
To Filter or to Authorize: Network-Layer DoS Defense
Against Multimillion-node Botnets

Xin Liu
Dept. of Computer Science

University of California, Irvine
xinl@uci.edu

Xiaowei Yang
Dept. of Computer Science

University of California, Irvine
xwy@uci.edu

Yanbin Lu
Dept. of Computer Science

University of California, Irvine
yanbinl@uci.edu

ABSTRACT
This paper presents the design and implementation of a filter-based
DoS defense system (StopIt) and a comparison study on the ef-
fectiveness of filters and capabilities. Central to the StopIt design
is a novel closed-control, open-service architecture: any receiver
can use StopIt to block the undesired traffic it receives, yet the
design is robust to various strategic attacks from millions of bots,
including filter exhaustion attacks and bandwidth flooding attacks
that aim to disrupt the timely installation of filters. Our evalua-
tion shows that StopIt can block the attack traffic from a few mil-
lions of attackers within tens of minutes with bounded router mem-
ory. We compare StopIt with existing filter-based and capability-
based DoS defense systems under simulated DoS attacks of various
types and scales. Our results show that StopIt outperforms existing
filter-based systems, and can prevent legitimate communications
from being disrupted by various DoS flooding attacks. It also out-
performs capability-based systems in most attack scenarios, but a
capability-based system is more effective in a type of attack that the
attack traffic does not reach a victim, but congests a link shared by
the victim. These results suggest that both filters and capabilities
are highly effective DoS defense mechanisms, but neither is more
effective than the other in all types of DoS attacks.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design; C.2.6 [Computer-Communication Networks]:
Internetworking

General Terms
Design, Security

Keywords
Internet, Denial-of-Service, Filter, Capability

1. INTRODUCTION
Large-scale denial of service (DoS) attacks remain a serious threat

to the reliability of the Internet. Despite much improved software
security, botnets are still getting bigger. In March 2007, the number

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’08, August 17–22, 2008, Seattle, Washington, USA.
Copyright 2008 ACM 978-1-60558-175-0/08/08 ...$5.00.

of bot-infected machines tracked by a single group was estimated
to reach 1.2 million [17]. In June 2007, a presentation from Support
Intelligence Inc. reported 48 million infected IP addresses observed
in a six month period [35]. In September 2007, the estimated size of
the Storm botnet alone reached 50 million [16, 30]. It is a distress-
ing fact that the dark side possesses this vast amount of computing
power: if each bot sends one full-sized packet per second (1500
bytes), the aggregated attack traffic from a 10-million-node botnet
would exceed 120 Gbps, sufficient to take down anyone on the In-
ternet. The recent attacks on Estonia [23] are perhaps only the tip
of the iceberg on what attackers are capable of.

Many solutions have been proposed to battle the DoS problem
[2,4,5,8,13,20,21,25,28,31–34,36,37]. Yet there lacks a consen-
sus on how to build a DoS-resistant network architecture. Among
various proposals, two schools of thought are particularly intrigu-
ing: the capability-based approach [4,25,36,37] and the filter-based
approach [5, 20]. Both advertise to enable a receiver to control the
traffic it receives, but differ significantly in methodology. The ca-
pability approach proposes to let a receiver explicitly authorize the
traffic it desires to receive, while the filter approach proposes to
let a receiver install dynamic network filters that block the traffic it
does not desire to receive. Advocates of filters have argued that “ca-
pabilities are neither sufficient nor necessary to combat DoS” [6],
while proponents of capabilities “strongly disagree” [25].

As a first step towards reaching a consensus, we aim to under-
stand the roles of filters and capabilities: which one is a more ef-
fective DoS defense mechanism? Ideally, to answer this question,
one can systematically compare filter-based designs and capability-
based ones. Unfortunately, this simple approach is not viable be-
cause capability-based systems [25, 36, 37] have been improved
much in the past few years, yet there lacks a comprehensive filter-
based architecture to compare with. The most complete work on
filters, AITF [5], has a few limitations that prohibit a fair compar-
ison between filters and capabilities. For instance, AITF verifies
the legitimacy of a filter request using a three-way handshake. If
the flooded link is outside a victim’s AS, the three-way handshake
may not complete because the handshake packets traverse the same
flooded link as the attack traffic, and filters may not be installed.
Another filter-based system, Pushback [20], does not completely
block attack traffic. Instead, it aims to rate limit the attack traffic to
its fair share of bandwidth.

To address this issue, we first design and implement a secure and
effective filter-based DoS defense architecture StopIt. StopIt em-
ploys a novel closed-control and open-service architecture to com-
bat various strategic attacks at the defense system itself, and to en-
able any receiver to block the undesired traffic it receives. Unlike
previous work [5], StopIt is resistant to strategic filter exhaustion
attacks (§ 4) and bandwidth flooding attacks that aim to prevent the

195

timely installation of filters. We implement the StopIt design on
Linux using Click [14] and evaluate it on Deterlab [9]. Our experi-
ments suggest that StopIt enables a receiver to block the undesired
traffic from a few millions of attackers in tens of minutes; routers
with 256K hardware filters and less than 200MB DRAM can block
the attack traffic from misbehaving hosts without inflicting damage
to legitimate traffic.

The StopIt design demonstrates the feasibility of a filter-based
approach and enables a systematic comparison between filters and
capabilities. We compare StopIt with two well-known capability-
based systems (TVA [37] and Portcullis [25]) together with previ-
ous filter-based designs (AITF [5] and Pushback [20]) using ns-2
simulations. We simulate how different systems perform under var-
ious DoS attacks. The simulation results show that StopIt outper-
forms AITF and Pushback in all types of attacks in terms of pro-
tecting legitimate communications from being disrupted. This is
because it is designed to be resistant to strategic attacks, and filters
can still be installed under those attacks, while other systems either
fail to install filters or do not entirely block attack traffic. How-
ever, StopIt does not always outperform a capability-based system.
In the case that the attack traffic does not reach a victim, but con-
gests a link shared by the victim, for instance, if the attack traffic
reaches a non-upgraded receiver, or the TTLs of the attack traffic
expire before it reaches the victim, filters are not installed and a
capability-based system outperforms StopIt. This is because capa-
bilities robustly enable a destination to control the bulk of a link’s
bandwidth even if the attack traffic does not reach it.

These results suggest that both filters and capabilities are viable
choices to build a DoS-resistant network architecture, although nei-
ther is more effective than the other in all types of attacks. A
DoS-resistant network architecture is likely to incorporate multi-
ple mechanisms. We suspect that the combination of StopIt and
capabilities would be the most effective solution, but it may be too
expensive in terms of deployment cost. On the other hand, the com-
bination of source address authentication, per-AS bandwidth fair-
ness, capabilities, and moderate bandwidth provision would be the
most cost-effective solution due to the robustness of capabilities
and the relative simplicity of a capability-based design. It is our
future work to validate these hypotheses.

The rest of the paper is organized as follows. § 2 defines the
design space of StopIt. We provide the design, implementation and
evaluation of the StopIt architecture in § 3 – § 7. We compare the
StopIt architecture with other DoS defense systems in § 8. § 9
discusses related work, and we conclude in § 10.

2. DESIGN SPACE
Before we dive into the design details of the StopIt architecture,

we describe the threat model the design aims to combat, the as-
sumptions we make, and the design goals.

2.1 Threat Model
The key threat we are concerned with is the network resource

exhaustion attacks, in which compromised machines send packet
floods to exhaust shared network resources such as link bandwidth
and routers’ memory or CPU.

We assume both routers and hosts can be compromised, but user-
administered hosts are more likely to be compromised than operator-
administered routers and servers. Our design places more trust in
routers and servers managed by the network than end systems. We
also assume that an Autonomous System (AS) is a fate sharing and
trust unit. If one component in an AS (e.g., a router) is compro-
mised, we consider the AS as compromised. A compromised host
can inject arbitrary traffic into the network. A compromised AS

can not only inject traffic, but also eavesdrop, modify, or discard
the traffic that it forwards. A compromised AS that is on the for-
warding path from a source to a destination is referred to as an
on-path attacker or otherwise an off-path attacker.

While we cannot foresee all types of DoS flooding attacks, we
focus on two general ones:

Destination Flooding Attacks: Attackers send traffic floods to
a destination in order to disrupt the destination’s communications.

Link Flooding Attacks: This type of attack aims to congest a
link and disrupt the legitimate communications that share the link.
The destinations of the attack traffic will not attempt to stop the
attack traffic. This could happen in many scenarios such as: 1)
the attack traffic is diffused among a large set of destinations, each
receiving only a small amount that is not worth blocking; 2) the
attack traffic’s TTLs expire before it reaches the destinations; 3) no
hosts are residing at the destination addresses; 4) the destinations
have not deployed a DoS defense system; 5) or the destinations are
compromised machines that coordinate the attacks.

2.2 Assumptions
We make a few assumptions about other design modules and the

underlying network conditions on which this work may depend.
These assumptions allow us to limit the scope of this work, but
nonetheless we make the StopIt design fail-safe: even if some as-
sumptions do not hold, the damage is limited locally to where they
fail, not globally.

• Securable Intra-AS Communications: We assume that com-
munications within an AS can be made secure if the AS desires
to do so. In particular, an AS may prevent source address spoof-
ing within its network using any anti-spoofing method such as
ingress filtering [11] or link-layer security protocols [1]. It can
ensure the integrity of communications between the routers or
servers under its administration.

