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1. SLICED PROGRAMMABLE NETWORKS
OpenFlow [6] has been demonstrated as a way for researchers to

run networking experiments in their production network. Last year,
we demonstrated how an OpenFlow controller running on NOX [4]
could move VMs seamlessly around an OpenFlow network [1].
While OpenFlow has potential [3] to open control of the network,
only one researcher can innovate on the network at a time. What
is required is a way to divide, or slice, network resources so that
researchers and network administrators can use them in parallel.
Network slicing implies that actions in one slice do not negatively
affect other slices, even if they share the same underlying phys-
ical hardware. A common network slicing technique is VLANs.
With VLANs, the administrator partitions the network by switch
port and all traffic is mapped to a VLAN by input port or explicit
tag. This coarse-grained type of network slicing complicates more
interesting experiments such as IP mobility or wireless handover.

Here, we demonstrate FlowVisor, a special purpose OpenFlow
controller that allows multiple researchers to run experiments safely
and independently on the same production OpenFlow network. To
motivate FlowVisor’s flexibility, we demonstrate five network slices
running in parallel: one slice for the production network and four
slices running experimental code. Our demonstration runs on real
network hardware deployed on our production network1 at Stan-
ford and a wide-area test-bed with a mix of wired and wireless
technologies.

2. FLOWVISOR ARCHITECTURE
Architecturally, FlowVisor acts as a transparent virtualization

layer between OpenFlow switches and controllers. Network de-
vices generate OpenFlow protocol messages, which go to the FlowVi-
sor and are then routed by network slice to the appropriate re-
∗This work is supported in part by NSF, Cisco, Deutsche Telekom,
DoCoMo, Ericsson, NEC and Xilinx.
1That is, the network where the authors read their daily mail, surf
the web, etc.

Figure 1: FlowVisor allows multiple researchers to operate in
parallel on slices of an OpenFlow network. FlowVisor acts as
a transparent proxy between network devices, OpenFlow con-
trollers, and other FlowVisor’s.

searcher(s) (Figure 1). OpenFlow messages from researcher con-
trollers are vetted by the FlowVisor to ensure that the isolation
between slices is maintained before being forwarded to switches.
Thus, the FlowVisor appears as a virtual controller to the switches
and as a network of virtual switches to the researcher controllers.

FlowVisor is intentionally architecturally neutral: it makes no
assumption about the function or operation of the switches or con-
trollers, save that they speak OpenFlow. We architect FlowVisor as
a transparent layer for three reasons:

Centralized policy enforcement. All control traffic, from switch
to controller and from controller to switch, traverses the FlowVisor.
This provides FlowVisor a complete view of the network’s state and
allows it to enforce policy by dropping or rewriting OpenFlow con-
trol messages. Additionally, centralizing policy decisions makes it
easier to reason about the set of allowable actions and debug errors
should they occur.

Recursive delegation is the ability to re-delegate control of a
subset of a network slice. Because FlowVisor acts as a transparent
proxy, it is possible to cascade FlowVisor instances, making recur-
sive delegation trivial. We expect recursive delegation will be an
important property for virtual networks as it eases network admin-
istration overhead and improves resource allocation.

Decouple control and virtualization technologies. Rather than
building virtualization support directly into the OpenFlow protocol
itself, we intentionally keep the control and virtualization aspects
orthogonal. This allows each technology to evolve independently,
avoiding new forms of ossification.

FlowVisor defines slices along any combination of ten packet
header fields, including physical layer (switch ports), link layer
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Figure 2: We present a slice monitoring program that graph-
ically displays flows in real time. Each corner represents an
experimental slice, the middle top frame the physical topology,
and the middle bottom frame shows an aggregated “adminis-
trative” view.

(src/dst mac addresses, ether type), network layer (src/dst IP ad-
dress, IP protocol), and transport layer (src/dst UDP/TCP ports).
Additionally, FlowVisor slices can be defined with negation (“all
packets but TCP packets with dst port 80”), unions (“ethertype is
ARP or IP dst address is 255.255.255.255”), or intersections (“net-
block 192.168/16 and IP protocol is TCP”). We believe that such
fine-grained slicing will be a useful tool for network researchers
and administrators alike.

3. TRIAL DEPLOYMENT
To motivate its utility, we deploy the FlowVisor on our produc-

tion network and run four experiments in tandem with our everyday
traffic. We create a custom real-time slice monitoring tool(Figure 2)
to help visualize our network. The tool dynamically shows the test-
bed topology with flows color-coded by experiment . The moni-
toring tool displays a simultaneous view of the entire physical net-
work topology (Figure 2,top middle) and the virtual topology cor-
responding to each slice.

The four experiments are chosen to show the diversity of experi-
ments that FlowVisor supports, and will each be running an isolated
slice specifically “carved” for its needs.

Plug-N-Serve tested [5] various algorithms for load-balancing
web requests in unstructured networks. In this experiment, web
queries arrive at a configurable rate and are load-balanced both by
path and by server. The Plug-N-Serve experiment’s query generator
tested FlowVisor’s new flow switch CPU isolation features.

OpenRoads experiments [8, 7] with loss-less handover between
the WiMAX and wifi wireless nodes. By dynamically re-directing
how traffic flows through the network, OpenRoads is able to pro-
vide finer-grained control of mobility policies, e.g., make-before-
break or break-before-make connections. OpenRoads made heavy
use of “read-only” FlowSpace, testing the FlowVisor’s traffic iso-
lation capabilities.

Aggregation demonstrates OpenFlow’s ability to define flows
as groups of TCP sessions. In the experiment, hundreds of TCP
flows are “bundled” into a single flow table entry. The aggregation
experiment’s slice definition had 512 rules, testing the FlowVisor’s
processing and rewriting capabilities.

OpenPipes demonstrates [2] how hardware designs can be par-
titions over a physical network. In this experiment, the traffic con-
sisted of video frames encapsulated in raw ethernet and was piped
through various video filters running on nodes distributed through

the network. OpenPipe’s traffic stressed the FlowVisor flexible
FlowSpace slicing in terms of its ability to slice by ethernet type.

4. ADDITIONAL AUTHORS
A small army of authors contributed to this demo (refer to title

for affliations):

Michael Chan ? Adam Covington? Mario Flajslik ?

Nikhil Handigol? Te-Yuan Huang ? Peyman Kazemian?

Jad Naous ? Srinivasan Seetharaman† David Underhill?

Tatsuya Yabe 3 Kok-Kiong Yap ? Yiannis Yiakoumis?

Hongyi Zeng? Guido Appenzeller ? Ramesh Johari ?

Nick McKeown? Guru Parulkar?
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