Encrypting the Internet

Michael E. Kounavis
Intel Architecture Group
2111 NE 25th Avenue
Hillsboro, OR 97124

michael.e.kounavis@intel.com

Mathew Eszenyi
Intel Labs
2111 NE 25th Avenue
Hillsboro, OR 97124

mathew.eszenyi@intel.com

ABSTRACT

End-to-end communication encryption is considered neces-
sary for protecting the privacy of user data in the Inter-
net. Only a small fraction of all Internet traffic, however,
is protected today. The primary reason for this neglect is
economic, mainly security protocol speed and cost. In this
paper we argue that recent advances in the implementation
of cryptographic algorithms can make general purpose pro-
cessors capable of encrypting packets at line rates. This
implies that the Internet can be gradually transformed to
an information delivery infrastructure where all traffic is en-
crypted and authenticated. We justify our claim by present-
ing technologies that accelerate end-to-end encryption and
authentication by a factor of 6 and a high performance TLS
1.2 protocol implementation that takes advantage of these
innovations. Our implementation is available in the public
domain for experimentation.

Keywords

Secure Communications, Cryptographic Algorithm Acceler-
ation, SSL, TLS, HTTPS, RSA, AES, GCM

1. INTRODUCTION

Today there are more than 50 million web sites in the In-
ternet [13]. However, only about 600,000 of those offer SSL
security [7]. We believe that end-to-end Internet encryp-
tion and authentication is important for many different rea-
sons. First people value their privacy, feeling uneasy when
someone listens on to their conversations or views what they
access in the Internet. Second, Internet services are prone
to numerous types of attacks such as phishing, virus, and
worm attacks resulting in identity thefts, denial of service

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCOMM’ 10, August 30-September 3, 2010, New Delhi, India.
Copyright 2010 ACM 978-1-4503-0201-2/10/08 ...$10.00.

Xiaozhu Kang
Intel Labs
2111 NE 25th Avenue
_Hillsboro, OR 97124
xiaozhu.kang@intel.com

Shay Gueron
Intel Architecture Group
Israel Development Center
Haifa, Israel
shay.gueron@intel.com

135

Ken Grewal
Intel Labs
2111 NE 25th Avenue
Hillsboro, OR 97124
ken.grewal@intel.com

David Durham
Intel Labs
2111 NE 25th Avenue
Hillsboro, OR 97124
david.durham@intel.com

and data breaches. The need for secure channel communi-
cation across the Internet becomes even more important due
to the ever increasing network traffic and number of online
transactions.

Despite the obvious need for end-to-end security in the
Internet, most of the traffic is not encrypted or protected
today. The primary reasons for this are protocol speed and
cost. Cryptographic algorithms consume millions of clocks
to execute on general purpose processors. Alternative ap-
proaches such as the use of specialized appliances work but
they are much more expensive [12] than doing the SSL/TLS
termination using general purpose hardware.

In this paper we address this problem by investigating
technologies that accelerate cryptography by factors. We
tackle this important networking problem using novel cir-
cuit technologies and mathematical tools. First, we present
a set of processor instructions [6] that accelerate the rounds
of the Advanced Encryption Standard (AES) resulting in
an overall acceleration gain of about 12x as compared to
other software solutions, for many modes of AES. Second we
present a set of software optimizations to implementations
of the Rivest Shamir Adleman (RSA) public key encryption
algorithm that offer an additional 40% gain on the perfor-
mance of the public key portion of Internet transactions.
Third, we discuss how message authentication can be sup-
ported by the Galois Counter Mode (GCM) mode of AES
much more efficiently than other alternatives. Our GCM im-
plementation is based on another new processor instruction
[6] for doing carry-less multiplication and a new algorithm
for doing reduction in binary finite fields.

Combining our technologies and general purpose hard-
ware we build a TLS 1.2 server capable of supporting ap-
proximately 1200 banking transactions per second per pro-
cessor core, resulting in a 6x overall protocol performance
gain. The work entailed a protocol implementation change,
a proper cryptographic suite selection and hardware acceler-
ation. Moreover we show that only 8 processor cores running
at 3 GHz are needed to saturate a 10 Gbps link with TLS
1.2 traffic. Supporting 8 cores by general purpose hardware
can be achieved today.

The paper is structured as follows: In Section 2 we discuss
the motivation behind our project and research. In Section 3
we present related work. In Section 4 we present an overview

of the SSL/TLS protocols and the AES and RSA crypto al-
gorithms, which we accelerate. The details of our crypto
acceleration technologies are presented in Section 5. Sec-
tion 6 discusses the development of a high performance TLS
1.2 protocol implementation that leverages our technologies
and Section 7 presents our performance results. Finally in
Section 8 we provide some concluding remarks.

2. MOTIVATION

The landscape of security today is that only traffic car-
rying sensitive information such as banking and Ecommerce
is encrypted. In fact, most of the network traffic in our
everyday communication (e.g., e-mail, web surfing, instant
messaging, social networking and peer-to-peer applications)
is sent in the clear. We believe that end-to-end encryption
and authentication is important because people are sensitive
about their security and privacy.! For example, people have
the expectation that nobody else is listening to their conver-
sation when they have a phone call. Likewise people have
the expectation no one is eavesdropping on their Internet
traffic. Unfortunately, viewing Internet traffic is fairly easy
today.

It is equally easy to mislead the user to visit malicious
web sites. End users are typically not cognizant of the dis-
tinction between signed and unsigned URLs. If every URL
is signed then users can be confident that they are going to
the web sites they see in their URL. Because of this rea-
son, phishing attacks can be greatly reduced when TLS au-
thentication controls are always in place. Phishing is also
one method for enabling attacks caused by viruses, worms
and rootkits. Viruses and worms usually spread through e-
mail. With the right cryptographic mechanisms in place, the
sources of viruses and worms can be forced to expose parts
of their identity (e.g., through e-mail signing or DNSSEC)
and hence become accountable. This is a first step toward
reducing virus and worm attacks. The study in reference
[44] analyzes virus-caused data breaches experienced by 43
U.S. companies in 17 different industry sectors. It is found
that an average breach costs each company $6.6 million in
2008 [4, 39, 44].

Alarmingly, most of the HT'TP traffic is still not encrypted
or protected [20, 43, 47]. Less than 10% of the world’s web
sites are HT'TPS enabled today [7, 13]. This is primarily due
to the cost associated with providing this additional secu-
rity as well as the performance penalty overhead in providing
the additional cryptographic operations. It is perceived that
there is a tradeoff between security and performance [11].
One thing in common between the various cryptographic al-
gorithms used today is the complexity and cost associated
with their implementation. For example encrypting the con-
tent of a typical 140 KB banking transaction requires 2.3-4.8
million clocks, depending on the implementation on a state-
of-the-art 3 GHz Intel® Core™ i7 processor core. Sim-
ilarly, performing an RSA 1024 private decrypt operation
requires 0.9-1.4 million clocks on the same processor. The
total worst case cost related to cryptography, including the
SHA-1 overhead, for processing a 140 KB banking transac-
tion is 7.3 million clocks. These numbers mean that it is cost
prohibitive for general purpose processors to be used for pro-
tecting large amounts of HT'TPS traffic at high link speeds.
Today dedicated appliances [2], supporting about 10K con-
current connections, are used for providing end-to-end secu-

ITypically outside of national security concerns.

136

rity. Solutions employ dedicated hardware accelerators and
front end terminators for TLS connections.

In this paper we present an alternative methodology based
on using general purpose processors for achieving similar
performance. It should be understood that we are not solv-
ing the only problem related to Internet encryption. There
are other issues besides protocol speed and cost which need
to be tackled such as the generation, distribution and man-
agement of certificates. User privacy may also be violated at
the back-end server, even if the traffic is encrypted. Employ-
ing end-to-end security protocols such as TLS also prevents
existing tools such as intrusion detection/prevention systems
and traffic shapers from performing much needed network
functions. To address this problem, companion technologies
such as [24] can be used for enabling authorized access to
encrypted data.

