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ABSTRACT
Recent FPGA-based implementations of network virtualiza-
tion represent a significant step forward in network perfor-
mance and scalability. Although these systems have been
shown to provide orders of magnitude higher performance
than solutions using software-based routers, straightforward
reconfiguration of hardware-based virtual networks over time
is a challenge. In this paper, we present the implemen-
tation of a reconfigurable network virtualization substrate
that combines several partially-reconfigurable hardware vir-
tual routers with software virtual routers. The update of
hardware-based virtual networks in our system is supported
via real-time partial FPGA reconfiguration. Hardware vir-
tual networks can be dynamically reconfigured in a fraction
of a second without affecting other virtual networks oper-
ating in the same FPGA. A heuristic has been developed
to allocate virtual networks with diverse bandwidth require-
ments and network characteristics on this heterogeneous vir-
tualization substrate. Experimental results show that the
reconfigurable virtual routers can forward packets at line
rate. Partial reconfiguration allows for 20x faster hardware
reconfiguration than a previous approach which migrated
hardware virtual networks to software.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network
Architecture and Design; C.2.6 [Computer-Communication
Networks]: Internetworking

General Terms
Design, Experimentation, Performance
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1. INTRODUCTION
The growth and success of the Internet has driven re-

searchers to consider the architecture of next generation net-
works. Often, network applications call for strikingly diverse
performance requirements from the underlying network in-
frastructure in terms of security, predictability, and through-
put. Although the construction of numerous physically-
separate networks could satisfy the requirements of differ-
ent applications, the use of multiple virtual networks imple-
mented on a shared physical substrate [3, 15] is generally
considered a preferable choice. In these systems, network
resources, such as routers, are multiplexed across several vir-
tual networks to limit hardware implementation overhead.

Flexibility, isolation and performance are key architec-
tural requirements for network virtualization platforms [4,
15]. A number of software-based network virtualization plat-
forms implemented on microprocessor systems have been
proposed [3, 4, 6, 11]. Although these software virtual routers
offer substantial flexibility, they generally suffer from limited
packet forwarding performance. For example, OS-level vir-
tualization techniques such as OpenVZ [1] can only offer
up to 300 Mbps [3] with 64 byte packets. Higher perfor-
mance network virtualization platforms use special-purpose
hardware such as network processors [18] and FPGAs [2, 19]
to implement multiple virtual routers. Although hardware-
based packet forwarding systems [2, 18] offer superior packet
forwarding performance, the need to shut down hardware
during virtual router customizations compromises traffic iso-
lation between shared virtual networks. For example, virtual
router modification in a recent FPGA-based network virtu-
alization implementation [19] requires the entire FPGA to
be shut down for 12 seconds. Although other shared hard-
ware virtual networks can be switched to software virtual
routers, their throughput drops by an order of magnitude
during the reconfiguration period.

In this paper, we present a heterogeneous, FPGA-based
network virtualization platform that features partial FPGA
reconfiguration. The system consists of hardware virtual
routers with dedicated FPGA resources that can be inde-
pendently and dynamically configured at run time without
affecting other operational virtual networks. Since the hard-
ware resources of an FPGA can only host a limited number
of high-speed virtual networks, the system supports the in-
clusion of additional virtual networks using software in a
Linux-based workstation. A heuristic allocation algorithm
has been implemented to dynamically assign virtual net-
works to hardware and software virtual routers. The algo-
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rithm runs in real time on a host workstation and processes
virtual network service requests as they arrive. Our network
virtualization platform has been successfully implemented
using a Virtex II Pro FPGA on a NetFPGA [14] board at-
tached to a standard Linux-based workstation. Experimen-
tal results show that a system with two virtual networks
implemented in hardware can forward packets at line rate
(1 Gbps) and reconfiguration can be performed in a frac-
tion of a second. Additional implementations using a Virtex
5 FPGA show that the system can scale to support up to
20 hardware virtual networks. Finally, we demonstrate that
virtual network migration between hardware and software
can be used as an effective technique to satisfy the dynamic
bandwidth requirements of virtual networks.