• Attack Traffic Classification: We assume that it is possible
for an end system to detect and classify DoS flooding traffic,
although it is not guaranteed. We believe this is not an over-
optimistic assumption, because there is evidence that intrusion
detection works to some extent, and reverse Turing tests such
as CAPTCHA can distinguish bots from human users. Even
under a more pessimistic assumption that attack traffic may be-
come absolutely indistinguishable, a defense system that can
stop distinguishable attack traffic still raises the bar to launch
successful attacks. Therefore, we think it is worthwhile to ex-
plore this design point.

• The Battle Ground: Defense and attack is an arms race. We
cannot predict accurately the growth of botnets, or the growth
of network resources and technology advancement. Therefore,
we choose to hypothesize the power on each side based on the
current best estimate. We assume that a DoS attack may involve
multi-million compromised machines; attackers may compro-
mise a significant fraction of ASes, but not the majority of the
Internet. We also assume that routers and hosts have bounded
bandwidth, memory, and computation power. If those assump-
tions do not hold in the future, it requires future work to adapt
the design to a different battle field.

• Upgradable Components: We assume that both router and
host software can be upgraded, but we do not assume special
(e.g., tamper-proof) hardware upgrade. Some may consider this
assumption is unrealistic, but we prefer to work out an archi-
tectural design with this underlying assumption, because if de-
ployed, an architectural solution has the advantage of protecting
everyone.

196

• Feasible: The design should be efficient such that it can be im-
plemented on high-speed routers within the reach of the present
or foreseeable future technology. For this reason, we constrain
the StopIt design not to involve public key cryptography oper-
ations at packet forwarding time for their high processing cost.
We also avoid per-flow state in the network.

• Dependable Routing: We assume that the BGP routing system
can be made to correctly forward packets towards their destina-
tions. While presently prefix hijacking attacks do occur, we
consider it a separate problem from DoS attacks.

2.3 Goals
Under the above assumptions, we aim to achieve the following

design goals:

• Effective (§ 3): If a receiver can detect attack traffic, the StopIt
architecture should enable it to stop the traffic without inflicting
damage on other legitimate hosts using network filters.

• Resistant to Strategic Attacks (§ 4): A main challenge in
building a DoS defense system is to secure the defense system
itself. Unavoidably, attackers will aim to defeat or abuse the de-
fense system. We refer to such attacks as strategic attacks. We
aim to make StopIt resistant to strategic attacks as well as Des-
tination and Link Flooding Attacks. In § 4, we describe those
attacks and mechanisms to combat them. Although we cannot
claim or prove that we have considered all possible attacks, we
have included as many as we can think of, and to the best of our
knowledge, our list is much more complete than that considered
by previous filter-based designs [5, 20].

• Fail Safe (§ 5): If filters fail to install, either due to the fail-
ure of attack detection or because some design assumptions do
not hold, StopIt should limit the impact of the failure, and pro-
vide gracefully degraded service to legitimate communications.
In addition, it should not make legitimate hosts worse off than
without it, either in its failure or normal operation mode.

• Incremental and Incentive-compatible Deployment (§ 6): The
StopIt design must enable incremental deployment, and provide
immediate benefits to early adopters.

3. STOPIT OVERVIEW
For clarity, we first describe the high-level StopIt architecture.

This basic design is vulnerable to strategic attacks. In the next sec-
tion, we describe those attacks and how to secure StopIt under those
attacks. Figure 1 lists the notations used to describe the design. We
will also define them when we first refer to them.

3.1 Components
Figure 2 depicts the StopIt architecture. A dashed circle repre-

sents an AS boundary. StopIt is designed as an infrastructure ser-
vice (in analogy to DNS or email service). When a destination Hd

detects the attack traffic from a source Hs, it invokes the StopIt ser-
vice to block the attack flow (Hs, Hd) for a desired period of time
Tb. The StopIt design filters packets using the source and destina-
tion address fields, as such filters are available at wire speed. We
discuss how to prevent source address spoofing in § 4.1.

Each AS has a StopIt server that handles filter requests. Inter-
domain filter requests can only be sent from one StopIt server to
another. The StopIt server acts as an automated abuse contact. It is
a logical module, and could be implemented on a router, or run on
multiple machines for load balancing and fault tolerance.

A StopIt server needs to know other StopIt servers’ addresses to
send a filter request. The StopIt design uses BGP to publish StopIt

Symbol Meaning
Hs Source host
Hd Destination host
Rs Access router of the source Hs

Rd Access router of the destination Hd

Ss StopIt server at Hs’s AS
Sd StopIt server at Hd’s AS
Tb A filter’s block period

Tmax The longest block period allowed by an AS
Tf The duration of a flow cache

Nf , Ti Filter request limit in a duration to detect malicious sources
Ns Filter request limit to detect malicious ASes
Fs The maximum number of filters Rs has
Na The number of attacker-triggered filter replacements at Rs

Nu The maximum number of unacknowledged filters

Figure 1: Notations used to describe the StopIt design. We use the
same symbol that refers to an entity to refer to its IP address.

Figure 2: This figure shows the StopIt architecture, and how a des-
tination Hd installs a filter to block the attack flow (Hs, Hd) from a
source Hs. The dashed circle represents an AS boundary. Each AS has
a StopIt server that sends and receives StoptIt requests, and hosts can
only send StopIt requests to their access routers.

servers’ addresses. An AS encapsulates its StopIt server’s address
or address prefix as an optional and transitive BGP attribute in one
of its address prefix announcements. When other ASes receive this
announcement via BGP, they learn the StopIt server’s address of
that AS. A router can be configured with the address of its own
AS’s StopIt server to send or verify a filter request.

A StopIt server obtains both BGP and IGP feeds from the routing
system using passive listening sessions with BGP and IGP routers.
It learns the StopIt server’s addresses of other ASes from BGP
feeds, and the addresses of the routers in its own AS and the pre-
fixes they originate from IGP feeds. It can use this information to
locate the access router of an indicted local source in a filter request.

3.2 Interactions
We carefully design the protocol to install a filter to prevent var-

ious attacks at the StopIt system. The novelty of this design is that
the control channel is closed in the sense that each pair of interact-
ing peers know the identities of each other, yet the system allows
any destination to block the attack traffic from any source. Figure 2
illustrates the steps to install a filter:

1. A destination host Hd that wishes to block an attack flow
sends a host-router StopIt request to its access router Rd.
This request includes the attack flow’s source and destination
IP addresses: (Hs, Hd) and a block period Tb.

2. The access router Rd verifies this request to confirm that the
source Hs is attacking the destination Hd and sends a router-
server request to the AS’s StopIt server Sd. The verification
involves sending end-to-end StopIt requests to Hs (§ 4.6).

3. The StopIt server Sd in the destination Hd’s AS forwards
an inter-domain StopIt request to the StopIt server Ss in the
source Hs’s AS to block the flow (Hs, Hd) for Tb seconds.

197

Figure 3: The format of various StopIt requests. The notation (X →
Y) on the left side of each StopIt request specifies the source and desti-
nation IP address of a StopIt request.

4. The source StopIt server Ss locates the access router Rs of
the attacking source Hs, and sends a server-router request to
the access router. A StopIt server ignores inter-domain StopIt
requests that block itself to prevent deadlocks.

5. In the last step, the access router Rs verifies the StopIt re-
quest, installs a filter, and sends a router-host StopIt request
to the attacking source Hs. After receiving this request, a
compliant host Hs installs a local filter to stop sending to
Hd. If Hs does not stop, it will be punished by Rs (§ 4.5).

Figure 3 shows the format of various StopIt requests. Each Sto-
pIt request specifies the attack flow’s source and destination IP ad-
dress (Hs, Hd), and a block duration Tb. If either Hs or Hd is
in the IP header, a StopIt request’s payload does not duplicate it
for efficiency. The design allows the block period Tb to be on the
same order as the time it takes to repair a compromised host, e.g.,
one day. Each AS can have a local limit Tmax on how long it will
block a flow to mitigate issues such as collateral damage caused by
dynamic host address allocation. Similar to ICMP, the StopIt pro-
tocol uses a raw IP header and has its own protocol number. Each
node must verify that a StopIt request comes from the right peer
before it honors the request. Otherwise, a malicious host may use
StopIt to block other hosts’ traffic. We describe how to authenticate
each type of StopIt request in § 4.6.

4. SECURE STOPIT
The basic StopIt design is vulnerable to various strategic attacks,

which include:

• Source Address Spoofing Attacks (§ 4.1): Attackers may spoof
source addresses to evade attack detection and filtering.

• Resource Exhaustion Attacks (§ 4.2 – § 4.5): Attackers may:
1) flood filter requests to overload routers or StopIt servers’ pro-
cessing power so that legitimate requests cannot be processed;
2) send packet floods to cause filter requests to be discarded so
that filters cannot be installed; 3) exhaust routers’ filters so that
no filters are available to block their DoS flooding traffic.

• Blocking Legitimate Traffic Attacks (§ 4.6): Attackers may
use the StopIt service to block other legitimate nodes’ traffic.

This section describes how we design StopIt to combat those at-
tacks. A comprehensive security analysis of StopIt is shown in [19].

