies in the commoditization of hard-
ware. Over many years components and systems designed
primarily for the mass market have achieved such large vol-
umes of sales that their capabilities increased to the point
of displacing high-end products. The canonical example is
the rise of the Intel x86 CPU architecture, first displacing
high-end Unix workstations running on RISC processors,
and now breaking into the very top of the supercomputer
league tables. In the data center, the commoditization of
the 1U form-factor x86 server combined with drastically re-
duced CPU costs has greatly narrowed the price gap between
server and desktop systems: a rack-mount case still costs
more than a desktop case, but very capable servers can be
bought for $1500 complete with multiple on-board Gigabit
Ethernet network interface cards.

It is, however, not only computers that have become com-
modity items. A few years ago, many people were forecast-
ing that network processors would displace custom silicon
in high-end router platforms. However, something differ-
ent happened. The combination of a rise in very capable
and cheap chipsets for Gigabit Ethernet from the likes of
Broadcom and Marvell, huge volume shipments from compa-
nies such as Dell and Netgear, and bulk manufacturing from
manufacturers such as Quanta (who also make many of the
world’s laptops) has caused switching to become commodi-
tized. As with x86 processors, the low end has started to
increase in capability and displace high-end specialist prod-
ucts. Today’s 48-port Gigabit switches support both layer
2 and layer 3 forwarding, access control lists (ACLs) and
other features at a price of around $20 per port; commodity
10 Gigabit switches are now starting to emerge.

Researchers and middlebox manufacturers are both well-
aware of the capabilities of x86 commodity hardware, but
the commoditization of switch hardware and the potential to
rewrite their control software has not received quite the same
attention. While switches have become more powerful, they
are still relatively inflexible devices: as a platform, they are
rather limited in capability. Things only become interesting
when you combine switches with servers.

Consider now the confluence of these two trends. There

ACM SIGCOMM Computer Communication Review 21 Volume 39, Number 2, April 2009

is a huge proliferation of middleboxes, each servicing a sin-
gle role performing L4-L7 functionality on data flows. At
the same time, we now have cheap and extremely capa-
ble switching and processing components. However, the
switches are too dumb and the servers have their limitations
(despite their pretty good performance, there is only so much
you can do with one box before memory bottlenecks start
to kick in[5]). The clear solution is to build a generic net-
work control, forwarding and flow processing platform from
commodity switch hardware unified with a small cluster of
servers, all managed as a single platform. Such a platform
is inexpensive, flexible, scalable, and tolerant of failures1.

Perhaps more importantly, the rise of such platforms would
open up the possibility of a commodity market for high-
performance middlebox software, where a network operator
might be able to mix and match control and management
software in a way which is currently difficult at best.

The biggest downside of middleboxes is that they embed
into the network knowledge of today’s applications at the
expense of tomorrow’s innovations. It might seem like we are
attempting to encourage this process, but the reality is that
it has already happened. Once a middlebox is deployed, the
cost of changing is substantial. We hope that by encouraging
a common platform for such capabilities, and by making
this market one for software rather than for appliances, the
additional flexibility and reduced time to deployment might
remove some of the barriers faced by innovative applications
of the future.

The design of such a platform is the object of the rest of
this paper, which is organized as follows. Section 2 describes
the building blocks or technologies we base the platform on
in greater detail. Section 3 provides an overview of Flow-
stream, our proposed flow processing platform, including us-
age scenarios and applications. In section 4, we discuss the
consolidation of the platform and section 5 covers related
work. Finally, section 6 concludes.

2. BUILDING BLOCKS
So far we have identified two trends, the middleboxes in

the network and the commoditization of servers and switches.
We also advocate that the solution is to build a generic net-
work control, forwarding and flow processing platform from
these commoditized elements. In this section, we describe
the building blocks of such a platform in greater detail be-
fore discussing how these might be put together in the next
section.

2.1 Commodity Switches
How cheap have network switches become? In order to

answer this question, we conducted a survey (25/11/2008)
of a range of lower-end gigabit switches, calculating for each
the retail price per port. While this survey is by no means
thorough, it gives a good idea of what the costs are when
purchasing a lower-end network switch.

Figure 1 shows the results of the survey. We classified the
switches into four groups: those with the simplest layer-2
forwarding (simple L2), those with layer-2 forwarding and
advanced features such as ACLs (advanced L2), those with

1It is worth noting that while cheap embedded devices and
processors exist, they have limited resources and flexibility
and therefore they are not a good building block for a general
flow processing platform.