The remainder of the paper is organized as follows. Sec-
tion 2 discusses related work on network virtualization and
partial FPGA reconfiguration for networking applications.
Section 3 presents the details of the dynamically reconfig-
urable network virtualization platform. The experimental
methodology used to evaluate the system is described in
Section 4 and experimental results are discussed in Section
5. Section 6 concludes this paper and offers directions for
future work.

2. RELATED WORK

2.1 Network Virtualization Platforms
Several hardware-based network virtualization platforms

have been implemented [14, 18, 19] which demonstrate up
to two orders of magnitude faster packet forwarding speed
than software-based platforms.

The Supercharging PlanetLab Platform (SPP) [18] uses
Intel IXP network processors to implement multiple concur-
rent virtual networks. Each overlay (virtual) network hosted
in the SPP platform has dedicated ternary content address-
able memory (TCAM) resources to store forwarding tables.
Despite the high performance, the configurability of SPP is
limited to customizing forwarding table entries. Recently,
FPGAs have been used in a variety of network virtualiza-
tion projects. A network virtualization system [2] based on
the NetFPGA platform was shown to concurrently support
up to eight identical virtual routers. Each virtual router in
this system can forward packets at line rate. However, cus-
tomization of virtual routers is also limited to forwarding
table entries.

A more recent implementation [19] supports up to four
concurrent virtual routers in an FPGA. Each virtual net-
work has dedicated FPGA logic resources to implement di-
verse virtual network functions. Four IP virtual routers with
different forwarding characteristics have been implemented
in the Virtex II Pro 50 FPGA. Additional virtual networks,
if required, are implemented in software in an adjacent work-
station. When a virtual network implemented in hardware
needs to be customized, all hardware virtual routers are
migrated to software and the FPGA is completely repro-
grammed with a new bitstream. Although other virtual
networks in the FPGA substrate can continue transmitting
packets via software virtual routers during reconfiguration,
the performance of software virtual routers constrains the
forwarding speed to be up to two orders of magnitude worse
than their hardware counterparts. More details of the com-
parison between this migration approach and our partial re-
configuration approach are provided in Section 5.
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Figure 1: System design overview

2.2 FPGA Dynamic Reconfiguration for
Networking Applications

FPGAs have been an important part of several network-
ing projects, some of which use dynamic reconfiguration.
The Field Programmable Port Extender (FPX) system [12]
uses a partially-reconfigurable Xilinx FPGA to implement
a high-speed switch. The FPX system allows packet pro-
cessing functions to be implemented as reconfigurable mod-
ules. Simplified reconfiguration interfaces in the form of
standardized APIs are used to adapt the modules [16]. Par-
tial bitstreams are generated and downloaded into the target
FPGA by sending specialized control packets from remote
administration points. Custom tools, such as PARBIT [7],
have been developed to simplify the generation and man-
agement of partial bitstreams. A reconfigurable accelerator
for packet processing functions in network processors [13]
allows customization of common networking tasks such as
tree lookup and pattern matching through partial reconfig-
uration. The feasibility of this approach has been demon-
strated using a network intrusion detection application. A
dynamically-reconfigurable network processor [8] allows spe-
cific parts of a network processor to be reconfigured to meet
the specific workload characteristics. The approach was vali-
dated using IP forwarding, encryption and media processing
flows on Virtex II and Virtex 4 devices. Although steps in
a similar direction, these approaches are not directly appli-
cable for multiple virtual routers used by virtual networks.

3. SYSTEM DESIGN

3.1 System Overview
A high-level overview of our heterogeneous network vir-

tualization platform is illustrated in Figure 1. The system
is composed of both software and hardware virtual routers.
The NetFPGA base router has been extended to create mul-
tiple partially-reconfigurable hardware virtual routers while
the host software on a workstation is virtualized to execute
software virtual routers. All the virtual routers can be con-
figured based on the virtual network service requests from
users.