4.1 Passport for Source Authentication
The StopIt design uses a secure source authentication system

Passport [18] to prevent source address spoofing. Each packet car-
ries a Passport header to prove the authenticity of its source ad-
dress. An attacker can not spoof its source address to evade attack

detection or filtering. A trustworthy source address also precisely
reveals the origin of an attack packet and enables the network to
block the attack traffic close to its source. Although StopIt may use
any source authentication architecture such as the self-certifying
address architecture [3], using Passport has the advantage that the
source authentication overhead is equivalent to the capability ver-
ification overhead of a capability-based system [37], as both use
symmetric key cryptography. This feature facilitates our study on
comparing filters with capabilities, as StopIt’s packet forwarding
overhead is comparable to that of a capability-based system.

For completeness, we briefly summarize how Passport works,
and refer interested readers to [18] for more details. Unlike ingress
filtering, Passport ensures that no host or AS can spoof the ad-
dress space of an AS that deploys Passport. Similar to the Internet
routing architecture, Passport authenticates source addresses at two
levels: intra-domain and inter-domain. At the inter-domain level,
a source AS stamps a sequence of Message Authentication Code
(MAC) into a packet, each generated with a secret key shared with
an AS on the path to the destination. The border router of each
AS on the path checks the corresponding MAC to cryptographi-
cally verify the source AS of the packet before the packet enters its
network. A packet with an invalid MAC will be discarded at the
destination AS, and is discarded or demoted at an intermediate AS.
Two ASes obtain the pair-wise secret key used for source authenti-
cation by piggybacking a standard Diffie-Hellman key exchange in
their BGP announcements. At the intra-domain level, Passport as-
sumes that each AS can use any internal mechanism such as ingress
filters [11] to prevent source address spoofing.

4.2 Closed Control to Mitigate Request Floods
As shown in Figure 2, the StopIt architecture ensures that a router

or a StopIt server only receives StopIt requests from either a local
node in the same AS, or another StopIt server. This design prevents
a router or a StopIt server from wasting its computational resources
to process filter request floods from unknown addresses. A router
or a StopIt server can be configured with the addresses of its local
hosts, routers, or other StopIt servers from which it will accept Sto-
pIt requests, and discard other requests without processing them.
If discarded requests from unknown addresses are classified as at-
tack traffic, a node can use the StopIt service itself to block them.
If requests from legitimate addresses overload a router or a server,
the node can use local scheduling algorithms to fairly process those
requests, or discard misbehaving peers’ requests temporarily.

4.3 Guard StopIt Requests from Packet Floods
If attackers are able to congest both directions of a bottleneck

link, inter-domain StopIt requests from a destination AS to a source
AS could be lost due to the flooding attack. The StopIt design
is able to protect an inter-domain StopIt request in this scenario,
because StopIt servers’ addresses are known to routers via BGP.
Routers can separate StopIt servers’ traffic from other hosts’ traf-
fic. As we will soon describe in § 5, this can be done either via
hierarchical fair queuing [7] or hierarchical rate limiting.

4.4 Confirm Attacks Before Taking Actions
A compromised destination may initiate a futile filter request to

block a legitimate source’s traffic to itself. Large botnets may use
these futile requests to launch filter exhaustion attacks, or to trigger
inter-domain request floods. For instance, they may first send filter
requests to block a legitimate host that co-locates with a compro-
mised host and exhausts the filters at the hosts’ access router. The
compromised host can then send attack traffic, but the access router
has no filters left to block it.

198

To prevent this type of attack, the StopIt design verifies that a
host Hs is sending undesired traffic to a destination Hd before it
installs a filter. Three nodes independently confirm this before they
proceed to the next step. Each node represents a separate trust do-
main: the destination’s access router, the source’s access router,
and the source itself.

4.4.1 Confirm Attacks By a Destination Router
As described in § 3, to block a malicious source Hs, a destina-

tion Hd sends a StopIt request to its local access router Rd. Rd

must confirm that Hs is sending undesired traffic to Hd before it
forwards the StopIt request to a local StopIt server.

The StopIt design uses three mechanisms: flow cache, end-to-
end StopIt requests, and local filters, for Rd to confirm that Hs is
attacking Hd. Rd uses a flow cache to verify that Hs has sent some
traffic to Hd recently. A flow cache records the flows a router for-
wards in the past Tf seconds. An access router keeps an incoming
flow cache as well as an outgoing flow cache.

If Rd finds the flow (Hs, Hd) in its incoming flow cache, it fur-
ther checks whether Hs is misbehaving. To do so, it installs a local
filter (Hs, Hd) and sends an end-to-end StopIt request directly to
Hs. This request uses Hd as its source IP address to facilitate Hs’s
verification. This source IP address “spoofing” should be allowed
by an AS because in a sense Rd owns its stub network’s addresses.
In the StopIt design, a compliant host Hs must stop sending to Hd

after receiving a legitimate end-to-end StopIt request. If it does not
stop, Rd’s local filter will catch the traffic from Hs to Hd. This
confirms that Hs is sending undesired traffic to Hd, and Rd pro-
ceeds to send a router-server StopIt request.

Rd may not have enough local filters to verify all StopIt requests
it receives, if the number of attacking flows is large, e.g., 10-million
bot machines attack every host on a /24 subnet. If Rd replaces an
old filter before the requested blocking period Tb expires, a mali-
cious source may pretend to stop after an end-to-end StopIt request
and attack a destination after Rd replaces its filter. Rd may fail
to catch this behavior and send end-to-end StopIt requests again to
block the source. Consequently, malicious sources may continue to
send attack traffic without being blocked.

To address this problem, we design a secure filter replacement
protocol that enables an access router to deterministically catch a
misbehaving source even if it runs out of filters. The key idea is to
use an unforgeable filter replacement message to record verification
state. When a router receives a new StopIt request and it runs out of
filters, it randomly replaces an existing filter (Hs, Hd) with the new
one, and sends the host Hd a filter replacement message. If the host
Hd continues to receive the attack traffic from Hs, Hd resubmits
the router’s filter replacement message. This message proves to the
router that it has processed a StopIt request from Hd before, i.e.,
the router has sent an end-to-end StopIt request to Hs using Hd’s
address. If the router catches the flow (Hs, Hd) in its flow cache
again, it shows that Hs has not stopped after the previous StopIt
request. The router may immediately take the next step action, i.e.,
sends a StopIt request to the StopIt server, or retransmits an end-to-
end StopIt request to Hs in case the previous one is lost.

Re-submissions of the filter replacement messages must be sep-
arated by the flow cache length Tf so that a router can trust that the
flow (Hs, Hd) caught by its flow cache corresponds to new traffic
from Hs to Hd. A router can enforce this interval by including
a timestamp that specifies the time it sends the filter replacement
message.

A router includes a keyed hash in a filter replacement message
to make it unforgeable. The key is only known to the router itself
and changes over time for improved security. A router sends a filter

Figure 4: The format of a filter replacement message.

replacement message with high priority as the link from the router
to a destination may be congested before an attack stops. Figure 4
shows the format of a filter replacement message. The message
includes a #Retx field that records how many times a filter has
been replaced, and the lower 24-bits of a router’s local timestamp.

This filter replacement protocol ensures that a router can con-
firm an attack with bounded memory, because if a malicious source
does not stop, a router will catch its attack flow in its flow cache
when a host resubmits a filter replacement message. The router
will proceed to the next step. If it takes k end-to-end StopIt re-
quest retransmissions to confirm an attack, then after at most k − 1
re-submissions of a filter replacement message, a destination ac-
cess router will confirm the attack and send a request to its StopIt
server.

4.4.2 Confirm Attacks by a Source or Source Router
As described in § 3, a filter request initiated by a destination

will eventually reach the source host’s access router Rs. In the
StopIt design, Rs also verifies that Hs has sent attacking traffic to
Hd before it proceeds to block the flow (Hs, Hd). This verification
prevents a malicious destination AS from wasting the source access
router’s filters. It uses the same flow cache mechanism as used by
Rd to verify that Hs has sent some traffic to Hd. If it catches
the attack flow (Hs, Hd) in its flow cache, it installs a filter and
sends a router-host StopIt request to Hs. Similarly, when a source
host Hs receives an end-to-end StopIt request, it verifies that it has
sent some traffic to Hd using a local flow cache before it blocks its
traffic to Hd.

4.4.3 Bounded Flow Cache Memory
In the StopIt design, a flow cache’s size can be bounded because

the cache only needs to last for a few seconds (Tf) to tolerate a
round trip delay. Note that a destination Hd’s attack detection mod-
ule may take longer than Tf to identify an attack source Hs. Af-
ter the detection, as soon as the destination receives a new packet
from the attack source, it may immediately send a StopIt request.
Therefore, as long as the flow cache lasts longer than the time it
takes to forward a filter request from a destination to a source or a
source’s access router, the attack flow (Hs, Hd) will be found in a
flow cache.

A flow cache can be implemented using a circular buffer of bloom
filters, a technique also used in [29]. A bloom filter has no false
negatives. A router can always catch an attack flow in its flow
cache as long as the round trip delay is less than Tf . We are not
concerned with the small percentage of a false positive, because
it occurs rarely and randomly, and can only happen when a mali-
cious host Hd wants to block its own traffic, and at most wastes
one router filter. One can verify that it requires less than 100MB
memory to implement a flow cache of 5 seconds on a gigabit link
(See also [19]).