 20

 40

 60

 80

 100

 120

T
E

G
-4

48
W

S

D
G

S
-1

24
8T

G
S

74
8T

S
LM

20
48

P
C

27
48

S
R

W
20

48

G
S

74
8T

R

D
G

S
-3

10
0-

48

D
G

S
-3

04
8

P
C

54
48

G
S

M
72

48
R

J8
77

1A

J9
02

2A

J9
03

0A

P
C

62
48

D
X

S
-3

52
0

G
S

M
73

52
S

J8
77

4A

J4
90

4A

J9
05

0A

J8
69

9A

C
os

t p
er

 P
or

t (
U

S
D

)

Model Number

Simple L2 Functions
Advanced L2 Functions

Simple L3 Functions
Advanced L3 Functions

Figure 1: Cost per port for different switches.

simple layer-3 forwarding capabilities (simple L3), and those
with advanced layer-3 capabilities such as the ability to run
a routing protocol (advanced L3). As can be seen, the prices
range from about $10 to about $110 per port, putting the
cost of a 48-port switch between $494 and $5,250, certainly
within the price levels of what we would call commodity
hardware.

Besides their cheap prices, many of these commodity switches
share the same underlying chipsets. These chipsets are sup-
plied by a small number of manufacturers, which is why
many of the features of the switches are so similar among
vendors. This is actually to our advantage: it would be
possible to purchase kits from the manufacturers to enable
the development and deployment of custom software for any
proposed application.

2.1.1 Openflow
Modifying the embedded software system on switch hard-

ware in order to perform custom operations is not for the
faint-hearted, so ideally we would like to rely on switches
with flexible software. Fortunately, Openflow[3] is an exam-
ple of such a platform, with manufacturers like HP, NEC, Ju-
niper and Cisco already producing prototype switches [12].
Openflow has also been ported to a commodity Broadcom
chipset, but this implementation is not widely available as
of February 2009. Openflow switches contain, among other
things, a so-called flow table that can be configured by adding
entries. These entries aggregate packets into flows by match-
ing on a number of L2, L3 and L4 fields and then specify
which port on the switch a particular flow should be sent
out on, turning the switch into a simple yet rather flexible
platform.

As mentioned, Openflow uses the flow as its basic unit
of control, but is this the correct model for us? Traffic can
be split at different levels, with the packet being the most
common one. Despite giving fine-grained control, process-
ing traffic at the packet level will almost certainly intro-
duce packet reordering, something that we wish to avoid
at all costs. Splitting traffic at the flow level would cer-
tainly prevent this, allowing us to send flows to different
systems without having to worry about costly re-ordering
operations. As a result, Openflow should provide the nec-
essary level of control needed for our purposes. While at
the time of writing there are no such switches commercially
available, we speculate that a chipset able to perform ad-

ACM SIGCOMM Computer Communication Review 22 Volume 39, Number 2, April 2009

vanced L3 forwarding should be powerful enough to comply
with the Openflow specification, giving an indication that
the cost of these switches should also be reasonable.

2.2 Commodity PCs
Even though commodity PCs have been used for a while

to process network traffic, it is only in recent years that
improvements in various technologies have allowed them to
become a powerful network platform. The introduction of
PCI Express, for example, removed the bottleneck presented
by its predecessor, PCI-X[10]. Further, the availability of an
increasing number of CPU cores allows a PC to run several
network processes concurrently while providing high perfor-
mance to each of them (as long as memory hierarchy issues
are carefully considered). Ethernet port density has also in-
creased: quad-port cards are now commonplace, which com-
bined with motherboard interfaces allow a server to have as
many as 15 or more ports.

The combination of these technologies, along with the
drop in prices, has rendered the PC a viable platform for
network processing. But exactly how powerful can a com-
modity PC be? In previous work [5] we used a relatively
inexpensive Dell 2950 server with 8 processor cores, 12 Eth-
ernet ports, and standards-compliant IP forwarding paths
implemented with the Click Modular Router [9] software.
With this setup we were able to forward IP packets of most
sizes at line rate, and minimum-sized packets at a very rea-
sonable 4.9 million packets per second.

2.3 Virtualization and Virtual Routers
Virtualization techniques enable a PC to run multiple

OSes concurrently, giving them access to the underlying
hardware while isolating them from each other. In addi-
tion, virtualization makes it relatively easy to migrate these
OSes to another PC, a mechanism that we will exploit later.
Related work in [21] shows how to prevent network traffic
disruption during the migration of virtual routers.