The PCI bus provides an interface between hardware and
software virtual routers. All virtual network control planes
are implemented in the host software. Packets destined to
both software and hardware virtual routers arrive at the
interfaces of the NetFPGA card (MAC Q). A packet classi-
fier implemented in the FPGA assigns incoming packets to
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Figure 2: Detailed system implementation of a partially-reconfigurable network virtualization platform on a
NetFPGA board and workstation

either hardware or software virtual routers. All packets as-
signed to software virtual routers are transmitted to the host
PC over a PCI interface. A software bridge distributes these
packets to software virtual routers. The processed packets
are then placed back in NetFPGA output TX queues via the
PCI interface for further transmission. Packets processed
in hardware virtual routers are also transmitted via the TX
output queues. Allocation requests for new virtual networks
and removal and bandwidth reallocation requests for exist-
ing virtual networks are received by the workstation. An
allocation algorithm is then executed by the workstation to
determine the assignment of virtual routers to hardware and
software based on resource availability.

3.2 System Implementation
The detailed architecture of the system is shown Figure 2.

Hardware virtual routers in the system are implemented on a
Xilinx Virtex II Pro device which is partially reconfigurable.
The Virtex II Pro device is interfaced to four 1 Gbps Ether-
net interfaces and SDRAMs on the NetFPGA board. The
board is connected to a PC via the PCI interface. Software
virtual routers are implemented using container virtualiza-
tion on the host workstation.

3.2.1 Partially-reconfigurable FPGA System
To support virtual router isolation and facilitate partial

reconfiguration, the FPGA is divided into static and partially-
reconfigurable regions (PRR). This approach contrasts with
previous approaches to FPGA-based network virtualization
[2, 19] that do not isolate hardware virtual routers in specific
FPGA regions. The static region holds the modules that
are shared across multiple virtual routers. These modules
include the input arbiter, packet classifier and the output
queues. The MAC RX/TX queues interface to the physical
MAC and the input arbiter, while the CPU RX/TX queues
interface to the host workstation via the PCI bus and the in-
put arbiter. The static region also holds a CPU transceiver

module to facilitate the implementation of additional virtual
routers in the host software.

Isolated features of virtual routers are implemented in
partially-reconfigurable regions. Specific functions in these
regions include header verification, checksum verification, IP
lookup, ARP lookup and time to live (TTL) updates. These
functions are grouped into the Fwd Logic block in Figure 2.
A forwarding table for each reconfigurable virtual router is
stored in block RAMs (BRAMs). The tables can be updated
via the PCI bus by control planes running in host software.
The PR regions can be configured by downloading partial
bitstreams over a JTAG interface. Specific details of partial
bitstream generation are described in Section 4. The packet
interface between static and partially-reconfigurable regions
consists of FPGA bus macros.

3.2.2 Software-Based System
OpenVZ user space instances, called containers, are used

to implement software virtual routers on the host worksta-
tion. OpenVZ is a lightweight virtualization approach used
in several network virtualization systems [1, 11, 19] and it is
included in major Linux distributions. OpenVZ virtualizes
a physical server at the operating system level. The kernel
manages the allocation of resources such as CPU cycles and
memory among all the containers. Each container performs
like a standalone server where Click modular routers [9] are
executed.

For this system, all packets are received by the NetFPGA
card. The destination virtual IP address is used to asso-
ciate packets with hardware or software virtual routers. A
programmable CAM table (Design Select Table in Figure
2) stores the virtual IP to virtual router mappings. Pack-
ets associated with a hardware virtual router are sent to
the corresponding PRR via bus macros. Processed packets
are placed into the output queues for further transmission.
Packets associated with software virtual routers are sent to
the CPU transceiver module. The CPU transceiver modifies
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the layer-2 address in the packet header before placing the
packet in one of the available CPU DMA queues (CPU TX
Q) interfaced to the PCI bus. The CPU DMA queues are
exposed to the host software as virtual Ethernet interfaces.
A software bridge forwards packets arriving at virtual Ether-
net interfaces to OpenVZ containers running Click modular
routers. Processed packets are placed back into the CPU
DMA queues from where they are subsequently forwarded
to NetFPGA output MAC queues (MAC TX Q) for further
transmission.