3. RELATED WORK

Our work encompasses many aspects of cryptographic al-
gorithm acceleration [41, 42, 38, 27, 21, 36, 17, 29, 30, 5].
In what follows we summarize some representative pieces of
work and explain how our paper differentiates from them. In
the area of AES acceleration, several AES processing units
have been developed in the past [26, 45, 27]. The main dif-
ference between our work and references [26, 45, 27] is that
in our work AES is broken down to its fundamental com-
ponents (i.e., the Galois Field processing done by the round
transformations) and exposed as a set of instructions to the
programmer.

The concept of instructions for accelerating the rounds of
AES, which we use in our design, is also described in ref-
erences (23, 19]. The circuits of these references are based
on table lookups or more generic Galois computations and
hence may consume larger area and power than ours. An-
other aspect of our work is that we use composite field tech-
nologies to reduce the area requirement of AES. Several com-
posite field implementations of AES are reported in [41, 42,
38, 48, 18, 35]. These circuits however are mostly reported
in the context of ASIC AES implementations. What makes
our work different from these pieces of work is that we are
among the first to combine the concept of an AES round
instruction with the use of composite field technologies for
reducing the area requirement. In this way we not only pro-
vide flexibility to the programmer, but also reduce the area
requirement of the AES logic to such a degree that it can fit
inside general purpose processor cores (see Section 5).

In the area of RSA software acceleration past research
has focused on the modular multiplication aspect of it (i.e.,
the Montgomery [36, 30] or Barrett [16] algorithms), on the
integer multiplication component [28, 46, 37, 31] or the win-
dowing technique used [29]. Efficient software RSA imple-
mentations can be found in [8, 3]. Our work is different
from these references in that the Montgomery algorithm is
reduced to 1.5 big number multiplications which are imple-
mented very efficiently using a register recycling technique.
Our work is also different from [46, 31] since we use a more
efficient set of integer multiplication routines.

Finally, in the area of message authentication, we pro-
pose a new GCM implementation which is much faster than
other schemes based on HMAC-SHA1 [34] and prior art for
implementing GCM [5] based on performing table lookups.
In our approach GCM is implemented by splitting the field-
dependent from the field-independent part of the algorithm

and performing the field-independent part (i.e., carry-less
multiplication) using a separate processor instruction.

Parts of our work have appeared at an earlier paper [25]
and presentation [32]. References [25, 32] present the AES
instruction proposal. This paper complements [25, 32] by
discussing how our instructions can be implemented effi-
ciently as well as how other algorithms like RSA and GCM
can be accelerated within the context of TLS 1.2.

4. SSL/TLS, AES & RSA

To further understand our improvements, we first review
the family of SSL/TLS protocols and the internals of the
algorithms which we accelerate. Emphasis is placed on the
1.2 version of the TLS protocol because this version supports
combined mode algorithms (i.e., Authenticated Encryption
with Additional Data, AEAD) like GCM, which we study
in this paper.

4.1 Anatomy of a Secure Sockets Layer Ses-
sion

With the continuous growth of the World Wide Web [15],
HTTPS has become the de facto standard for end-to-end se-
cure communication where data sensitivity and privacy are
required. The SSL/TLS protocol has evolved over the last
15 years to a state where it is the most widely deployed end-
to-end security protocol today, with its primary use in pro-
tecting HT'TP communications. The protocol can be divided
into two parts - connection setup (also called handshake or
control channel) and data exchange (also called data path or
record protocol). Figure 1 illustrates the handshake, which
is composed of different phases.

In phase 1, a client requests a secure connection from a
server by sending a ‘hello’ message containing a unique ran-
dom number (cookie, serving as unique identifier for this
connection) and a list of supported cipher suites. If the
server supports one of the offered cipher suites, it responds
with its own cookie and the chosen cipher suite. The server
also sends its certificate containing the server’s identity and
public key. The client verifies the server’s certificate and ex-
tracts the server’s public key. The client generates a random
string, called a pre-master secret, and encrypts this using
the server’s public key (ensuring that only the server can
decrypt this secret), sending this to the server in phase 3.
The server decrypts the pre-master secret using its private
key, which is a very compute-intensive operation. At this
stage, the client and server share a secret value (pre-master
secret) and a set of cookies, so are able to independently
compute a set of cryptographic keys based on a well-defined
formula called a Key Derivation Function (KDF).

In phases 5 and 6, the handshake ends with both parties
sending ‘authentication codes’ based on the derived keying
material, ensuring each side has computed the keys correctly.
Now the data exchange phase can be started. Other func-
tions of the TLS (e.g., session resumption) are not covered
here.

Data is transferred within TLS using a record protocol.
The record protocol breaks a data stream into a series of
fragments, each independently protected. Before a fragment
is transmitted, TLS protections are applied to each frag-
ment. These include data authenticity, data confidentiality
and optionally compression. A record header is added to the
payload before sending down the network stack.

137

client server

sup,

ported ciphers, random number

chose cip er, ra ydor “U”be ,Ce‘t\ cate

Pre-master secret

phase 4
computation of keys

phase 1
phase 2

phase 3

authentication codes on
handshake messages

=

Figure 1: Secure Sockets Layer (SSL) Handshake

phase 5

phase 6

4.2 Combined Mode Support within TLS 1.2

TLS 1.2 introduces some subtle changes in the data path,
where in the case of AEAD an explicit Initialization Vector
(IV) is transmitted as part of a packet. TLS 1.2 supports
AEAD based combined mode algorithms such as AES-128
GCM. Advantages of AEAD algorithms (e.g., AES GCM)
over discrete mode algorithms (e.g., AES with HMAC-SHAT)
is the ability to compute the cipher text and authentication
tag using a single pass over the payload. Furthermore, using
AES in the counter (CTR) mode allows efficient pipelining
and parallelization, permitting concurrent crypto operations
on multiple data blocks. Today, there are only few imple-
mentations supporting TLS 1.2 (GnuTLS & yaSSL claim
supporting TLS 1.2, but they have not taken advantage of
AEAD algorithms). Due to this limited deployment, the in-
dustry is unable to take advantage of the performance bene-
fits offered by TLS 1.2. In this paper, we describe integration
of TLS 1.2 and AES-128 GCM within the open source im-
plementation of the OpenSSL library, in order to illustrate
the resultant performance gains. Below, we elaborate on the
subtleties of crypto algorithms and how they are optimized
further from a networking performance and cost perspective.

4.3 AES

AES is the United States Government’s standard for sym-
metric encryption, defined by FIPS 197 [1]. It is used in
a large variety of applications where high throughput and
security are required. In HTTPS, it can be used to pro-
vide confidentiality for the information that is transmitted
over the Internet. AES is a symmetric encryption algorithm,
which means that the same key is used for converting a plain-
text to ciphertext, and vice versa. The structure of AES is
shown in Figure 2.

AES first expands a key (that can be 128, 192, or 256
bits long) into a key schedule. A key schedule is a sequence
of 128-bit words, called round keys, that are used during
the encryption process. The encryption process itself is a
succession of a set of mathematical transformations called
AES rounds. During an AES round the input to the round
is first XOR’d with a round key from the key schedule. The

‘ inputblock + round key

bytes . 14
repeat Sbox Sbox
(ShiftRows, 14
MixC olumns)

BN l

Figure 2: Structure of AES

exclusive OR (XOR) logical operation can also be seen as
addition without generating carries.

In the next step of a round, each of the 16 bytes of the
AES state is replaced by another value by using a non-linear
transformation called SBox. The AES SBox consists of two
stages. The first stage is an inversion, not in regular inte-
ger arithmetic, but in a finite field arithmetic based on the
set GF(2%). The second stage is a bit-linear affine transfor-
mation (i.e., it can be implemented only with XOR gates).
During encryption, the input x, which is considered an ele-
ment of GF(2%); that is, an 8-bit vector, is first inverted, and
then an affine map is applied to the result. During decryp-
tion, the input y=SBox(x) goes through the inverse affine
map and is then inverted in GF(2%). The inversions just
mentioned are performed in the finite field GF(2%), defined
by the irreducible polynomial p(z) = z® + z* + 23 +z+1 or
0x11B.