4.5 Manage Source Router Filters
In the StopIt design, an attack flow (Hs, Hd) is blocked at the

access router Rs of the attack source. A key challenge it faces
is how to block all attack flows without collateral damage if the
router Rs has insufficient filters. This may happen, for instance,
if a compromised host on the router’s subnet attacks a large num-
ber of destinations, or a compromised destination AS sends a large
number of StopIt requests to block a legitimate source host.

199

In this sub-section, we describe how we address this challenge.
For clarity, we first describe the design assuming destination ASes
are not compromised. We then describe how to cope with compro-
mised destination ASes.

4.5.1 Aggregate Misbehaving Sources’ Filters
In StopIt, if a router runs out of filters, it first reduces the num-

ber of filters for a misbehaving host Hs by aggregating them into
per source and destination-prefix filters in the form of (Hs, Hd/l).
It may choose the length of the prefix l according to its available
filters. This filter aggregation may harm misbehaving hosts’ legit-
imate traffic to destinations that do not request to block them, pro-
viding incentives for users to patch their compromised machines.

StopIt uses either of the two following conditions to detect mis-
behaving hosts. First, a host Hs is considered misbehaving if it
does not stop sending to a destination Hd after its access router
Rs has installed a filter (Hs, Hd). This is because a compliant host
will stop sending undesired traffic after Rs sends a StopIt request to
it during filter installation (Step 5 of the StopIt protocol described
in § 3). Second, a host Hs is considered misbehaving if its access
router Rs receives a large number of StopIt requests to block its
flows. This is because a legitimate host will comply to an end-to-
end StopIt request sent by a destination’s access router (Step 2 of
the StopIt protocol described in § 3) and will not trigger excessive
StopIt requests. StopIt uses two configurable parameters: the num-
ber of StopIt requests Nf received to block a source in a duration
Ti, e.g., 10 million per day, to separate legitimate hosts from misbe-
having ones. If a router Rs receives more than Nf StopIt requests
in Ti to block a host Hs, Hs is considered misbehaving, and the
router Rs may aggregate its filters.

4.5.2 Avoid Responding to Malicious ASes
If compromised destination ASes exist, a router may erroneously

classify a legitimate host as misbehaving. For instance, a compro-
mised AS may send a packet that triggers a reply (e.g., Ping, TCP
SYN) to a legitimate host, and then send an inter-domain StopIt
request without first sending an end-to-end StopIt request to the
host. If compromised ASes successfully send more than Nf filter
requests in the duration Ti, a router may mis-classify a legitimate
host as misbehaving.

To address this problem, we design an algorithm for hosts to
detect malicious ASes and refrain from responding to them. A host
Hs can detect a malicious AS from the missing of legitimate end-
to-end StopIt requests. If it repeatedly receives initial packets from
an AS’s address space that trigger reply packets, and then a router-
host StopIt request from its access router to block a flow destined to
the AS, it concludes that the AS is misbehaving. It can detect this
pattern by caching the source addresses of the incoming packets to
which it responds. When it receives a router-host StopIt request, it
will find the malicious destination’s address in this packet cache. A
few missing end-to-end StopIt requests may be due to packet loss,
but if it receives a large number (Ns) of router-host StopIt requests
from an AS, it should stop responding to any initial packet from
that AS. An AS can provide an address-to-AS mapping service to
enable its hosts to associate an address with an AS.

An AS should set the parameters Nf , Ns, and Ti to accommo-
date a worst case estimate on the number of compromised ASes.
The present Internet has less than 30K ASes. If we set Ns = 1000,
Nf = 10M , and Ti = 1 day, a legitimate host will not be classified
as misbehaving even if 10K ASes are compromised and intend to
frame the host in one day, which is unlikely to happen in the near
future. In addition, each AS can adjust Nf , Ns, and Ti to adapt to
future attack scenarios.

4.5.3 Random Filter Replacement
Aggregating misbehaving hosts’ filters only partially addresses

the filter exhaustion problem. Routers may still run out of filters,
because the StopIt request limit (Nf) for each host must be set to
a large value to avoid misclassifying legitimate hosts. When this
situation occurs, the StopIt design uses a random filter replacement
policy to prevent a host from repeatedly attacking a destination.
When a router receives a new StopIt request, it randomly replaces
an old filter of a non-misbehaving host with the new one. A router
does not replace a misbehaving host’s filters, but aggregates them
if it runs out of filters.

This random replacement algorithm ensures that a malicious host
cannot repeatedly attack a destination without being caught as mis-
behaving. This is because right after a malicious host Hs attacks a
destination Hd, it will trigger a StopIt request. To repeatedly attack
the same destination without being caught, Hs must either wait for
its filter to expire, which means it has stopped the attack, or exhaust
the router’s filters to make its filter (Hs, Hd) replaced. However,
it can at most trigger Nf StopIt requests in a period Ti to exhaust
router filters. Therefore, it will either be caught as misbehaving
when it is caught sending to a filter, or when it exceeds its limit
Nf . In either case, a router will not replace its filters any more.

We analyze how many times a malicious host may successfully
attack a destination before it is caught or uses up its StopIt request
limit. Suppose an access router Rs has Fs filters. After a source
Hs attacks a destination Hd, the router installs a filter (Hs, Hd).
To attack Hd again without being classified as misbehaving, Hs

triggers Na new StopIt requests. Suppose the router has run out of
filters, and it performs Na random filter replacements. The proba-
bility that a previously installed filter (Hs, Hd) is replaced is:

1 − (1 − 1/Fs)
Na (1)

This is the probability that the host Hs can attack Hd again without
being caught as misbehaving.

After the host Hs attacks Hd again, the filter (Hs, Hd) will be
re-installed. To repeat the attack, Hs must trigger new StopIt re-
quests. For simplicity, suppose it triggers the same number of Na

requests before it attacks Hd again. Then the probability that Hs is
not caught after attacking Hd for k times is (1− (1− 1/Fs)

Na)k.
Since the total number of StopIt requests it triggers must be less
than Nf and k × Na ≤ Nf , if a source chooses a smaller Na, it
has a higher probability being caught after one round of attack; if
it chooses a larger Na, the maximum number of rounds k it can
attack is reduced. In § 7, we use both experiments and analysis to
show that when Fs is 10M and Nf is 10M a day, a malicious source
on average can only attack a destination less than three times a day.
A similar analysis can be done if we assume the attack target is a
destination prefix Hd/l, not a single destination Hd, or there are a
few (a) colluding compromised hosts on a router’s subnets. In the
former case, the probability of being caught after attacking any pre-
viously attacked address in Hd/l is the same. In the latter case, the
colluding hosts’ total StopIt request limit is increased to a×Nf , but
the probability of any one being caught after attacking a previously
installed filter is not changed.

If a router uses hardware filters for line speed filtering, its filters
may be much less than 10M. High-speed routers often use Ternary
Content Addressable Memory (TCAM) to filter, but a TCAM chip
is limited to at most 256K filter entries [24]. This problem can be
addressed using shadow filters, similar to the technique used in [5]
except that we assume that a router also has limited slow memory.
A router uses hardware filters to block misbehaving hosts’ traffic,
and shadow filters to catch misbehaving hosts. When a router re-
ceives a StopIt request, it installs and replaces hardware filters as

200

described above. In addition, it installs a shadow filter in its slow
and large DRAM memory. When it receives a new StopIt request to
block (Hs, Hd), and it finds the same flow (Hs, Hd) in its shadow
filters and the attack flow in its flow cache, it concludes that Hs at-
tacks Hd again after its hardware filter (Hs, Hd) is replaced. The
router can classify the source as misbehaving. If a router receives
two StopIt requests to block the same attack flow before a flow
cache expires, it does not use the second StopIt request to indict the
source, as it could be triggered by the same attack traffic.

A router randomly replaces a shadow filter when it runs out of
slow memory. The above analysis on how often a source can at-
tack a destination before it is stopped still holds. If a router uses 8
bytes to store an attack flow and 8 bytes to store the expiration and
installation time of a shadow filter, it can store 10M shadow filters
in less than 200MB memory.

One design detail worth mentioning is that StopIt makes a host
explicitly acknowledge a router-host StopIt request. Otherwise, if
a request is lost, a legitimate host may be misclassified as misbe-
having. A router will not consider a host as misbehaving if it is
caught to send traffic to an unacknowledged filter but will keep
a maximum unacknowledged filter limit Nu to prevent malicious
hosts from never acknowledging a StopIt request. If a host’s unac-
knowledged filters exceed Nu, the router temporarily disconnects
the host until all filters are acknowledged. Hosts need to keep their
acknowledged but non-expired filters persistent across reboots, and
query the router to acknowledge their unacknowledged filters when
they are back online. With a reasonably small Nu, a router can keep
all unacknowledged filters within bounded memory.

4.6 Authenticate StopIt Requests
The StopIt design must prevent an attacker from blocking other

legitimate hosts’ traffic. To achieve this goal, the design enable
each node that receives a filter request (Hs, Hd) to authenticate
that the request is sent by the correct entity as described in § 3,
and the entity owns the address Hd. We describe how each type of
StopIt request is authenticated.