3.2.3 Dynamic Virtual Network Allocation
Our system allows a virtual network operator to migrate

a virtual network between hardware and software virtual
routers by modifying entries in the Design Select Table and
reconfiguring the routers. Virtual network service providers
can exploit the heterogeneity in the network virtualization
substrate to improve the operational efficiency. For example,
virtual networks with time-varying bandwidth requirements
may be dynamically migrated between software or hardware
resources, as needed. Although attractive, heterogeneity in
the virtualization platform also introduces new challenges.
The number of software virtual routers is limited by the
aggregate bandwidth of the host virtualization technique.
The number of virtual routers in the hardware substrate de-
pends on the density of the FPGA device, the logic/memory
resource requirements of virtual routers and the placement
of partial reconfiguration regions.

Virtual network service requests represent three scenar-
ios: a new virtual network is added to the system, a virtual
network is removed from the system, or the bandwidth of
an existing virtual network is modified. To support changes,
an allocation algorithm which supports the following system
updates has been implemented:

Virtual network removal: If a removal request is made,
the hardware or software virtual network is removed. All
other virtual networks are left in place. A hardware-based
virtual router can be removed by programming a blank par-
tial bitstream into the selected reconfiguration region. A
software-based virtual router can be removed by destroying
the OpenVZ container.

Virtual network addition: If sufficient bandwidth is
available, a new software virtual network is created upon
request. If not, the network is allocated in hardware. If
neither allocation is feasible, the request is rejected.

Virtual network bandwidth adjustment: A request
for a bandwidth reduction is applied to the affected virtual
network in the system. Other networks are unaffected. If
the bandwidth of an existing virtual network is increased,
the allocation of all virtual networks in hardware and soft-
ware is rebalanced. In some cases networks are migrated
from software to hardware and vice versa. A greedy ap-
proach is currently used to rebalance the virtual networks.
For example, if needed, the lowest bandwidth hardware vir-
tual network is migrated from hardware to software or the
highest bandwidth software virtual network is migrated from
software to hardware to make room in the target resource.

We evaluate the benefit of rebalancing for virtual network
bandwidths which vary in time in Section 5.

4. EXPERIMENTAL APPROACH
This section describes the methodology used to generate

virtual router partial bitstreams required for experimenta-
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Figure 3: Layout of static and partially reconfig-
urable regions for network virtualization on a Virtex
II Pro

tion. This description is followed by a discussion of the ex-
perimental setup used for performance evaluation.

4.1 Partial Bitstream Generation
Partial FPGA reconfiguration requires a priori genera-

tion of partial bitstreams for all virtual routers. For our
design, virtual routers with column-based FPGA resources
are generated in advance of system execution via synthesis
and placement constraints and stored in a library. Virtual
routers are swapped into the FPGA at run time as needed.
In our implementation, slice-based, synchronous bus macros
with 8-bit data widths are used as interfaces between the
reconfigurable virtual routers and the static logic. All the
nets between the static and reconfigurable regions with the
exception of global and clock signals are connected through
bus macros. The clock to the partially-reconfigurable re-
gion is fed from global clock buffers in the static region.
The early-access partial reconfiguration (EAPR) [20] design
methodology from Xilinx is used to create partial bitstreams.
The EAPR methodology requires the designer to follow the
following series of steps for generating partial bitstreams.

The static and dynamically-reconfigurable portions are
described using distinct sets of Verilog files. A top-level
file is created which describes both static and partially-
reconfigurable regions and bus macros used for inter-region
interfacing. Each portion is synthesized to logic blocks and
memory components under timing constraints. Resource
counts are evaluated to ensure dynamically-reconfigurable
portions are appropriately sized to fit in FPGA columns.
Constrained placement is performed for the two design por-
tions using the Xilinx ISE Constraints Editor. The FPGA
regions for the static and partially-reconfigurable sections
are manually identified using the PlanAhead Layout Editor.
The partially-reconfigurable sections can be used for any of
the synthesized dynamically-reconfigurable planes. Follow-
ing placement, timing analysis using timing constraints is
performed with the ISE Timing Analyzer. Finally, the static
and partially-reconfiguration designs are assembled and the
respective bitstreams are generated.