Next, the replaced byte values undergo two linear transfor-
mations called ShiftRows and MixColumns. The ShiftRows
transformation is just a byte permutation. The MixColumns
transformation operates on a matrix representation of the
AES state. Each column is replaced by another one that re-
sults from a matrix multiplication. The transformation used
for encryption is shown in Equation (1). In this equation,
matrix-times-vector multiplications are performed according
to the rules of the arithmetic of GF(2®) with the same irre-
ducible polynomial that is used in the AES S-box, namely,
plr) =2 +2* +2° 4o+ 1.

W ==

output = - input

(1)

W = = N
i S
=N W
[\]

During decryption, inverse ShiftRows is followed by in-
verse MixColumns. The inverse MixColumns transforma-
tion is shown in Equation (2)

OxzE 0OxzB 0zD 0x9

09 OxE 0xzB O0zD .
output = | \'p 029 0zE o0zB | MPut ()

0xB 0xD 0z9 OxE

The same process of the AES round is repeated 10, 12, or
14 times depending on the key size (128 , 192, or 256 bits).
The last AES round omits the MixColumns transformation.

138

44 RSA

RSA is a public key cryptographic scheme. The main
idea behind public key cryptography is that encryption tech-
niques can be associated with secrets. Secrets are known
only to at least one of the communicating parties and can
simplify the decryption process. In public key cryptogra-
phy, a message is encrypted using a public key. A public
key is associated with a secret called the private key. With-
out knowledge of the private key, it is difficult to decrypt a
message.

We further explain how public key cryptography works
by presenting the RSA algorithm as an example. In this
algorithm, the communicating parties choose two random
large prime numbers p and ¢. For maximum security, p
and ¢ are of equal length. The communicating parties then
compute the product:

n=p-q.

Then the parties choose the public key e, such that the
numbers e and (p — 1) - (¢ — 1) are relatively prime. The
private key associated with the public key is a number d,
such that:

e-dmod (p—1)-(¢g—1)=1.
The encryption formula is simply:
C = M mod n,

where M is the plaintext and C' is the ciphertext. The de-
cryption formula is similarly:

M = C%mod n.

The exponents d and e can be used interchangeably, mean-
ing that encryption can be done by using d, and decryption
can be done by using e.

RSA is typically implemented using the Chinese Remain-
der Theorem that reduces a single modular exponentiation
operation into two operations of half length. Each modular
exponentiation in turn is implemented using a square-and-
multiply technique that reduces the exponentiation opera-
tion into a sequence of modular squaring and modular multi-
plication operations. Square-and-multiply may also be aug-
mented with some windowing method for reducing the num-
ber of modular multiplications. Finally, modular squaring
and multiplication operations can be reduced to big num-
ber multiplications by using reduction techniques such as
Montgomery’s or Barrett’s [36, 16].

5. THE ACCELERATION TECHNOLOGIES
5.1 AES Acceleration

The AES round transformation is usually implemented
using table lookups. Many software AES implementations
[8, 3] use 8-16 tables of size 1K bytes. Four tables are typi-
cally used for encryption and four for decryption. Each table
implements the SBox substitution transformation together
with Galois Field multiplication operations. To complete
an AES round, software implementations of AES perform
several table lookups, each for a different byte of the cipher
state, and XOR the results. This procedure results in a to-
tal of 16 table lookups. Its software cost is 24 clocks or 15
cycles per byte on a 3 GHz Intel® Core™ i7 processor, as-
suming all tables are in the first level cache. Other bit slice

techniques for implementing AES reduce this cost but not
substantially (e.g., 14 cycles per byte as reported in [40]).

As is evident from the numbers above, table lookup im-
plementations of AES are not fast enough to saturate the
high speed links (e.g., 10 Gbps) found in the Internet today.
For example, for a 3 GHz processor core the AES cost of 15
cycles per byte translates to an AES processing throughput
of 1.8 Gbps.

Table 1: AES Acceleration Instructions

Instruction
AESENC

Description

performs one round of an AES
encryption flow operating on a
128-bit state and a 128-bit round key
performs the last round of an AES
encryption flow operating on a
128-bit state and a 128-bit

round key

performs one round of an AES
decryption flow using the equivalent
inverse cipher operating on a

128-bit state and a 128-bit round key
performs the last round of an AES
decryption flow using the equivalent
inverse cipher operating on a

128-bit state and a 128-bit round key

AESENCLAST

AESDEC

AESDECLAST

In this paper we introduce an alternative paradigm where
block cipher rounds are implemented in combinatorial logic
as part of the ALU data path of general purpose proces-
sor architecture [6]. Moreover this logic is exposed to the
programmer as a set of instruction extensions. Using com-
binatorial logic as opposed to table lookups is a more effi-
cient approach since time consuming memory lookup oper-
ations are avoided. Moreover the number of new instruc-
tions can be small and thus implementable and easy to val-
idate. For example, for AES one needs only four new in-
structions. An example set of processor instructions that
speedup AES is given in Table 1. These instructions are
named after their functionality. These instructions are AES-
ENC (AES round encryption), AESENCLAST (AES last
round encryption), AESDEC (AES round decryption) and
AESDECLAST (AES last round decryption).

The AESENC instruction implements the following trans-
formations of the AES specification in the order presented:
ShiftRows, SBox, MixColumns and AddRoundKey. The
AESENCLAST implements ShiftRows, SBox and AddRound-
Key but not MixColumns, since the last round omits this
transformation. The AESDEC instruction implements in-
verse ShiftRows, inverse SBox, inverse MixColumns and Ad-
dRoundKey. Finally the AESDECLAST instruction imple-
ments inverse ShiftRows, inverse SBox, and AddRoundKey
omitting the inverse MixColumns transformation.

The design of these new processor instructions is moti-
vated by the structure of AES. This approach is different
from off-loading the AES processing to a separate crypto-
graphic processor. The AES instructions of Table 1 can be
seen as cryptographic primitives for implementing not only
AES but a wide range of cryptographic algorithms. This
is because combinations of instruction invocations can be
used for creating more generic mathematical primitives for
performing computations in Galois Fields. For example,
the combination of AESDECLAST and AESENC isolates
the MixColumns transformation whereas the combination

139

of AESENCLAST and AESDEC isolates the inverse Mix-
Columns transformation. Using MixColumns and inverse
MixColumns one can implement G F'(2%) multiplication with
any byte coefficient. One could argue that AES acceleration
can also be provided with instructions that perform generic
computations in Galois Fields. Such instructions, however
would not achieve as good performance as our AES round
instructions, due to the need for constructing the AES round
results from the primitives.

Intel has implemented the instructions of Table 1 as ex-
tensions to the latest Intel® Core™ micro-architecture [6].
The implementation of the AES instructions is pipelined
in hardware. Hardware pipelining benefits modes of AES
which are parallelizable such as the counter mode (CTR),
the electronic codebook mode (ECB) and the decrypt mode
of cipher block chaining (CBC). The only popular mode
which cannot be parallelized is the encrypt mode of CBC.
Hardware pipelining is used by the programmer to hide the
latency of invoking the AES instructions by encrypting and
decrypting multiple data blocks in parallel.

5.2 Using Composite Fields

The main implementation challenge associated with real-
izing the processor instructions of Table 1 is how to reduce
the area requirement of the AES round logic so that it can fit
into a general purpose processor architecture. General pur-
pose processors are often associated with small area budgets
for new features, due to the variety and complexity of the
circuits they include (e.g., out-of-order execution pipelines,
floating point processing logic, SIMD processing logic, etc.).