In [4] we tackled basic fairness issues and limitations of a
modern PC for software packet forwarding, exploring alter-
native virtualization technologies and different forwarding
scenarios. From these findings we designed a virtual router
that has highly configurable forwarding planes for advanced
programmability, optimized core scheduling for high perfor-
mance, and hardware multi-queueing for sharing interfaces
among virtual routers. In [5] we analyzed the virtual router’s
performance, showing that virtual router solutions based on
current commodity hardware represent a powerful, flexible,
practical and inexpensive proposition.

3. FLOWSTREAM ARCHITECTURES
Given the building blocks described above, we can now

discuss in more detail a class of system architectures for
building in-network processing platforms which represent a
“sweet spot”between performance, scalability and flexibility.
We call such platforms “Flowstream Architectures”, for rea-
sons that should be clear shortly. Platforms built according
to the Flowstream architecture can be characterized by the
following properties:

• The core of the platform consists of an Ethernet switch
configured to route flows. A flow is defined in the
Openflow sense, as packets that match a tuple of source
and destination addresses and ports.

Figure 2: Overview of a Flowstream platform.

• Streams of data from these flows are then routed to
one of a number of attached commodity server boxes
for additional processing, before being forwarded on to
the final destination.

• Software running on the server boxes can be composed
to provide processing pipelines of modules.

• These modules are virtualized, in the sense that they
can be moved between the servers to balance load and
provide robust service in the presence of failures.

• The switch and servers are managed as a single plat-
form from the operators’ point of view by a controller.

3.1 Description of a Platform
Figure 2 illustrates how the server boxes (we call them

module hosts to distinguish them from traditional servers)
and flow-based switch are connected together with a con-
troller host to comprise a Flowstream platform. Each host
runs a number of processing modules where all of the ac-
tual flow processing takes place (except for basic forwarding,
which can be done by the switch). Further, hosts contain a
special module called a control module, which receives com-
mands from the platform’s controller to remove, install or
migrate modules, as well as to provide monitoring informa-
tion about the host’s current load and performance.

There are three main technologies available to us for im-
plementing a module:

• A virtual machine running its own OS and module
application.

• A process running on a virtual machine shared with
other modules.

• A set of kernel forwarding elements instantiated in the
kernel of the device driver domain on one of the module
hosts.

The first of these options is the most general and provides
the best inter-module isolation, whereas the third will pro-
vide the highest performance for traffic that needs to tra-
verse several modules in the same module host. We envis-

ACM SIGCOMM Computer Communication Review 23 Volume 39, Number 2, April 2009

age different applications will use different implementation
options, often on the same Flowstream platform.

For composing kernel forwarding elements, the Click mod-
ular router [9] provides a suitable set of building blocks. For
example, a module can be composed of a predefined set of
Click elements, and under the control of the operator, cas-
cades of such modules can be plumbed together at run-time.

A Flowstream platform’s second main component is the
Openflow switch, providing the basic connectivity between
module hosts and the network. In addition to this, the
switch contains a flow table that is configured by the con-
troller at runtime, allowing different flows to be directed to
any of the ports on the switch. It is worth pointing out that
while figure 2 shows a single switch, it would be certainly
possible to scale the platform’s port density by including
additional switches.

The final component is the controller. Essentially, this is
the brains of the platform and also its user interface to the
outside world. When the operator makes a request (for in-
stance, running an IDS on flows to a particular web server),
the controller begins by choosing the module host or hosts to
install the processing module(s) on. Such a decision could be
based on the hosts’ current load, information that the con-
troller retrieves periodically from the control modules. Hav-
ing selected a host, the controller then instructs the control
module to install the requested processing module. Once
this is done, the controller configures the switch’s flow ta-
ble so that the corresponding flows are directed to the right
processing module.

With all of these components in place, a Flowstream ar-
chitecture provides a powerful platform for flow processing.
The fact that it is built upon commodity yet, as shown in
previous work, high performance hardware should result in
significant cost savings. In addition, a Flowstream setup can
be easily expanded and contracted dynamically by adding
or removing module hosts, something that cannot be easily
accomplished on conventional routers or middleboxes. Fur-
ther, when required, the isolation provided by virtualized
module hosts means that several different flow processing op-
erations can be performed simultaneously while minimizing
negative interactions. The controller can migrate modules
as required to ensure that a processing task does not sig-
nificantly degrade the performance of others. Last but not
least, using general-purpose processors and allowing opera-
tors to install their own flow processing modules yields great
flexibility. So long as modules have access to well-defined
flow APIs, a Flowstream platform can accommodate a wide
range of existing and even future network applications. It is
precisely the usage of the platform and its potential appli-
cations that we discuss next.