Figure 3 illustrates the layout of a Virtex II Pro device
with one reconfigurable virtual router located on each side
of the static region. In the Virtex II Pro device, an entire
column in a partially reconfigurable region must be repro-
grammed at once using a partial bitstream [20]. Multiple
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Configuration Description Slices/LUTs BRAMs

I Dest based IP routing 1443/1861 8
II Flow based routing 1864/2348 8

Table 1: Experimental configurations
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packets and measure packet throughput

reconfiguration regions cannot be placed within the same
column. The operation of the device continues unaffected
while one or more columns are reconfigured.

Bitstreams generated using the EAPR flow are downloaded
using the Xilinx Impact tool via the JTAG interface running
at 12 MHz. Given the small size of the target Virtex II de-
vice, a maximum of two virtual routers can be implemented
in the FPGA. Each virtual router can be dynamically as-
signed a configuration from Table 1 through partial recon-
figuration. The first configuration (Configuration I) follows
forwarding based on destination IP addresses. The second
configuration (Configuration II) forwards packets using flow
information. In this case, packets are forwarded by perform-
ing prefix lookups based on source and destination addresses
in the packet header. Both configurations fit within a single
FPGA column.

4.2 Testbed Setting
The source-router-sink topology shown in Figure 4 is used

to measure the performance of the system. Network traf-
fic is generated and captured with the NetFPGA packet
generator tool [5] located on a separate workstation. The
hardware-based packet generator can accurately generate
and capture traffic at line rate (1 Gbps). The hardware-
based packet generator only reports the average throughput
during experiments. To measure the instantaneous changes
in throughput during reconfiguration, we use a kernel Click
based UDP packet generator. This packet generator can
only achieve 850 Mbps throughput. Xilinx XPower (XPE)
is used to estimate the power consumption of the system.

4.3 Comparison with Previous Implementation
To justify the benefits of our new system, the performance

of the system is directly compared with results from an ear-
lier system that includes both FPGA-based and software-
based virtual routers [19]. This earlier system, which does
not support partial FPGA reconfiguration, requires the fol-
lowing steps to reconfigure a virtual router in a FPGA.

• All virtual routers implemented in the FPGA are moved
to software-based virtual routers in an adjacent work-

0

500000

1000000

1500000

2000000

2500000

64 128 256 512 1024 1500
Packet size (bytes)

Fo
rw

ar
di

ng
 s

pe
ed

 (p
ps

)

Partial virtual router

Static virtual router

NetFPGA reference router

Figure 5: Throughput comparison of partially-
reconfigurable, statically-reconfigurable, and refer-
ence routers

station. All traffic is rerouted from the NetFPGA to
a NIC located on the PCI bus.

• The FPGA is shut down and fully reconfigured. The
FPGA performs no packet forwarding during this time.

• Following reconfiguration, the migrated software-based
virtual routers are terminated and forwarding of these
packets is once again performed by the FPGA-based
hardware. All packets are once again received at the
NetFPGA.

Extensive additional details of the specific steps are de-
scribed in [19]. An obvious limitation of this approach is
the delay associated with migrating virtual routers and re-
configuring the entire FPGA. A direct comparison between
this approach and the new approach is quantified in Section
5. Subsequently, this approach will be referred to as the
statically-reconfigurable approach.

4.4 Virtex 5 Implementation
Although no in-system experiments were performed, the

virtual router architecture shown in Figure 2 was also im-
plemented on a Virtex 5 (VLX330T) device. Virtex 5 offers
enhanced placement flexibility by allowing reconfiguration
regions of arbitrary rectangular shapes to be placed within
the same column. This placement flexibility combined with
the availability of additional logic resources allows designers
to implement up to 20 virtual routers in partially reconfig-
urable regions. Total resource usage of the system including
both static and partially reconfigurable regions is approxi-
mately 68% of the entire Virtex 5 device. Each partially re-
configurable region is isolated in a rectangular shape which
can be configured with a partial bitstream.

5. EXPERIMENTAL RESULTS
The key performance parameters used in the evaluation

of the system are the observed throughput of the virtual
routers, traffic isolation between the virtual networks and
the overhead of reconfiguration.