Clearly, the hardware implementation of the ShiftRows,
MixColumns and affine map transformations is straightfor-
ward (i.e., wiring and/or a tree of XOR gates for each input
bit). However, the complexity of computing the multiplica-
tive inverse in GF(2%) which is part of SBox can be sig-
nificant and is associated with the finite field arithmetic.
In straightforward implementations of the AES SBox, the
multiplicative inverse function and the affine map are com-
bined in a single stage usually implemented via truth table
logic, lookup memory or Binary Decision Diagram (BDD).
While such approaches are potentially easier to conceptu-
alize, they carry substantial gate-count cost required per
SBox. Consider for example the straightforward implemen-
tation of a truth table as a sum of minterms. For an 8-bit
input there are at most 256 minterms. On average there are
128. Taking the logical OR of 128 values requires 127 OR
gates. Each of the minterms results from the logical AND
of 8 inputs. Hence, the worst case number of gates required
is 8- 8127 = §8,128. More optimized implementations are
reported in [38] requiring 2,623 2-input NAND gates for a
table lookup logic and 2,818 2-input NAND gates for a BDD
logic.

In this paper we argue that much of the SBox area require-
ment can be reduced using composite field technologies [41,
42, 38, 35]. A composite field is a finite field whose elements
are vectors with coordinates in other smaller finite fields.
An element of a field GF(pk)7 where k = m - n, can be con-
verted to the composite field GF((p™)™) through an isomor-
phism. The main reason why composite field technologies
reduce the area requirement of AES is because they asso-
ciate a finite field element with its inverse through an easy-
to-solve Cramer system. This system’s solution requires a
much smaller number of gates to implement.

Let C=[c, ¢y ,:...i¢,] I sequence of words
Let w be the word size

N« —-N"mod2"

U<« C

for i<« 0 to W/2-1 do

U, < c,-Nmod2", U« U +u,-N-2""
U«U/2* if U2N thenU < U—-N

Figure 3: Montgomery Reduction

In what follows we justify our claim through an exam-
ple. For the GF((2%)*)) composite field, the elements of
the ground field GF(2?) are bit-pairs. Thus, its respective
operations can be performed using only a handful (1-7) of
logic gates. From the equation a - b = 1 one can construct
a Cramer system relating the bit pairs of the input with
the bit pairs of the output. The resulting logic functions are
simple and can be implemented with a few logic gates involv-
ing no more than 9 terms. In this example, the irreducible
polynomial which extends the field GF(2?) to GF((2%)*))
is 2 4+ 2® 4+ 2% 4+ 2. For this design the SBox area is no
more than 419 gates. This corresponds to 84% gate count
reduction as compared to the table lookup design of 2,623
2-input NAND gates. More area efficient SBox designs are
reported in [18, 35]. If each SBox requires 419 gates, 16
SBoxes require 6704 gates. This means that the AES area
requirement is in the same order of magnitude as that of
other common ALU circuits.

5.3 RSA Acceleration

Another computationally expensive part of SSL transac-
tions is RSA processing. The RSA algorithm involves the
calculation of modular exponents for both the encryption
and decryption processes. The calculation of modular ex-
ponents can be further reduced to performing modular mul-
tiplications and modular squaring operations using square-
and-multiply or exponent windowing techniques.

A popular algorithm used for performing modular mul-
tiplications and modular squaring operations is the Mont-
gomery algorithm. The Montgomery algorithm accepts as
input two numbers A and B each of length k in bits and a
divisor N and returns the number C' = A - B - 2 *modN.
Several ways to implement Montgomery have been proposed
[30]. In our implementation the operands A and B are first
multiplied with each other resulting in an intermediate value
C. Then C' is reduced modN. For the reduction part the
processing can be done on a word-by-word basis where the
word size can vary from implementation to implementation.
Assuming that 2k = w - W where w is the word size, the
Montgomery reduction can be written as in Figure 3.

The rationale behind the Montgomery reduction algorithm
is that variable U is initialized to C' and in every step of the
iteration the least significant non-zero word of U becomes
zero. In the end the most significant half of U is the desired
result. Clearly, word-by-word Montgomery does not equal
large number multiplication. However, if the word size w is
half of the size of C' (i.e., W = 2) Montgomery is reduced to
1.5 big number multiplications and one addition as shown
in Figure 4.

140

N <« —N"mod2*

u < (Cmod2*)- Nmod2*, C« C+u-N
C«C/2"

if C>N then C <— C—N return C

Figure 4: Adapted Montgomery Reduction

From the above it is evident that the performance of RSA
can be improved by accelerating the big number multipli-
cation process which is an essential and compute-intensive
part of the algorithm. Our implementation uses an opti-
mized schoolbook big number multiplication algorithm. We
have developed integer arithmetic software that can acceler-
ate big number multiplication and modular reduction by at
least 2x as compared to routines found in the crypto library
of OpenSSL 0.9.8. Our software can be used not only in
RSA public key encryption but also in Diffie Hellman key
exchange and Elliptic Curve Cryptography.

The code listing of Figure 5 (assembly written using the
AT&T syntax running on a Intel® Core™ i7 processor)
illustrates the main idea which is to do multiply and add
operations combined with a register recycling technique for
intermediate values. Here ‘a’ and ‘b’ are variables that hold
the two large numbers to be multiplied (i.e., A and B) and
the result C' is stored in the variable ‘r’. Partial products
are computed in ‘vertical order’. Vertical order means that
all partial products between big number slices are computed
together for the slices associated with the same index sum.
Computations begin for the smallest index sum (i.e., 0) and
continue all the way up to the largest (i.e., 2k — 2). Each
partial product is added to the final result as soon as it is
computed. It is easy to show that carry propagation does
not exceed the boundary of three big number slices. Hence
for each partial product the code needs to invoke one ‘mul’
one ‘add’ and two add-with-carry ‘adc’ instructions. Reg-
ister recycling helps in this case with reducing the ‘mov’
operations between registers and the system memory. Sim-
ilarly we are able to accelerate other popular cryptographic
schemes like RSA 2048 and elliptic curve cryptography. We
have also investigated other techniques for big number mul-
tiplication, including Karatsuba-like constructions [46, 31]
and found this schoolbook algorithm implementation to be
the fastest.

5.4 GCM Acceleration

Another cryptographic component of protocols like SSL
is message authentication. Message authentication can be
supported by algorithms like HMAC-SHAT1 but also modes
of AES that combine encryption with authentication. One
such mode is AES-GCM. In this section we argue that GCM
can be sped up substantially with another processor instruc-
tion that performs carry-less multiplication [6].

Carry-less multiplication, also known as Galois Field Mul-
tiplication, is the operation of multiplying two numbers with-
out generating or propagating carries. In the standard inte-
ger multiplication the first operand is shifted as many times
as the positions of bits equal to ‘1’ in the second operand.
The product of the two operands is derived by adding the
shifted versions of the first operand with each other. In
carry-less multiplication the same procedure is followed ex-
cept that additions do not generate or propagate carry. In

asm("mulg %3;\n"

:"=a" (t0), "=d"(tl)
:"a"(a[0]), "g"(b[0])
:"ecc");

t2 = t0;

t3 = tl;

r[0] = t2;

t2 = t3;

t3 = t4;

td4 = 0;

asm("movg (%5), %%rax;\n\t"
"mulg 8(%6);\n\t"

"addg %3, %0;\n\t"
"adcqg %4, %1;\n\t"
"adcqg $0, %2;\n\t"
"movg 8(%5), %%rax;\n\t"
"mulg (%6);\n\t"
"addg %3, %0;\n\t"
"adcq %4, %1;\n\t"
"adcqg $0, %2;\n"
SMHET(£2), "+r"(t3), "+r"(td), "=a"(t0), "=d"(tl)
"' (a), "g"(b)
:"ee");
r[l] = t2;
asm("mulg %3;\n"
"=a" (t0), "=d"(tl)
"a"(alll), "g"(b[1]

Sheen) ;
asm("addg %2, %0;\n\t"

"adcq %3, %1;\n"
ST (E0), "+r"(tl)
S (£3), "t (t4)
"ec");

r[2] = t0;

r[3] = tl;

Figure 5: Big Number Multiplication Code

this way, bit additions are equivalent to the exclusive OR
(XOR) logical operation.

We have implemented a fifth instruction supporting carry-
less multiplication, named ‘PCLMULQDQ’. Carry-less mul-
tiplication is supported between 64-bit quantities. This in-
struction demonstrates a latency of 14 clocks and a through-
put of 10 clocks. In contrast, one of the fastest software
techniques that perform the same operation known to us
demonstrates a latency of approximately 100 clocks [8].