4.6.1 End-to-End StopIt Requests
A host Hs must verify that an end-to-end StopIt request is sent

from the IP address Hd before it blocks its traffic to Hd. The Sto-
pIt design uses address-based authentication to verify that the re-
quest is from Hd: if the source IP address of an end-to-end Sto-
pIt request is Hd, then Hs trusts that it is sent from the IP ad-
dress Hd. Address-based authentication is a weak authentication
scheme, but it suffices for this purpose, because StopIt is based on
a secure source authentication architecture that ensures any node
outside the source or destination AS can not spoof the IP address
of Hd. Only compromised routers inside a source or a destina-
tion AS may spoof a StopIt request with the source IP address Hd.
In this case, the source AS or the destination AS is considered as
compromised. The StopIt design does not intend to provide non-
interrupted communication between a pair of hosts if either host’s
access AS is compromised, as a compromised access AS may cause
more harm such as discarding its hosts’ traffic. Note that a compro-
mised host in a source or a destination’s AS cannot spoof a StopIt
request because we assume a compliant AS can prevent internal
source address spoofing (§ 2.2).

A compromised AS on the path from a destination AS to a source
AS may replay an end-to-end StopIt request, as the source authen-
tication system that StopIt uses only prevents attackers not on the
forwarding path of a packet from re-injecting the packet from other
network locations. If an on-path AS attacker replays an old end-to-
end StopIt request to block the flow (Hs, Hd) after the block period

has expired, it can block the communication from Hs to Hd longer
than what Hd desires. We are not concerned much with this type
of attack, because an on-path attacker can always discard the pack-
ets from Hd to Hs (e.g., TCP SYN/ACK, or the capability return
packets in a capability-based system) to disrupt their communica-
tions. But our design includes a timestamp field in an end-to-end
StopIt request (Figure 3) to mitigate this attack. A source may op-
tionally verify the timestamp and discard very old StopIt requests,
e.g., older than a few hours. If a source (or a destination) has a
completely out of sync clock, the source may erroneously discard
an end-to-end StopIt request, but this error at most triggers an inter-
domain StopIt request to stop the source. Note that an on-path com-
promised AS cannot modify an end-to-end StopIt request because
the integrity of the first eight bytes of a packet’s payload is ensured
by Passport [18].

4.6.2 Inter-domain StopIt Requests
A StopIt server Ss that receives a request to block (Hs, Hd) from

another StopIt server Sd must verify that the request is sent by Sd,
and the IP address Hd is in Sd’s AS’s address space. The Sto-
pIt design uses cryptographic authentication for this purpose be-
cause address-based authentication is insufficient for several rea-
sons. A compromised AS on the path may modify the content of
inter-domain StopIt Requests. A source AS’s StopIt server may not
trust that a destination AS has prevented source address spoofing in
its network, and it does not wish to waste its filters if a malicious
node in a destination AS can spoof its StopIt server’s address.

A StopIt server Ss obtains the same pair-wise secret keys that
an AS’s border routers obtain using Passport [18]. With a shared
key, two servers can authenticate messages from each other using a
standard cryptographic scheme (more details can be found in [19]).
After Ss verifies that a request to block (Hs, Hd) is from Sd, it
further verifies whether Sd and Hd belong to the same AS. Ss can
verify this using the address-prefix-to-AS mapping obtained from
its BGP feeds. If Sd and Hd belong to the same AS, Ss considers
the StopIt request valid, and forwards it to the access router of the
indicted source Hs.

4.6.3 Intra-domain StopIt Requests
As we assume that an AS can secure its intra-domain commu-

nications (§ 2.2), intra-domain StopIt requests, including router-
server, server-router, router-host, host-router requests, can be au-
thenticated using any local security mechanism such as address-
based authentication, or a cryptographic authentication scheme. Due
to space constraints, we omit the details. They can be found in [19].

5. FAIL-SAFE
The previous section describes how we design StopIt to combat

various attacks that prevent filters from being installed. However,
regardless of how hard we try, filters may fail to install when a
source AS is compromised and ignores filter requests, or during a
link flooding attack when destinations of the flood fails to initiate
StopIt requests.

For simplicity and feasibility, the StopIt design uses hierarchi-
cal fairness, the same mechanism used in a capability-based sys-
tem [37], to gracefully degrade when filters are not installed. A
router either uses two-level hierarchical weighted fair queuing to
allocate its bandwidth among ASes and then among hosts within
the same AS queue, or uses a two-level rate limiters. For the first
level resource allocation, as there are less than 30K ASes on the
present Internet, it is feasible for routers to maintain per-AS state.
For the second level allocation, if a router has insufficient queues
or rate limiters to separate every host in an AS, it randomly hashes

201

different hosts from the AS into the same queue or rate limiter, as
in stochastic fair queuing [22], except that a StopIt server’s traffic
is always separated from an AS’s other hosts’ traffic, and may be
given a larger share. Legitimate hosts in an AS that harbors com-
promised hosts may suffer from collateral damage, but we think
such damage could incentivize an AS to clean up its network.

Another approach to fail-safe when a compromised source AS
does not respond to StopIt requests is to install Pushback-style fil-
ters. A filter request is propagated from an access router to a border
router, and from a destination AS to its upstream provider, and so
on. We assume that ASes are much less likely to be compromised
than hosts. Therefore, the benefit of avoiding per-flow filter state in
the network outweighs the disadvantage of not completely blocking
compromised ASes but limiting them to their fair shares of band-
width. However, if in practice it is desirable to entirely block a
compromised AS, StopIt can be extended to support Pushback fil-
ters. We defer the detailed design of this extension to future work.

6. DEPLOYMENT
The StopIt design aims to facilitate incremental deployment and

incentivize early adoption. Each AS can independently deploy Sto-
pIt and benefit from it. To deploy StopIt, an AS needs to upgrade
its border routers to use Passport for source authentication as de-
scribed in [18], upgrade its access routers to support StopIt, and
install a StopIt server. It also needs to enable a hierarchical per-AS
and per-host resource allocation scheme at its congested links.

An AS that deploys StopIt can block attack traffic from ASes that
also deploy StopIt. It can also authenticate the source addresses of
the traffic from Passport-enabled but not StopIt-enabled ASes and
queue or rate limit their traffic separately. Attack traffic from a
Passport-enabled but not StopIt-enabled AS only congests the traf-
fic from the same AS, incentivizing the AS to adopt StopIt.

A StopIt-enabled AS cannot authenticate the source addresses of
the traffic from ASes that do not deploy Passport. It should queue
or rate limit the traffic from all non-upgraded ASes as one traffic
aggregate. Attack traffic from those non-upgraded ASes may over-
whelm legitimate traffic from those ASes, providing incentives for
ASes to adopt both source authentication and StopIt.

A transit AS that is unlikely to originate attack traffic only needs
to deploy Passport to authenticate source addresses and implement
the hierarchical resource allocation scheme at its congested links.
We think it has incentives to deploy these mechanisms to protect the
traffic from Passport-enabled customers, because otherwise, DoS
flooding attacks will inflict damage on all its transit traffic.

A server host that wishes to stop undesired traffic needs to up-
grade to support StopIt. A client host does not need to upgrade to
support StopIt, if it is unlikely to be attacked or compromised to at-
tack other hosts. However, a router may aggregate a non-upgraded
client’s filters if it does not stop sending undesired traffic after a
destination requests to block it. When this happens, a client will
notice and should upgrade to support the StopIt protocol and source
authentication. An upgraded host will not respond to an end-to-end
StopIt request with a demoted or without a Passport header, because
the source address of this request might be spoofed.

7. IMPLEMENTATION
We implement a prototype of the StopIt design on Linux using

Click [14] and test its performance using Deterlab [9]. This eval-
uation aims to answer the following questions: 1) Can StopIt stop
multimillion-node attacks with bounded router filters? 2) How long
does it take for StopIt to stop such attacks? 3) What is the process-
ing overhead of StopIt requests?

Figure 5: The network topology used in our experiments.

Figure 6: Access Router Prototype

For quick prototyping, we implement the StopIt protocol on top
of UDP. A StopIt server is implemented as a user-level application.
As shown in Figure 6, the access router’s packet filtering function,
the destination-side logic, including the host-router StopIt request
processing and the secure filter replacement protocol are imple-
mented using Click in the Linux kernel for better performance. The
source-side logic, including the server-router StopIt request pro-
cessing and router-host StopIt request processing are implemented
as a user-level application. We have not implemented flow caches
using bloom filters in this prototype, but this simplification should
not affect the results, because as we will soon explain, the bottle-
neck in our experiments is not the access router’s kernel processing
module. The Click implementation modifies the IPRouteTable ele-
ment. The authentication function in an inter-domain StopIt request
or in a filter replacement message is implemented using UHASH,
AES and the first UMAC construction as described in [15].