3.2 Usage Scenarios
In the most basic case, the operator submits a request to a

Flowstream platform’s controller asking it to apply a certain
processing module to a subset of the traffic being forwarded.
The controller then chooses a module host with appropriate
load levels and installs the module on it, then configures the
switch’s flow table. The flow then travels from the switch
to the module for processing before being sent back to the
switch and subsequently out onto the network2.

2Note that while so far we have described modules as re-
ceiving flows, processing them and then forwarding them, it
is certainly possible for a module to act as a traffic sink

(a) Parallel processing (load-balancing) scenario.

(b) Serial processing scenario.

Figure 3: Basic platform usage scenarios.

Beyond the simple case, there are two more interesting
usage scenarios, depending on whether modules act on flows
in parallel or serially. In parallel processing (see figure 3(a)),
flows are load-balanced, pushing different flows to different
module hosts but processing each of them equally. In this
case identical processing modules run on multiple module
hosts (in the figure, hosts A and C). The controller sets up
the switch’s flow table so that a flow gets sent to either of the
module hosts, thus load balancing the traffic; an algorithm
such as hash-based Equal Cost Multi-path (ECMP), which
is supported by many switches, could be used to accomplish
this. To avoid reordering, all the packets from one flow
must be processed by one module host. Flows could also be
distributed unevenly based on the capabilities of the module
hosts or their current load. Parallel modules are useful for
quite a number of CPU-intensive network processing tasks,
including intrusion detection, spam over Internet telephony
and Denial-of-Service attack filtering, and monitoring and
deep packet inspection.

In serial processing or pipelining (see figure 3(b)), the op-
erations performed on flows are split across several module
hosts and done one at a time. One example of an application
for this is VPN termination, where one host could be used to
perform the expensive encryption operation before another
takes care of the tunneling. Serial processing is essential
when each packet must be processed first by one module,
then by another. Serial processing would also be useful if
one of the hosts had dedicated hardware to perform an ex-
pensive operation at line rate, or if a module host did not
have enough interfaces to carry out a particular function,
such as acting as a router.

Combinations of serial and parallel are certainly possible,
as well as heterogeneous parallel processing. In this case,
different flows are processed on different modules hosts, but
they are also processed by different modules. For example,
traffic to a web server farm might be processed by server load

ACM SIGCOMM Computer Communication Review 24 Volume 39, Number 2, April 2009

Figure 4: Scenario: offloading to a separate module
host for further processing.

balancing modules, whereas traffic to a mail server might
traverse a blacklist filter.

A more complex usage scenario is flow splitting, whereby
a processing module is used to split a subset of traffic from
a flow aggregate to another module for further processing
(see figure 4). An application that fits rather well with this
mechanism is intrusion detection: for example, module host
A could be used to apply a quick, preliminary filter in order
to separate out suspicious flows. Matching flows would then
be sent to module host B for a more in-depth inspection,
whereas those that do not match are sent back to the switch
for immediate forwarding. It is worth pointing out that for
simple filters, the actual splitting of flows could be done by
the Openflow switch, thus off-loading some of the work away
from the module hosts.

Finally, because a Flowstream platform consists of loosely-
coupled hardware, it is possible to use it to encapsulate
existing network middleboxes, such as a Bivio 7000 series
[13] network appliance. For example, in figure 5, if a third-
party, specialized hardware box cannot cope with the full
traffic rate or needs some traffic excluded from it, it can be
plugged into the flowstream switch and treated as a black
box through which a subset of the traffic can be directed.
Alternatively, it would only require a small amount of de-
velopment work to port many commercial Linux-based mid-
dleboxes to a Flowstream architecture.

3.3 Module Migration
Flowstream architectures fit firmly into the trend of using

arrays of cheap and potentially unreliable hardware, but pro-
viding robustness in software. To provide such robustness,
we need to be able to migrate modules between hosts, both
to manage changing load and to adapt to failures. All three
of the mechanisms described for implementing modules can
be migrated live between hosts:

• Today’s OS virtualization platforms can support live
VM migration.