In what follows we justify our claim why we believe the
PCLMULQDQ accelerates GCM. The most compute in-
tensive part of GCM is multiplication in the finite field
GF(2'*%). The technique we describe in this paper is car-
ried out in two steps: carry-less multiplication and reduction
modulo g = '%® + 27 + 22 + & + 1. Carry-less multiplica-
tion can be performed through successive invocations of the
PCLMULQDQ instruction.

To reduce a 256-bit carry-less product modulo a polyno-
mial g of degree 128, we first split it into two 128-bit halves.
The least significant half is simply XOR-ed with the final
remainder (since the degree of g is 128). For the most sig-
nificant part, we develop an algorithm that realizes division
via two multiplications. This algorithm can be seen as an ex-
tension of the Barrett reduction algorithm [16] to modulo-2
arithmetic, or as an extension of the Feldmeier CRC gener-
ation algorithm [22] to dividends and divisors of arbitrary
size.

Since we do not take into account the least significant
half of the input (see above), we investigate the efficient

141

generation of a remainder p(x) defined as follows:

p(z) = c() - #'modg(x)

where, ¢(z) is a polynomial of degree s—1 with coefficients in
GF(2), representing the most significant bits of the carry-
less product (for GCM, s = 128), t is the degree of the
polynomial g (for GCM, ¢t = 128), and g(x) is the irreducible
polynomial defining the final field (for GCM, g = g(z) =
' " 4+ 1).

Our algorithm involves the following steps:

Preprocessing: For the given irreducible polynomial g two
polynomials g* and ¢* are computed first. The polynomial
g* is of degree t — 1 consisting of the ¢ least significant terms
of g, whereas the polynomial ¢" is of degree s and is equal
to the quotient of the division of ' with the polynomial
g.

Calculation of the remainder polynomial: Step 1: The
input ¢ is multiplied with ¢7. The result is a polynomial
of degree 2s — 1. Step 2: The s most significant terms of
the polynomial resulting from step 1 are multiplied with
g*. The result is a polynomial of degree ¢t + s — 2. Step
3: The algorithm returns the t least significant terms of
the polynomial resulting from step 2. This is the desired
remainder.

One can see that the quotient from the division of z%
with g is g itself. The polynomial g = g(z) = z**® + 27 +
2?42 +1 contains only 5 non-zero coefficients (therefore also
called ‘pentanomial’). This polynomial can be represented
as [1 :< 120 zeros >: 10000111]. Multiplying this carry-less
with a 128 bit value and keeping the 128 most significant
bits can be obtained by: (i) Shifting the 64 most significant
bits of the input by 63, 62 and 57 bit positions to the right.
(ii) XOR-ing these shifted copies with the 64 least significant
bits of the input. Next, we carry-less multiply this 128-bit
result with g, and keep the 128 least significant bits. This
can be done by: (i) shifting the 128-bit input by 1, 2 and
7 positions to the left. (i) XOR-ing the results. Hence we
split the finite field multiplication into a field-independent
part which we perform with PCLMULQDQ and a field de-
pendent part which we reduce to a small number of shift and
XOR operations. Using this instruction we achieve a GCM
performance of approximately 2.6 cycles per byte or 3.9 cy-
cles per byte together with AES as discussed later. This is
about 3 times faster than typical HMAC-SHA-1 implemen-
tations.

6

6. A HIGH PERFORMANCE TLS PROTO-
COL STACK

6.1 Implementing the 1.2 Version

As the OpenSSL library only provides TLS implementa-
tions up to version 1.0, we have added the necessary changes
needed to have a functional TLS 1.2 version. The following
are the major differences that need to be implemented be-
tween TLS 1.0 and TLS 1.2. First, key generation is differ-
ent in TLS 1.2. Key generation entails the creation of keys
for the record protocol of TLS from the security parame-
ters provided by the handshake phase. The major difference
between TLS 1.0 and TLS 1.2 is in the Pseudo Random
Function (PRF) employed. Specifically, the MD5/SHA-1
combination in TLS 1.0 is replaced by SHA-256 or stronger

hashes. In addition in TLS 1.2, the PRF is negotiable during
the control channel handshake.

Second, there is difference in the IV generation between
TLS 1.2 and TLS 1.0 or prior versions. In the context of
AEAD algorithms (e.g., AES-GCM) which are introduced in
TLS 1.2 IV consists of two portions: an implicit part coming
from the key generation and an explicit part that needs to be
unique. This may not be the case for other ciphers or for ver-
sions prior to TLS 1.2. Other changes introduced in TLS 1.2
include error handling, certificate handling and deprecation
of older cipher suites. Perhaps the most important difference
between TLS 1.0 and TLS 1.2 from a performance perspec-
tive is the introduction of algorithmic agility which allows
us to benefit from AEAD algorithms (e.g., AES-GCM). We
focus on this class of algorithms in the following subsection.

6.2 Use of AEAD Algorithms in the TLS stack

In versions of TLS prior to 1.2, discrete mode algorithms
are employed which provide confidentiality and message au-
thentication. Each algorithm uses an independent key. AEAD
achieves both encryption and authentication using a single
key.

There is significant difference regarding the integration
of AEAD and non-AEAD algorithms in the TLS 1.2 pro-
tocol. For AEAD ciphers an explicit IV value is generated
and transmitted with each payload. Furthermore an implicit
IV is created from the key generation process, concatenated
with the explicit IV and used as input to the algorithm. In
the data path, non-AEAD ciphers apply a message authenti-
cation code before encryption. Then they encrypt and trans-
mit the data. The MAC is encrypted in this case. However,
for AEAD, this operation is reversed. Encryption happens
prior to MAC generation. The MAC is not encrypted in this
case.

We implemented the Advanced Encryption Standard (AES)
algorithm in the Galois/Counter Mode (GCM) with a 128-
bit key. For the explicit IV we use the recommended method
of [33] (3.2.1). In the context of AES, the IV is comprised
of 8 bytes of explicit IV and 4 bytes implicit IV. The ex-
plicit IV is the sequence number that is sent and retrieved
together with the payload, whereas the implicit IV is derived
from the key generation process. By including a sequence
number in the IV, we can satisfy the requirement that the
IV values are unique.

AEAD allow additional data to be authenticated. In the
case of TLS 1.2 this additional data comprises a sequence
number, packet type, TLS version and the compressed packet
length.

Figure 6 shows how the fields of the data packet map onto
the inputs and outputs of the cipher AES-128 GCM. As in-
dicated in the figure, the data field is encrypted and authen-
ticated, and is carried along with a header and a sequence
number. The header is authenticated by being included in
the authenticated data. The sequence number is included
in the IV. The authentication tag is carried along with the
encrypted data in the packet payload. Our implementation
is available in the public domain [14] for experimentation.

7. RESULTS

In what follows we describe the results from our exper-
iments on measuring the performance of various crypto-
graphic tasks and TLS banking worloads. We present re-
sults at an instruction level, function level and session level.

142

‘ type ‘version‘ length ‘ seq_num ‘ plaintext

+ 4 bytes v

implicit IV

(4] AES-GCM Encryption
AAD
y
‘ type ‘version‘ length ‘ seq_num ciphertext tag
1byte 2bytes 2 bytes 8 bytes 16 byte

Figure 6: AES-128 GCM Packet Format

24 clocks
6 clocks
— 2 clocks
AES Round AES AES

Latency Instruction Instruction

(table lookups) Latency Throughput

Figure 7: Instruction Level Performance

Instruction level performance pertains to the latency of in-
voking the AES round instructions. Function level pertains
to the cost of various modes of AES and RSA encryption for
a given input data set. Session level pertains to the perfor-
mance measurements taken in the context of an overall TLS
session. We dissect and describe the different cryptographic
components that contribute to the overall cost of connecting
and maintaining a TLS session. We also demonstrate that
our technologies result in substantial performance improve-
ment. We compare against optimized cryptographic imple-
mentations we developed ourselves, as well as OpenSSL. We
used OpenSSL since it is hard to get access to other pro-
prietary cryptographic algorithm implementations. So, we
used one of the best suites available in the public domain.