In the first experiment, we evaluate whether StopIt can stop large-
scale DoS attacks when a destination’s access router has a bounded
number of filters, and if it does, how long it takes to stop an at-
tack. The experiment topology is shown in Figure 5. This topol-
ogy emulates an attacker’s AS and a victim’s AS. R2 and R3 em-
ulate border routers, and R1 and R4 emulate access routers that
implement the StopIt protocol. Each AS is also configured with a
StopIt server that processes inter-domain StopIt requests. The sin-
gle attacker machine emulates 1 to 10 million attackers by sending
packets with source addresses distributed within a /8 address pre-
fix. Attack packets are all destined to the victim. The victim either
sends a fresh StopIt request to R4, or resubmits a filter replacement
message after a flow cache expiration interval Tf = 5 seconds.
R4 sends three end-to-end StopIt requests to confirm an attack be-
fore it sends a StopIt request to its local StopIt server. The border
routers R2 and R3 should be performing the source authentication
task as described in [18]. We have not integrated this part with the
StopIt implementation, but source authentication is not the bottle-
neck in our experiments: traffic volume through R2 and R3 is less
than 300kpps, which is much lower than the source authentication
throughput according to [18].

The victim’s access router R4 is configured with 256K filters,
emulating a limited number of hardware filters. Each emulated at-
tacking source stops after it receives a StopIt request from R1. Thus

202

 0

 400

 800

 1200

 1600

1 2 3 4 5 6 7 8 9 10

S
ec

on
ds

of Attackers in Millions

Figure 7: The time it takes for a victim to block various number of
attackers.

 0

 0.2

 0.4

 0.6

 0.8

 1

P
ro

b.
 o

f
C

au
gh

t

Analysis
Experiment

 1

 1.4

 1.8

 2.2

 2.6

 1 2 3 4 5 6

A
vg

 #
 o

f A
tta

ck
s

Max # of Attacks in One Day

Analysis
Experiment

Figure 8: This figure shows the probability that a misbehaving host
will be caught if it does not stop attacking a destination, and the average
number of times it can attack the destination in one day. The x-axis is
the maximum number of times it can attack the destination before it
triggers more than Nf StopIt requests. The daily StopIt request limit
is Nf = 10 million, and the router’s filter limit is Fs = 10 million.

R1’s filter table size does not affect the results. Figure 7 shows
the time it takes to stop an attack with various number of attacker
sources. Each attack repeats 10 times, and the error bars show the
standard deviations of the stopping time. As can be seen, StopIt is
able to stop all attack flows. The router R4 has successfully con-
firmed up to 10 million attack flows with only 256K filters. The
time it takes to stop an attack grows proportionally with the num-
ber of attackers. Note that this time does not include the attack
detection time, as we assume attack detection is a separate design
module (§ 2.2).

The blocking rate roughly corresponds to 6000 attackers per sec-
ond. This rate is primarily limited by the victim, because it receives
and sends filter replacement messages and StopIt requests in user-
space, and at the same time, receives flooding packets. We notice
that the StopIt agent on the victim can send out roughly 28K mes-
sages per seconds. As in our implementation, the router R4 retrans-
mits an end-to-end StopIt request up to three times before it sends a
request to its StopIt server, and the victim needs to send one StopIt
request and resubmit three filter replacements to stop one attacking
source. Thus, it can stop at most 28/4=7K attackers per second. At
the same time, it also discards some of the filter replacement mes-
sages from the router R4, because it is receiving attack packets at
the same time and cannot keep up with the incoming packet rate.
Despite the low blocking rate, a victim can still stop a 10-million
node attack in less than 30 minutes.

Next, we evaluate whether an access router can catch a misbe-
having source if the source does not stop attacking a destination.
In these experiments, we let the attacker machine first attack the
victim, and then attack a large number of fresh destinations to ex-
haust its router R1’s filters. R1 is configured to have 10 million

filters. To save experiment times, we install a packet capture agent
at R1 that intercepts the attack packets to fresh destinations and
immediately installs filters at R1. R1 implements the random fil-
ter replacement algorithm as described in § 4.5.3. We pre-populate
all R1’s 10 million filters to emulate a filter exhaustion attack, e.g.,
other compromised hosts and ASes have exhausted the router’s fil-
ters by colluding with the attacker. The daily StopIt request limit
Nf is set to 10 million. We first choose k, the maximum number
of times an attacker can possibly attack the victim before it triggers
more than Nf StopIt requests, and then choose the number of fresh
destinations Na that an attacker should attack in one round to min-
imize its probability of being caught at the end of the attacks. Each
run finishes if either R1 catches the attacker as mis-behaving, or the
attacker has triggered Nf StopIt requests. For each run i, we record
a binary variable Yi. It is set to 1 if an attacker is caught before it
triggers more than Nf requests. Otherwise, Yi = 0. We also record
the number of times Si that the attacker can successfully attack the
victim before one experiment finishes.

Figure 8 shows the probability that a misbehaving source is caught
in the above attacks for various values of k. The lines are plotted
using the analysis in Eq 1. Each point is obtained using the results
from 100 runs for each k value. For each k, the probability of be-
ing caught is calculated as

P
i Yi/100, and the average number of

attacks is calculated as
P

i Si/100. As can be seen, the experi-
mental results match well with the analysis. When k = 2, after
an attacker attacks a victim once, even after it triggers 10 million
StopIt requests, it still has more than 35% probability to be caught
if it attacks the victim again. In contrast, if we use a deterministic
first-installed-first-replaced policy, the attacker will have zero prob-
ability to be caught. When k = 3, the average number of times it
can attack a victim before it is caught is maximized to 2.40, but it
will be caught more than 85% of the times.

We have also benchmarked the processing overhead of various
StopIt requests. Due to space constraints, we omit the results in this
paper but they are available in [19]. As StopIt messages only in-
volve light-weight cryptography operations, their processing over-
head is low, and a router or a server’s CPU is unlikely to be the
bottleneck resource.

8. COMPARING EFFECTIVENESS
To gain insights on how effective StopIt performs relatively to

other DoS defense systems, we compare StopIt with two well-
known capability-based DoS defense systems TVA [37] and Portcullis
[25], and two existing filter systems: AITF [5] and Pushback [20].
We implement StopIt and other systems in ns-2, and simulate how
effectively each system combats various DoS flooding attacks on
large topologies. Note that this section does not simulate filter ex-
haustion attacks. They are studied in part in the previous section.

8.1 Methodology
Ideally, we would like to simulate various systems on an Internet-

scale topology and vary the number of attackers to millions. Un-
fortunately, our simulator is incapable of simulations at this scale.
Instead, we generate AS-level topologies from BGP table dumps,
and simulate each AS as one node. We randomly mark an edge AS
as hosting attackers or not. If a node is marked as hosting attackers,
it floods the aggregate attacking traffic of all attackers in the AS.

Our results only measure the performance of hosts in legitimate
ASes that do not have attackers. We believe this is a valid perfor-
mance metric because a solution that sacrifices the performance of
hosts in “clean” ASes to improve that in ASes that harbor attackers
does not reward ASes that maintain a clean network, and is less
desirable. We assume that attackers are not uniformly distributed

203

 0
 0.2
 0.4
 0.6
 0.8

 1

1K 10K 100K 1M 10M

S
uc

ce
ss

 R
at

io

of Simulated Attackers

StopIt
AITF

Pushback
TVA

TVA+
Portcullis

(a)

 0

 1

 2

 3

 4

 5

1K 10K 100K 1M 10M

F
ile

 T
ra

ns
fe

r
T

im
e

(s
)

of Simulated Attackers

StopIt
AITF

Pushback
TVA

TVA+
Portcullis

(b)

 0
 0.2
 0.4
 0.6
 0.8

 1

10M 100M 1G

S
uc

ce
ss

 R
at

io

Simulated Bandwidth

StopIt
TVA+

(c)

Figure 9: Destination flooding attacks. In 9(a) and 9(b), the simulated bandwidth is 1Gbps. Both TVA+ and StopIt can finish all TCP transfers. In
9(c), the simulated bottleneck bandwidth is varied from 10Mbps to 1Gbps. Only StopIt can finish for slower links, demonstrating the advantages of
the filter approach.

 0
 0.2
 0.4
 0.6
 0.8

 1

1K 10K 100K 1M 10M

S
uc

ce
ss

 R
at

io

of Simulated Attackers

StopIt
AITF

Pushback
TVA

TVA+
Portcullis

(a)

 0

 1

 2

 3

 4

 5

1K 10K 100K 1M 10M

F
ile

 T
ra

ns
fe

r
T

im
e

(s
)

of Simulated Attackers

StopIt
AITF

Pushback
TVA

TVA+
Portcullis

(b)

 0

 10

 20

 30

 40

 50

20K 100K 200K

F
ile

 T
ra

ns
fe

r
T

im
e

(s
)

File Size

StopIt
TVA+

(c)

Figure 10: One-way Link Flooding Attacks. The simulated bandwidth is 1Gbps.

among all ASes based on data shown in [26, 35]: [35] shows that
in a six month period, only half of the ASes on the Internet are ob-
served to host bot machines; and [26] shows that Bobax drones are
concentrated on a few IP address ranges. One plausible explana-
tion is that unpatched pirated Windows operating systems might be
unevenly distributed.

Topologies: We use a realistic simulation topology from the
BGP table dump obtained on Aug 1st, 2007 from a RouteViews
server. Realistic topologies are desirable because TVA, AITF, and
Pushback’s performance are path dependent. We construct a di-
rected graph using the reverse AS paths seen from the RouteViews
server. This topology contains about 26K nodes and is still too
large for ns-2 simulations. We randomly sample a branch that has
less than 2000 ASes, which is roughly the maximum size we can
simulate. We refer to this topology as the sampled topology. The
sampled topology has 1691 ASes, approximately 1/20 of the size
of an Internet-scale topology.