• Cluster computing platforms support live process mi-
gration.

• Click kernel forwarding paths can be reconfigured on
the fly to include new elements.

This ability to live-migrate processing functions between
hardware while simultaneously re-plumbing the switch’s flow
table to match provides a powerful and flexible mechanism
that can be for many purposes, including load-balancing
and reducing costs by powering down under-utilized mod-
ule hosts during quiet hours.

Figure 5: Integration of specialized hardware in the
platform.

4. BENEFITS OF CONSOLIDATION
A Flowstream platform consolidates a number of middle-

box systems into a single entity. For this to be worthwhile,
we need to gain tangible benefits from the consolidation,
benefits that make the whole greater than its parts; other-
wise we are just shifting functions from one system to an-
other. This consolidation has the following benefits:

• Increased tolerance of failures.

• Reduced equipment and maintenance costs.

• The ability to do dynamic reprovisioning.

Increased tolerance of failures can be achieved by allow-
ing spare module hosts to take the place of a module host
that has failed or is perceived to be about to fail. In a stan-
dard middlebox deployment each type of middlebox requires
a spare system to be available in case of hardware failure.
In the Flowstream architecture a smaller number of spare
systems are required because module hosts are agnostic to
the processing modules being run on them. Provided that
the hardware profile of the failed or failing module host is
exceeded by the remaining spare capacity, we can distribute
the processing modules from the failing module host onto the
spares. Module migration makes it possible to redistribute
running modules, or as a last resort, to restart a module on
a new host.
Reduced equipment and maintenance costs are achieved
by separating the logical and physical systems and adopting
Google’s model of using mass market commodity boxes. Ex-
pensive downtime is eliminated by migrating the processing
modules to spare systems and then undertaking maintenance
on an offline system.
Dynamic reprovisioning is an outcome of the load bal-
ancing scenario presented in section 3.2. The Flowstream
architecture enables us, at fairly fine granularity, to increase
or decrease the capability of any processing module by vary-
ing the allocation of flows and processing resources, with the
possibility of shutting down whole systems during quiet pe-
riods and bringing them back up when load increases. Fur-
ther, new features can easily be trialled by splitting or copy-
ing a small portion of the traffic to a new processing module
without interrupting the live system.

5. RELATED WORK
NOX [7] relies on Openflow switches to provide a cen-

tralized programmatic interface in order to ease the man-
agement of enterprise networks. Flowstream is designed to

ACM SIGCOMM Computer Communication Review 25 Volume 39, Number 2, April 2009

support the functionality of current and emerging middle-
boxes by the consolidation of customized processing modules
into an in-network flow-processing platform. Furthermore,
virtualization allows for dynamic module migration reducing
equipment and maintenance costs.

Pswitches [8] proposes the use of advanced commodity
switches to control the paths of flows in data-center net-
works, and share expensive middleboxes. Ethane [2] in-
troduces the use of flow-based switching in order to con-
trol and improve the security of enterprise networks. An
Ethane switch is essentially an early Openflow-like technol-
ogy. Our architecture takes the flexibility afforded by com-
modity switches further by building complex network pro-
cessing functionality within PC clusters.

In [16] the authors propose combining a programmable
controller with switches for traffic management purposes.
Flowstream advocates the combination of commodity server
and switching hardware to implement complex router appli-
cations beyond traffic management.

Other work [1] explores the scalability of software routers
on general-purpose hardware, concentrating on issues such
as the how much processing can be done per packet while
maintaining line rate. The authors eventually propose a
clustered software-router architecture that uses an inter-
connect of multiple servers in order to enhance scalability.
While Flowstream can certainly be used as a router, it pro-
vides a general platform where more advanced, higher-layer
processing can be done.

Finally, SuperCharging PlanetLab [20] decouples network
nodes into a control/application plane running on commod-
ity hardware and specialized network-processor hardware for
packet forwarding. In contrast, Flowstream relies mostly on
commodity hardware.

6. CONCLUSIONS
In this paper we introduced Flowstream, a new class of

system architectures for building network flow processing
platforms. These architectures are now possible thanks to
the commoditization of x86 servers, switches and the avail-
ability of powerful open virtualization solutions.

We have outlined what a Flowstream platform looks like
and discussed its benefits, including flexibility, scalability,
fault tolerance and even the possibility of reducing energy
costs by switching underused servers off. In addition, we
covered some basic usage scenarios and showed how some of
today’s network applications would be run on such a plat-
form. More importantly, we believe that the platform should
be flexible enough to accommodate innovative applications
as well.