7.1 AES Instruction Level

Figure 7 presents a performance comparison between an
AES software round implementation that does not use our
instructions vs. one that leverages the instructions intro-
duced in Section 5. This data is gathered using a 3 GHz
Xeon® processor with our instruction extensions.

The leftmost bar in the figure depicts the latency of an
AES round using the table lookup method. The next bar
depicts the latency of completing an AES round in combi-
natorial logic. The rightmost bar depicts the AES instruc-
tion throughput. By instruction ‘throughput’ we mean the
minimum time elapsed between the completion of two in-

dependent AES round operations, which is smaller than the
instruction latency since the AES circuit is pipelined. Specif-
ically, for each separate data block requiring an AES oper-
ation, this is the time between the completion of an AES
operation on one block and the completion of the same AES
operation on another data block.

For the table lookup implementation, we observe a la-
tency of 24 clocks per round. This requires table lookups
for all bytes of the cipher state. The minimum time be-
tween the completion of independent round operations for
this approach is approximately 24 clocks too. The software
used to perform these measurements was an optimized AES
implementation, based on the code of Brian Gladman.

When performing AES rounds using our instructions, we
find that the round latency is reduced to 6 clocks, returning a
4x improvement. Furthermore, the throughput decreases to
2 clocks, returning a 12x improvement. These measurements
relate to both AES encrypt and decrypt round operations
as well as encrypt and decrypt last rounds.

7.2 AES Function Level

In our tests we compare four representative modes of op-
eration of AES. Because of the difference in the way AES is
used in each mode, performance varies across modes of op-
eration. The first three modes (CBC, CTR, ECB) support
encryption only. GCM supports encryption and message
authentication. The cycles per byte presented here are in
accordance with the instruction level results shown in Fig-
ure 7. Instruction latencies are applied to the full 10 round
implementation of AES-128 and amortized over a 16-byte
AES block.

Table 2: Algorithm Level Performance

algorithm mode | table lookups | AES instructions
(cycles/byte) (cycles/byte)

AES-128 CBC

encrypt 16.1 4.1
AES-128 CTR

encrypt 19.3 1.3
AES-128 ECB

encrypt 15.6 1.2
AES-128 GCM

encrypt 29.5 3.9

AES in the CBC mode results in a performance of 16.1 cy-
cles per byte using the table lookup method. This is reduced
to 4.1 cycles per byte when enabling the AES instructions.
This illustrates a 4x performance gain when leveraging our
AES hardware over pure software without it. CBC is not a
parallelizable mode since each input to a subsequent block
operation requires the output of the previous block. Because
of this CBC cannot take advantage of the small instruction
throughput shown in Figure 7.

AES in CTR and ECB modes displays the best results
with a 14x/13x performance improvement respectively. In
these modes AES leverages the round instructions in the
most optimal way. In CTR and ECB each block can be
independently encrypted/decrypted without reliance on the
previous or next block, hence allowing efficient hardware
parallelization and pipelining. In the code used for these
measurements we encrypt/decrypt four blocks at a time.
The table lookup implementation of CTR demonstrates a
cost of 19.3 cycles per byte. CTR is slower than CBC and

143

ECB because of the need to perform an additional byte shuf-
fling operation for endianness compliance for every block.
The performance of ECB is 15.5 cycles per byte. When us-
ing our instructions the performance of CTR becomes 1.3
cycles per byte, whereas the performance of ECB becomes
1.2 cycles per byte. Due to hardware pipelining the effective
latency per round is only 2 clocks for these modes. In ad-
dition due to the fact that our instruction implementation
is done in the SIMD domain of the Intel® Core™ micro-
architecture, the byte shuffling required by the CTR mode
is done efficiently using the PSHUFB instruction.

The results for AES-GCM are equally good, illustrating
a 7.5x gain over the table lookup implementation. GCM
removes the need for a separate data authenticity function
within the context of a protocol such as TLS. This improve-
ment becomes critical when comparing our GCM code (i.e,
combined encryption and authentication) against the ‘tradi-
tional’ discrete model of using AES-CBC and HMAC-SHAL.
SHA-1 costs approximately 8 cycles per byte. GCM process-
ing with the PCLMULQDQ instruction can be accomplished
at an additional cost of only 2.6 cycles per byte. The table
lookup approach consumes 10 cycles per byte for GCM [5].
The increase from 1.3 to 3.9 cycles per byte for this algorithm
is due to the additional Galois Field multiplication opera-
tion required. For an optimized software implementation of
AES-GCM, without the instructions, the typical cost is 29.5
cycles/byte. By comparison, our acceleration technologies
reduce this to 3.9 cycles/byte. Saturation of a 10 Gbps link
without our technologies requires 12 3.0 Ghz cores. Our op-
timizations bring this down to just over a single core, leaving
the remaining cores for other critical workloads. This analy-
sis excludes the RSA overhead for key establishment. Later
in the paper we take this overhead into account.

Acceleration gains are similar for other key sizes. For
AFES-192 and AES-256, the CBC speedup is 4x and the GCM
speedup is 7.5x. AES-192 operates at 4.9 cycles/byte for
CBC and 4.2 cycles/byte for GCM. AES-256 operates at
5.6 cycles/byte for CBC and 4.5 cycles/byte for GCM.

7.3 RSA Function Level

The RSA performance depends on the performance of the
underlying integer multiplication building blocks. In what
follows we compare the performance of routines that per-
form 512 by 512, 1024 by 1024, and 2048 by 2048 bit multi-
plication coming from the OpenSSL libraries (0.9.8 and 1.0
versions) and our code. We have implemented two routines:
One based on the single iteration Karatsuba multiplication
variant described in [31] and one based on our optimized
schoolbook technique. Our results are shown in Table 3.
As is evident from the table, our schoolbook multiplication
routines outperform both the Karatsuba code and the multi-
plication code (schoolbook) from the OpenSSL library. For
example, the 512 by 512 bit multiplication can be completed
in only 257 clocks, whereas Karatsuba needs 434 clocks and
OpenSSL schoolbook 611 clocks.

Next we compare the RSA 1024 and RSA 2048 perfor-
mance at a private decrypt operation level coming from
OpenSSL 0.9.8, 1.0, our code using Karatsuba multiplica-
tion and our code using our optimized schoolbook technique.
Our results are shown in Table 4. The numbers mean private
decrypt operations per second per 3 GHz Intel® Core™ i7
processor core.

The main difference between OpenSSL 0.9.8 and OpenSSL
1.0 is that the 1.0 version implements the word-by-word

Table 3: Performance of Integer Multiplication (pro-
cessor clocks)

512 by | 1024 by | 2048 by
512 bit | 1024 bit | 2048 bit
OpenSSL
0.9.8, 1.0 611 1937 6212
our code
(Karatsuba) 434 1309 5024
our code
(schoolbook) 257 1052 3815

Table 4: Performance Comparison (private decrypt
operations per second)

RSA 1024 RSA 2048
(private decrypt) | (private decrypt)
OpenSSL
0.9.8 1463 259
OpenSSL
1.0 2143 360
our code
(Karatsuba) 1893 375
our code
(schoolbook) 2990 454

Montgomery reduction using optimized assembly code that
reduces the number of ‘mov’ operations between registers
and memory. As is evident from the tables the best RSA per-
formance comes from our code when using our schoolbook
multiplication technique. This results in a performance of
2990 RSA 1024 private decrypt operations per second per 3
GHz processor core. The main departure from the OpenSSL
techniques is that in our code Montgomery is done in a sin-
gle step as opposed doing the reduction on a word-by-word
basis. In this way, Montgomery is reduced to 1.5 big num-
ber multiplications, where the multiplications themselves are
performed using our optimized schoolbook code evaluated in
Table 3.

The acceleration gain coming from our code is also sub-
stantial in other processors as well. In a Pentium® 4 ar-
chitecture our code speeds up RSA 1024 from 881 private
decrypt operations per second per 3 GHz core to 981 oper-
ations per second per core. Multiplication between 512-bit
integers takes 806 clocks. The Pentium®) 4 architecture is
slower because the 64-bit mode is emulated.