Attacks: We simulate both destination flooding attacks and link
flooding attacks. In a destination flooding attack, we connect a
victim to the sampled topology via a bottleneck.

We intend to simulate scenarios that 1K ∼ 10M compromised
hosts on the Internet attacking a victim behind a bottleneck ranging
from 10Mbps to 1Gbps. Since we only have 1/20 of the topology,
we scale the number of attackers to 1/20 of the number we intend
to simulate: 50 ∼ 500K, and similarly, the bottleneck bandwidth to
500Kbps ∼ 50Mbps. We set the ratio of ASes that have attackers
to be at most 2/3 among the edge ASes in the sampled topology.
This corresponds to at most 1000 attacker ASes. If the number of
attackers x in a simulation is less than 1000, we randomly sam-
ple x edge ASes from the sampled topology to be ASes that host
attackers (i.e., attacker ASes). If x exceeds 1000, the maximum
number of attacker ASes, we randomly sample 1000 edge ASes as
attacker ASes, and let each attacker AS originate the attack traffic
for x/1000 attackers. To make our simulations finish within a rea-
sonable time, we bound the maximum total attack traffic to be 100
times the bottleneck bandwidth. Therefore, each attacker sends at
10Kbps (except for Portcullis, which we will soon explain). If an
attacker AS simulates x/1000 attackers, its aggregate sending rate
is 10Kbps times x/1000.

We also simulate one-way and two-way link flooding attacks. In
the one-way attack, we have a sink node on the same side of the
bottleneck as the victim. Attackers on the sampled topology may
send attack traffic to the sink node without being detected. In the
two-way attack, we have a large number of colluding attackers on
the same side of the bottleneck as the victim. Attackers on the other
side of the bottleneck may send attack traffic to those colluders
without being detected. At the same time, the colluders may send
reverse direction attack traffic to the other attackers. We simulate
500 ∼ 5M colluders on an Internet-scale topology with 25 ∼ 250K
attackers on our sampled topology.

Implementations: AITF is implemented as described in [5]. A
victim uses the last six router addresses in the recorded path op-
tion to describe an attack flow. Pushback is already officially in-
cluded in ns-2 and is implemented as described in [20]. Routers
recursively sends rate limiting requests to their upstream routers
if a downstream bottleneck is congested. TVA is implemented as
in [37]. TVA uses path identifiers to approximate an unspoofable
source identifier and hierarchically queues capability request pack-
ets on path identifiers. We also implement an enhanced version
TVA+ that uses the same source authentication system that StopIt
uses to prevent source address spoofing on its request channel and
uses a two-level (per-AS and then per-source) hierarchical queue
on its request channel. We compare TVA+ and TVA to show the
benefit of unspoofable source addresses. Source authentication in a
capability-based system is only required for the slow request chan-
nel. Therefore we think it is feasible to combine capabilities and
source authentication. Portcullis is implemented as in [25]. Differ-
ent from StopIt, Pushback, TVA, and TVA+, Portcullis uses com-
putational puzzles to implement per-host fairness, rather than per-
network fairness. A capability request packet that solves a more
difficult puzzle is forwarded with higher priority. In our simula-
tions, a Portcullis attacker does not send constant rate flooding traf-
fic. Instead, it adjusts its sending rate and puzzle level based on the
total number of attackers involved in an attack and the bottleneck
bandwidth. For instance, if 10M attackers attack a 100Mbps bottle-
neck, each attacker only needs to send 0.5 bits/s to congest the 5%
request channel of the link. An attacker will solve a 640-second
puzzle and sends it with a 40-byte packet. Our implementation

204

assigns a packet’s priority based on the per-bit puzzle difficulty.
Otherwise, an attacker can send at an even slower rate.

Metrics: We use legitimate hosts’ TCP transfer performance to
measure the effectiveness of a DoS defense system. During an at-
tack, each legitimate AS has one user that sends 20KB TCP trans-
fers one by one to the victim. A TCP transfer is aborted if it cannot
finish within 25 seconds, simulating an application timeout. This
timeout is also necessary to make the simulations finish in a reason-
able amount of time. We use the ratio of completed transfers and
the transfer time averaged over the completed transfers as the per-
formance metrics. TCP SYN retransmission timeouts are limited
to 1 second to speed up the simulations. One run finishes when all
legitimate ASes have tried three transfers. We adjust the number
of simultaneously active legitimate ASes based on the simulated
bottleneck bandwidth to avoid congestion among legitimate ASes.

8.2 Destination Flooding Attacks
Figure 9 shows the results for the destination flooding attacks.

The results for StopIt are steady state results after the attack traf-
fic is blocked. In Figure 9(a) and 9(b), the simulated bandwidth is
1Gbps. AITF cannot finish after the number of attackers exceeds
1M, as the three-way handshake messages to install filters are lost
due to the DoS flooding attack. After the number of attackers ex-
ceeds 1M, Portcullis does not finish within 25 seconds. Legitimate
users may eventually finish if they wait longer and retransmit their
request packets with increasing puzzle difficulties, but they timeout
in our simulations. TVA and Pushback have similar results, because
both ensure per-path fairness. TVA hierarchically queues on path
identifiers on its request channel, while Pushback recursively sends
rate-limiting messages to a router’s upstream routers. A longer path
may get a smaller bandwidth share. Therefore legitimate users that
are far away from the victim may not finish their TCP transfers.

Both TVA+ and StopIt can finish all TCP transfers, outperform-
ing other solutions. TVA+ does well because legitimate users are
isolated from attacker ASes via hierarchical fair queuing, and have
sufficient request channel bandwidth. In Figure 9(c), we vary the
simulated bottleneck bandwidth from 10Mbps to 1Gbps, and com-
pare TVA+ with StopIt. Only StopIt can finish all TCP transfers,
because the attack traffic is completely blocked, demonstrating the
advantages of a filter approach. With TVA+, each attacker can still
send request packets. When the number of attackers is large, it is
sufficient to congest a slow link’s request channel.

8.3 One-Way Link Flooding Attacks
Figure 10 shows the results for one-way link flooding attacks. In

our simulations, attackers launch the maximal-damage attack. That
is, if their traffic to the victim is blocked, they send attack traffic
to the sink node on the same side of the bottleneck as the victim.
Otherwise, they attack the victim directly. As can be seen, the per-
formance of StopIt is affected, but other systems’ performance re-
mains unchanged. With StopIt, TCP transfer times increase to 4
seconds, because filters are not installed and the attack traffic com-
petes for bandwidth with the legitimate traffic. The transfer time
does not increase after the number of simulated attackers exceeds
100K, because at this number, we have populated all ASes that can
have attackers. Other schemes have similar performance in desti-
nation flooding attacks and one-way link flooding attacks.

Figure 10(c) compares different file size transfer times to show
the difference between TVA+ and StopIt. Although TVA+ does
not entirely block the attack traffic either, the attack traffic only
competes for the request channel bandwidth. The authorized traffic
is not affected. For large files, the file transfer time is significantly
shorter than that in StopIt.

 0
 0.2
 0.4
 0.6
 0.8

 1

0.5K 5K 50K 500K 5M

S
uc

ce
ss

 R
at

io

of Simulated Colluding Attackers

StopIt
AITF

Pushback
TVA

TVA+
Portcullis

(a)

 0

 5

 10

 15

 20

 25

0.5K 5K 50K 500K 5M

F
ile

 T
ra

ns
fe

r
T

im
e

(s
)

of Simulated Colluding Attackers

StopIt
AITF

Pushback
TVA

TVA+
Portcullis

(b)

Figure 11: Two-way link flooding attacks.

8.4 Two-Way Link Flooding Attacks
In these experiments, active attackers are on both sides of the

bottleneck. We refer to attackers on the same side of the bottleneck
as a victim colluding attackers or colluders, and those on the op-
posite side as the left-side attackers. Similarly, left-side attackers
and colluders attempt to launch the maximal-damage attack. In our
simulations, left-side attackers send attack traffic to both the victim
and their colluders. If their traffic to the victim is blocked, they use
all their attack bandwidth to send attack traffic to their colluders to
congest the link. At the same time, the colluders also send reverse
flooding traffic. We fix the simulated left-side attackers to 5M, and
vary the colluders from 500 to 5M.

Figure 11 shows the simulation results. StopIt’s performance
is not affected by the attack, because it queues packets based on
source addresses. Colluders do not affect a legitimate user’s band-
width. Pushback’s performance degrades significantly such that
less than 40% of the TCP transfers finish. This is because Push-
back installs destination-based rate limiters and attempts to fairly
allocate a destination’s bandwidth share among all senders. In the
presence of y colluders and x left-side attackers, the victim only
obtains 1/y fraction of the bottleneck bandwidth. This bandwidth
is further divided among all legitimate users and x left-side attack-
ers, each obtaining less than 1

xy
fraction of the bottleneck band-

width. The finished transfers have a short transfer time due to the
on-off behavior of rate limiters: if a legitimate user is silent for
a while, a router cancels its rate limiter temporarily, and its TCP
transfers can finish quickly. TVA+ and TVA’s performance degrade
as well, because they queue authorized traffic based on destination
addresses. The victim now only obtains 1/y fraction of the bottle-
neck bandwidth. But this bandwidth is shared by legitimate users
only. Thus, most of their TCP transfers still finish with increased
transfer times. Portcullis cannot finish its TCP transfers because the
left-side attackers’ puzzle level exceeds 25 seconds. AITF cannot
finish because three-way handshake messages are lost and filters
are not installed.