We are currently undertaking an implementation and eval-
uation of a Flowstream-based system.

7. REFERENCES
[1] Katerina Argyraki, Salman Abdul Baset, Byung-Gon

Chun, Kevin Fall, Gianluca Iannaccone, Allan Knies, Eddie

Kohler, Maziar Manesh, Sergiu Nedveschi, and Sylvia

Ratnasamy. Can software routers scale? In Proceedings of
PRESTO’08, Seattle, USA, August 2008.

[2] Martin Casado, Michael Freedman, Justin Pettit, Nick

McKeown, and Scott Shenker. Ethane: Taking control of

the enterprise. In Proceedings of SIGCOMM’07, Kyoto,

Japan, August 2007.

[3] Open Flow Switch Consortium. Open flow switch.

http://www.openflowswitch.org .

[4] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael

Hoerdt, Felipe Huici, and Laurent Mathy. Fairness issues in

software virtual routers. In Proceedings of PRESTO’08,

Seattle, USA, August 2008.

[5] Norbert Egi, Adam Greenhalgh, Mark Handley, Mickael

Hoerdt, Felipe Huici, and Laurent Mathy. Towards high

performance virtual routers on commodity hardware. In

Proceedings of ACM CoNEXT 2008, Madrid, Spain,

December 2008.

[6] Endace. Endace ninjabox network monitoring.

http://www.endace.com/ninjabox.html .

[7] Natasha Gude, Teemu Koponen, Justin Pettit, Ben Pfaff,

Martin Casado, Nick McKeown, and Scott Shenker. Nox:

Towards an operating system for networks. ACM
SIGCOMM Computer Communication Review,

38(3):105–110, July 2008.

[8] Dilip Joseph, Arsalan Tavakoli, and Ion Stoica. A

policy-aware switching layer for data centers. In Proceedings
of ACM SIGCOMM 2008, Seattle, USA, August 2008.

[9] Eddie Kohler, Robert Morris, Benjie Chen, John Jahnotti,

and M. Frans Kasshoek. The click modular router. ACM
Transaction on Computer Systems, 18(3):263–297, 2000.

[10] Jiuxing Liu, A. Mamidala, V. Vishnu, and D.K. Panda.

Evaluating infiniband performance with pci express. Micro,
IEEE, 25(1):20–29, Jan.-Feb. 2005.

[11] Check Point Software Technologies Ltd. Check point.

http://www.checkpoint.com/ .

[12] Nick McKeown. Enterprise GENI Talk, October 2008.

[13] Bivio Networks. Bivio 7000 series.

http://www.bivio.net/products/bivio7000.htm .

[14] F5 Networks. Big-ip product family.

http://www.f5.com/products/big-ip/ .

[15] Packeteer. Packeteer products.

http://www.packeteer.com/products/ .

[16] Hideyuki Shimonishi, Takashi Yoshikawa, and Atsushi

Iwata. Off-the-path flow handling mechanism for

high-speed and programmable traffic management. In

Proceedings of PRESTO’08, Seattle, USA, August 2008.

[17] Citrix Systems. Citrix NetScaler.

[18] Citrix Systems. Citrix WANScaler.

[19] Riverbed Technology. Riverbed.

http://www.riverbed.com/ .

[20] Jon Turner, Patrick Crowley, John DeHart, Amy Freestone,

Brandon Heller, Fred Kuhns, Sailesh Kumar, John

Lockwood, Jing Lu, Michael Wilson, Charles Wiseman, and

David Zar. Supercharging planetlab - a high performance,

multi-application, overlay network platform. In Proceedings
of SIGCOMM’07, Kyoto, Japan, August 2007.

[21] Yi Wang, Eric Keller, Brian Biskeborn, Jacobus van der

Merwe, and Jennifer Rexford. Virtual routers on the move:

Live router migration as a network-management primitive.

In Proceedings of SIGCOMM’08, Seattle, USA, August

2008.

ACM SIGCOMM Computer Communication Review 26 Volume 39, Number 2, April 2009

http://www.openflowswitch.org
http://www.endace.com/ninjabox.html
http://www.checkpoint.com/
http://www.bivio.net/products/bivio7000.htm
http://www.f5.com/products/big-ip/
http://www.packeteer.com/products/
http://www.riverbed.com/