7.4 Session Level

We use two methods to measure the TLS session level
performance.

First, we utilize Oprofile [9] and a microbenchmark tool
to obtain a cost breakdown of a typical TLS banking ses-
sion of file size equal to 140KB. Our microbenchmark tool
uses an optimal table lookup AES implementation. The cost
breakdown result is illustrated in Figure 8.

As can be seen from the leftmost bar of this diagram, the
cost of the RSA 1024 asymmetric key operation for a given
session (2.17 million clocks) is almost equal to the cost of the
AES-128 CBC operation (2.30 million clocks) for a 140KB
data file. This in turn is roughly equal to the cost of the
HMAC-SHA1 operation and other overheads such as OS,
and networking overheads (1.184-0.73 million clocks). By

144

2.17 CPU cost (million clocks)
RSA-1024
2.30
AES-128 | RSA-1024 | 1.34
| AES-128 |0.58 | RSA 1024 1.34
sHAar | 118 SHap 118 L 1019

Il clelY | 0.37
| other |0.73

i

other | 0.73

state of the art,
AES-128 CBC,

our technologies,
AES-128 CBC,

our technologies,
AES-128 GCM

HMAC-SHA1 HMAC-SHA1

Figure 8: Session Level Performance

accelerating the symmetric key operation, as well as optimiz-
ing the asymmetric key operation, we are impacting nearly
90% (5.65 over 6.38 million clocks) of the crypto overhead
for the overall TLS session cost.

In the next bar of this diagram, we illustrate the benefit
coming from optimizing the RSA operation and also lever-
aging the AES instructions for encryption and decryption.
This alone provides a 1.67x improvement over the number
of TLS sessions per second that can be achieved over a non-
optimal TLS implementation. AES-128 is still in the CBC
mode for this bar.

In the rightmost bar of the diagram, we replace the ci-
pher suite of AES-128 CBC and HMAC-SHA1 with AES-
128 GCM which is a combined mode that provides the best
performance results, illustrating a 2.43X improvement over
the leftmost bar.

The microbenchmark is built using our own code, includ-
ing the state-of-the-art baseline. Now let’s consider our op-
timizations in the context of a public domain open source
TLS stack. Our second method is to utilize the OpenSSL
SSL/TLS performance timing program called s_time in or-
der to benchmark our TLS improvements. The s_time com-
mand implements a client which connects to a server using
SSL/TLS. It requests a file from the server and measures the
time to transfer the payload data. Networking latencies are
not included in the measurements. It reports the number of
connections within a given time frame, the amount of data
transferred and the average user CPU time spent for each
connection. Our results are presented in Table 5.

We see approximately 1200 sequential connections per sec-
ond of user time for the cipher suite RSA-1024, AES-128
GCM as compared to 770 connections per second of user
time for the cipher suite RSA-1204, AES-128 CBC, HMAC-
SHA1 using our optimized RSA and AES implementations,
and 200 connections per second of user time for the same
cipher suite without our optimizations for the same file size
of 140KB. The result is a performance gain of 6x allow-
ing for many more connections to be supported on a given
server. It is worth pointing out that the best absolute per-
formance coming from our two measurement methodologies
is the same (i.e., approximately 1200 transactions per second
per core).

Table 5: TLS Stack Performance from s_time

cipher suite connections/sec
AES-128 CBC, SHAL,
state-of-the-art 199
AES-128 CBC, SHAL,
our technologies 768
AES-128 GCM,
our technologies 1199

7.5 Encrypting the Internet

So far we have described how improvements in the per-
formance of cryptographic algorithms can speed up the per-
formance of SSL servers using the TLS 1.2 protocol stack.
To justify our claim for end-to-end Internet encryption, we
answer a different question: How many processor cores in
general purpose hardware do we need to saturate a high
speed Internet link using our technologies? We examine 1
and 10 Gbps links.

The single core processing throughput (measured in Gbps)
associated with a set of crypto technologies can be computed
from the total number of transactions per second of Table 5
and the session size (in bits). Specifically:

throughput = sessions per second X session size

From this throughput computation we can derive the num-
ber of 3 GHz processor cores needed for saturating 1 and 10
Gbps network links by dividing the link capacity with the
processing throughput associated with each technology. Our
results are shown in Table 6. The numbers assume good
scaling of the SSL/TLS performance across multiple cores,
which we believe is feasible given the inherent parallelization
support of the protocol across different sessions.

Table 6: Cores to Saturate 1 (10) Gbps

processing cores to
cipher suite throughput saturate
(Gbps) 1 (10) Gbps
AES-128 CBC, SHAL,
state of the art 0.22 5 (46)
AES-128 CBC, SHAI,
our crypto technologies 0.86 2 (12)
AES-128, GCM,
our crypto technologies 1.34 1(8)

As is evident from the table it is now possible to take gen-
eral purpose hardware, e.g., with two sockets and six cores
per socket and our instruction extensions and provide equiv-
alent functionality to a dedicated appliance allowing 9,600
(= 8 x 1200) transactions per second at 10 Gbps, while still
leaving four cores for application processing. The system
uses 8 cores with encryption. If no encryption was applied,
the system would use 3 cores. In both cases a substantial
number of cores (4-9) is left for other tasks.

At the time of writing, dedicated appliances tend to be
more expensive than general purpose systems. For example,
appliances reported in reference [12] range from $18,850 to
$36,990. Also at the time of writing, a general purpose blade
server [10] can cost up to $3,999. Since the performance of
appliances varies considerably, we use a normalized metric
to express their cost efficiency as it pertains to SSL through-

145

put. Specifically, we divide the cost of a device by its associ-
ated SSL transaction rate. For a hypothetical appliance that
costs $18,850 and supports 4,500 banking transactions per
second, the normalized cost is $4. On the other hand the
normalized cost of the afore-mentioned blade server, sup-
porting our technologies, is 28 cents only, for the same SSL
transaction size. Such substantial cost reduction could allow
network security technologies to be deployed in areas where
previously it was considered cost inhibited.

8. CONCLUSIONS

In this paper we argued about the need for encrypting
and authenticating Internet transactions. We analyzed the
performance of some cryptographic algorithms and proposed
techniques to speed them up significantly. Our solution is
primarily based on adding small hardware extensions to gen-
eral purpose architectures. We supported our claims with
performance results demonstrating the efficiency of using
general purpose hardware for doing SSL/TLS traffic pro-
cessing at 10 Gbps line rates.

Our work is far from done however. Moving to 128-bits
equivalent security for public key schemes may require fur-
ther innovations for increasing the performance of public key
encryption. Furthermore, NIST organizes a hash competi-
tion for defining the next SHA-3 standard. Understanding
how to accelerate the winning algorithm will be important as
well. Third, public trials will be useful for further validating
our results.