9. RELATED WORK
The design of StopIt is motivated by the criticisms on capabilities

[6] and an earlier filter design AITF [5]. StopIt and AITF employ
a few common design mechanisms, such as filters at edge ASes,
flow cache, and filter aggregation of non-cooperating sources. But
the novelty of StopIt lies in the carefully designed control channel

205

(§ 3) that enables filters to be installed during DoS flooding attacks,
the source authentication mechanism that enables precise filtering
based on source and destination addresses despite source address or
path prefix spoofing attacks (§ 4.1), the filter exhaustion prevention
mechanism that enables routers with a few hundred megabytes of
memory to defeat strategic attacks from multimillion-node botnets
(§ 4.4, § 4.5), and the fail-safe mechanism that does not involve
filter installation in the core of the network, nor blocks all traffic
from a source AS that fails to respond to filter requests (§ 5). To
the best of our knowledge, AITF does not achieve these goals under
similar attacks.

Pushback [20] uses rate limiters to reduce the attack traffic to its
fair share, but it does not completely block it. Other proposals use
special host hardware [27] to install filters or use a new Internet
addressing architecture [3] to prevent source address spoofing at-
tacks. StopIt does not require host hardware upgrade, and preserves
the Internet’s hierarchical addressing architecture. The blackholing
method [12] discards attack traffic as well as legitimate one.

This work is our first step towards building a DoS-resistant net-
work architecture that can protect anyone on the Internet, and dif-
fers in goals from other work [2, 8, 10, 13, 21, 28, 31–33].

10. CONCLUSION
This works aims to understand the effectiveness of filters and

capabilities in battling DoS attacks. In the paper, we present the
design and evaluation of StopIt, a filter-based DoS defense system.
StopIt enables a receiver to install a network filter that blocks the
undesired traffic it receives. Its design uses a novel closed-control
and open-service architecture to battle strategic attacks that aim to
prevent filters from being installed and to provide the StopIt ser-
vice to any host on the Internet. We implement the design and
evaluate its performance using both simulations and emulations.
We then compare its performance with other capability-based and
filter-based DoS defense systems. Our evaluation shows that StopIt
outperforms existing filter-based designs, and is highly effective in
providing non-interrupted communications under a wide range of
DoS attacks. However, we discover that it does not always outper-
form a capability-based system. If the attack traffic does not reach a
victim, but congests a link shared by the victim, a capability-based
design is more effective. From this study, we conclude that both fil-
ters and capabilities are highly effective DoS defense mechanisms,
but neither is more effective than the other in all types of DoS at-
tacks. It is our future work to study how to build a DoS-resistant
network architecture using the most cost-effective combination of
various DoS defense mechanisms.

Acknowledgement
We thank Junfeng Yang, Michael Sirivianos, Ang Li, the anony-
mous SIGCOMM reviewers, and our shepherd Nick Feamster for
their helpful feedback. This work is supported in part by the NSF
Grant CNS-0627787 and Grant CNS-0627166.

11. REFERENCES
[1] IEEE Standard 802.1X.

http://www.ieee802.org/1/pages/802.1x.html, 2001.
[2] D. Andersen. Mayday: Distributed Filtering for Internet Services. In 3rd Usenix

USITS, 2003.
[3] D. Andersen, H. Balakrishnan, N. Feamster, T. Koponen, D. Moon, and

S. Shenker. Holding the Internet Accountable. In ACM HotNets-VI, 2007.

[4] T. Anderson, T. Roscoe, and D. Wetherall. Preventing Internet Denial of Service
with Capabilities. In ACM HotNets-II, 2003.

[5] K. Argyraki and D. R. Cheriton. Scalable Network-layer Defense Against
Internet Bandwidth-Flooding Attacks. To appear in ACM/IEEE ToN.

[6] K. Argyraki and D. R. Cheriton. Network Capabilities: The Good, the Bad and
the Ugly. In ACM HotNets-IV, 2005.

[7] J. Bennett and H. Zhang. Hierarchical Packet Fair Queueing Algorithms.
IEEE/ACM ToN, 5(5), 1997.

[8] M. Casado, P. Cao, A. Akella, and N. Provos. Flow-Cookies: Using Bandwidth
Amplification to Defend Against DDoS Flooding Attacks. In IWQoS, 2006.

[9] Deterlab. http://www.deterlab.net/.
[10] C. Dixon, A. Krishnamurthy, and T. Anderson. Phalanx: Withstanding

Multimillion-node Botnets. In USENIX/ACM NSDI, 2008.
[11] P. Ferguson and D. Senie. Network Ingress Filtering: Defeating Denial of

Service Attacks which employ IP Source Address Spoofing. RFC 2827, 2000.
[12] K. Foster. Application of BGP Communities. The Internet Protocol Journal,

6(2), 2003.
[13] A. Keromytis, V. Misra, and D. Rubenstein. SOS: An Architecture for

Mitigating DDoS Attacks. IEEE JSAC, 22(1), 2004.
[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F. Kaashoek. The Click

Modular Router. ACM TOCS, 18(3), 2000.
[15] T. Krovetz. Software-Optimized Universal Hashing and Message

Authentication. UC Davis Ph.D. Dissertation, 2000.
[16] E. Larkin. Storm Worm’s Virulence may Change Tactics.

http://www.networkworld.com/news/2007/
080207-black-hat-storm-worms-virulence.html, 2007.

[17] R. Lemos. Bots Surge Ahead in March.
http://www.securityfocus.com/brief/466, 2007.

[18] X. Liu, A. Li, X. Yang, and D. Wetherall. Passport: Secure and Adoptable
Source Authentication. In USENIX/ACM NSDI, 2008.

[19] X. Liu, X. Yang, and Y. Lu. StopIt: Mitigating DoS Flooding Attacks from
Multi-Million Botnets. Technical Report 08-05, UC Irvine, 2008.

[20] R. Mahajan, S. M. Bellovin, S. Floyd, J. Ioannidis, V. Paxson, and S. Shenker.
Controlling High Bandwidth Aggregates in the Network. SIGCOMM CCR,
32(3), 2002.

[21] A. Mahimkar, J. Dange, V. Shmatikov, H. Vin, and Y. Zhang. dFence:
Transparent Network-based Denial of Service Mitigation. In NSDI, 2007.

[22] P. McKenny. Stochastic Fairness Queueing. In IEEE INFOCOM, 1990.
[23] J. Nazario. Estonian DDoS Attacks - A Summary to Date.

http://asert.arbornetworks.com/2007/05/
estonian-ddos-attacks-a-summary-to-date/, 2007.

[24] K. Pagiamtzis and A. Sheikholeslami. Content-Addressable Memory (CAM)
Circuits and Architectures: A Tutorial and Survey. IEEE Journal of Solid-State
Circuits, 41(3), 2006.

[25] B. Parno, D. Wendlandt, E. Shi, A. Perrig, B. Maggs, and Y.-C. Hu. Portcullis:
Protecting Connection Setup from Denial-of-Capability Attacks. In ACM
SIGCOMM, 2007.

[26] A. Ramachandran and N. Feamster. Understanding the Network-level Behavior
of Spammers. In ACM SIGCOMM, 2006.

[27] M. Shaw. Leveraging Good Intentions to Reduce Malicious Network Traffic. In
USENIX SRUTI, 2006.

[28] E. Shi, I. Stoica, D. Andersen, and A. Perrig. OverDoSe: A Generic DDoS
Protection Service Using an Overlay Network. Technical Report
CMU-CS-06-114, Carnegie Mellon University, 2006.

[29] A. Snoeren, C. Partridge, L. Sanchez, C. Jones, F. Tchakountio, S. Kent, and
W. Strayer. Hash-Based IP Traceback. In ACM SIGCOMM, 2001.

[30] K. Spiess. Worm ’Storm’ Gathers Strength.
http://www.neoseeker.com/news/story/7103/, 2007.

[31] A. Stavrou and A. Keromytis. Countering DoS attacks with stateless multipath
overlays. In ACM CCS, 2005.

[32] R. Stone. CenterTrack: An IP Overlay Network for Tracking DoS Floods. In
Usenix Security Symposium 2000.

[33] M. Walfish, M. Vutukuru, H. Balakrishnan, D. Karger, and S. Shenker. DDoS
Defense by Offense. In ACM SIGCOMM, 2006.

[34] D. Wendlandt, D. G. Andersen, and A. Perrig. FastPass: Providing First-Packet
Delivery. Technical report, CMU-CyLab, 2006.

[35] R. Wesson. Botnets and the Global Infection Rate: Anticipating Security
Failures. http://www.stanford.edu/class/ee380/Abstracts/
070606-slides.pdf, 2007.

[36] A. Yaar, A. Perrig, and D. Song. SIFF: A Stateless Internet Flow Filter to
Mitigate DDoS Flooding Attacks. In IEEE Symposium on S&P, 2004.

[37] X. Yang, D. Wetherall, and T. Anderson. TVA: A DoS-limiting Network
Architecture. In IEEE/ACM Transactions on Networking (to appear), 2009.

206

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