9. REFERENCES

[1] “Advanced Encryption Standard”. Website.
http://csrc.nist.gov/publications/fips/fips197/
fips-197.pdf.
“Cisco WebVPN Services Module - Cryptographic
Accelerator”. Website, hardware.com.
http://us.hardware.com/store/cisco/
WS-SVC-WEBVPN-K9=/campaign/1-85819001.
“Crypto++". Crypto++ Website.
http://www.cryptopp.com.
“Data-stealing Malware on the Rise, Solutions to Keep
Businesses and Consumers Safe”. Website.
http://us.trendmicro.com/imperia/md/content/us/pdf/
threats/securitylibrary/data_stealing malware_focus_
report_-_june_2009.pdf.
The Galois/Counter Mode of Operation (GCM).
Website, NIST.
http://csrc.nist.gov/groups/ST/toolkit/BCM/
documents/proposedmodes/gcm/gem-spec. pdf.
“Intel AVX, Intel Software Network”. Intel Website.
http://software.intel.com/en-us/avx/.
“Internet Passes 600,000 SSL Sites”. Website, SSL
Shopper. http://www.sslshopper.com/
article-internet-passes-600000-ssl-sites.html/.
“OpenSSL Library”. OpenSSL Website.
http://www.openssl.org.
“OProfile”. OProfile Website.
http://oprofile.sourceforge.net/news/.
“PowerEdge Rack Servers”. Website, dell.com.
http://www.dell.com/us/en/gen/servers/rack_
optimized/cp.aspx?refid=rack_optimized&s=gen.
“SSL Acceleration and Offloading: What Are the
Security Implications?”. Website,
WindowSecurity.com.
http://www.windowsecurity.com/articles/
SSL-Acceleration-0ffloading-Security-Implications.
html.
[12] “SSL Decryption and Re-encryption”. Website,

2]

3]
[4]

[5]

[6]

[7]

8]
[9]
(10]

(11]

[17]

[18]

[19]

[20]

[21]

[22]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

31]

32]

zeus.com. http://wuw.zeus.com/products/
traffic-manager/secure/ssl.html

“The Total Number of Web Sites on Earth”. Website,
Get Netted. http://www.wlug.net/
the-total-number-of-websites-on-earth/

“TLS 1.2 Open Source Release”. Website.
http://www.mail-archive.com/openssl-dev@openssl.
org/msg27172.html.

“T'wo Year Study of Global Internet Traffic,
NANOGA4T7”. Website, Internet Society.
http://isoc-dc.org/wordpress/7p=920

P. Barrett. “Implementing the Rivest Shamir and
Adleman Public Key Encryption Algorithm on a
Standard Digital Signal Processor”. Masters Thesis,
University of Oxford, UK, 1986.

A. Bosselaers, R. Govaerts, and J. Vandewalle.
“Comparison of Three Modular Reduction Functions”.
Proceedings, Advances in Cryptology (CRYPTO 1993),
1993.

D. Canright. “A Very Compact S-Box for AES”.
Proceedings, Workshop on Cryptographic Hardware
and Embedded Systems (CHES 2005), 2005.

A. J. Elbirt. “Fast and Efficient Implementation of
AES via Instruction Set Extensions”. Proceedings, 21st
International Conference on Advanced Information
Networking and Applications Workshops, 2007.

N. Farrell. “google tightens Gmail security”. Website,
January 2010. http://www.theinquirer.net/inquirer/
news/1586138/google-tightens-gmail-security.

M. Feldhofer, J. Wolkerstorfer, and V. Rijmen. “AES
Implementation on a Grain of Sand”. IEFE Proceedings
on Information Security, 2005.

D. Feldmeier. “Fast Software Implementation of Error
Detection Codes”. IEEE Transactions on Networking,
pages 640-651, 1995.

A. M. Fiskiran and R. B. Lee. “On Chip Lookup
Tables for Fast Symmetric Key Encryption”.
Proceedings, IEEE International Conf. on
Application-Specific Systems, Architectures and
Processors, pages 356-363, 2005.

K. Grewal and M. Miller. “Next Generation Scalable,
Cost-effective E2E Security”. RSA Conference, 2010.
S. Gueron. “Intel’s New AES Instructions for
Enhanced Performance and Security”. Proceedings,
16th International Workshop on Fast Software
Encryption (FSE 2009), LNCS 5665, pages 51 — 66,
2009.

A. Hodjat, D. Hwang, B.-C. Lai, K. Tiri, and

I. Verbauwhede. “A 3.84 Gbits/s AES Crypto
Coprocessor with Modes of Operation in a 0.18-um
CMOS Technology”. Proceedings, 15th ACM Great
Lakes Symposium on VLSI, pages 60—63, 2005.

A. Hodjat and 1. Verbauwhede. “A 21.54 Gbits/s Fully
Pipelined AES Processor on FPGA”. Proceedings, 12th
IEEE Symposium on Field- Programmable Custom
Computing Machines (FCCM 2004), pages 308-309,
2005.

D. Knuth. “Seminumerical Algorithms”. The Art of
Computer Programming, Addison-Wesley, 2, 1997.

C. K. Koc. “Analysis of Sliding Window Techniques
for Exponentiation”. Computers and Mathematics with
Application, 30(10):17-24, 1995.

C. K. Koc, T. Acar, and B. S. Kaliski. “Analyzing and
Comparing Montgomery Multiplication Algorithms”.
IEEE Micro, 16(3):26-33, 1996.

M. Kounavis. “A New Method for Fast Integer
Multiplication and its Application to Cryptography”.
Proceedings, 2007 International Symposium on
Performance Evaluation of Computer and
Telecommunication Systems, 2007.

M. Kounavis and L. Xu. “AES-NI: New Technology

146

33]

(34]
(35]

(36]

37]

(38]

(39]

(40]

[41]

42]

(43]

(44]

(45]

(46]

(47]

(48]

for Improving Encryption Efficiency and Enhancing
Data Security in the Enterprise Cloud”. Intel
Developer Forum, 2009. https://intel.wingateweb.
com/us09/scheduler/sessions.do?searchGroup=
9&searchGroupID=10133&profileItem_id=10004.

D. McGrew. “An Interface and Algorithms for
Authenticated Encryption”. Website, January 2008.
http://www.fags.org/rfcs/rfc5116.html.

A. Menezes, P. Oorschot, and S. Vanstone. “Handbook
of Applied Cryptography”. CRC Press, 1997.

N. Mentens, L. Batina, B. Preneel, and

I. Verbauwhede. “A Systematic Evaluation of
Compact Hardware Implementations for the Rijndael
S-Box”. Proceedings of CT-RSA 2005, 2005.

P. Montgomery. “Implementing the Rivest Shamir and
Adleman Public Key Encryption Algorithm on a
Standard Digital Signal Processor”. Masters Thests,
University of Oxford, UK, 1986.

P. Montogomery. “Five, Six and Seven-term
Karatsuba-like Formulae”. IEEE Transactions on
Computers, 2005.

S. Moriokah and A. Satoh. “An Optimized S-Box
Circuit Architecture for Low Power AES Design”.
Proceedings, Workshop on Cryptographic Hardware
and Embedded Systems (CHES 2002), pages 172186,
May 2002.

K. K. Peretti. “Data Breaches: What the
Underground World of Carding Reveals”. the Santa
Clara Computer and High Technology Journal,
25(2):375 — 413, January 2009.

C. Rebeiro, D. Selvakumar, and A. S. L. Devi.
“Bitslice Implementation of AES”. Cryptology and
Network Security, LNCS 4301, 2006.

A. Rudra, P. K. Dubey, C. S. Jutla, V. Kumar, J. R.
Rao, and P. Rohatgi. “Efficient Rijndael Encryption
with Composite Field Arithmetic”. Proceedings,
Workshop on Cryptographic Hardware and Embedded
Systems (CHES 2001), pages 175 — 188, May 2001.
A. Satoh, S. Moriokah, K. Takano, and S. Munetoh.
“A Compact Rijndael Hardware Architecture with
SBox Optimization”. Lecture Notes in Computer
Science, LNCS 2248, pages 239-254, 2001.

S. Schillace. “Default HTTPS Access for gmail”.
Website, January 2010. http://gmailblog.blogspot.
com/2010/01/default-https-access-for-gmail.html.
SecurityFocus. “Data Breach Costs Rise, Response
Costs Fall”. Website, February 2009.
http://www.securityfocus.com/brief/900.

I. Verbauwhede, P. Schaumont, and H. Kuo. “Design
and Performance Testing of a 2.29 Gb/s Rijndael
Processor”. IEEE Journal of Solid-State Clircuits,
pages 569-572, 2003.

A. Weimerskirch and C. Paar. “Generalizations of the
Karatsuba Algorithm for Efficient Implementations.
Technical Report, University of Ruhr, Bochum,
Germany, 2003.

A. Whitten. “HTTPS Security for Web Applications”.
Website, June 2009.
http://googleonlinesecurity.blogspot.com/2009/06/
https-security-for-web-applications.html

J. Wolkerstorfer, E. Oswald, and M. Lamberger. “An
ASIC Implementation of the AES SBoxes”.
Proceedings, CT-RSA 2002, 2002.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