5.1 Single Virtual Router Throughput
In an initial experiment, the baseline performance of a

partially reconfigurable virtual router is compared against
the performance of one virtual router using the statically-
reconfigurable approach, described in Section 4.3, and the
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NetFPGA reference router [17]. The NetFPGA packet gen-
erator tool [5] is used to generate and capture packets at
line rate (1 Gbps). All three designs operate at 62.5 MHz.
Figure 5 compares the throughput at the receiver for dif-
ferent packet sizes in all three cases. The performance of
the partially-reconfigurable virtual router matches the per-
formance of the reference router and the previous statically-
reconfigurable virtual router for all packet sizes. Although
not shown in Figure 5, experiments with two partially recon-
figurable virtual routers show that the combined aggregate
throughput of the virtual networks for 64 byte packets is
1,953,125 packets per second (1 Gbps).

5.2 Instantaneous Throughput
In the next experiment, the impact of reconfiguration on

forwarding performance of shared hardware virtual routers is
evaluated. Consider a scenario where two virtual routers A
and B with identical configurations (Configuration I in Ta-
ble 1) are implemented in a FPGA. At t=3s, virtual router

B is replaced by virtual router B
′
which implements Config-

uration II. Figure 6 shows the instantaneous throughput of
each of the three virtual routers sampled every 0.5 seconds if
a static reconfiguration approach is used. At the start of re-
configuration at t=4.5s, B’s throughput drops to 0, while A’s
throughput drops by more than an order of magnitude since

it has been migrated to software. Virtual router B
′

starts
forwarding packets 12 seconds later when the FPGA has
completed full reconfiguration. Figure 7 shows the instanta-
neous throughput for the partially-reconfigurable case. Al-
though B’s throughput drops to 0 at the start of partial
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reconfiguration, A’s throughput shows no change. After
partial reconfiguration completes, full throughput of virtual

network B
′

is restored.

5.3 Average Throughput
Figure 8 indicates the benefit of using partial reconfigura-

tion of virtual routers versus the static reconfiguration ap-
proach for the Virtex 5 device for cases when all virtual net-
works are located in FPGA hardware. In this experiment, it
is assumed that virtual networks in the FPGA either remain
static or must be configured either every 30 seconds or 180
seconds. Two cases are considered; either one or four 1 Gbps
ports on the NetFPGA card are used for an overall potential
throughput of 1 Gbps or 4 Gbps. The graph shows the per-
virtual network throughput as the number of FPGA-based
virtual routers increases. The throughput of the partially-
reconfigurable (PR) virtual routers is unaffected since all
routers except the one being configured remain active dur-
ing reconfiguration. However, for the static reconfiguration
(SR) cases, an FPGA shutdown for 12 seconds [19] causes
increased throughput loss as the number of virtual routers
and network ports increases.

The frequency of reconfiguration plays an important part
in the benefit of partial reconfiguration. If virtual router re-
configuration never occurs or occurs infrequently, the stat-
ically reconfigurable approach can achieve higher through-
put. For example, Figure 9 shows the average throughput
of the heterogeneous system which includes both hardware
and software virtual routers if reconfiguration is never per-
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formed. The use of rigid placement regions for the partially
reconfigurable virtual routers limits the number of virtual
networks versus the statically-reconfigurable case. For ex-
ample, a total of 2 partially reconfigurable virtual routers
can be placed in a Virtex II while 4 statically reconfigurable
virtual routers can be supported. For the Virtex 5, the vir-
tual router count is 20 and 32, respectively. Since fewer high-
speed virtual routers can be implemented in hardware, the
overall throughput of the dynamically reconfigurable sys-
tem drops off a bit earlier. However, since periodic virtual
network reconfiguration is expected for future systems, the
results shown in Figure 8 represent a more realistic scenario.

The run time overhead of partial reconfiguration depends
on the size of the partial bitstream and the frequency of
the JTAG interface. Experimental results indicate that a
680 KB bitstream can be reconfigured over a 12 MHz JTAG
interface in 0.6 seconds. This number is in contrast to the
12 seconds required for full (static) reconfiguration of the
same FPGA through the PCI interface, including bitstream
download time.

5.4 Dynamic Virtual Network Allocation
The effects of virtual network allocation described in Sec-

tion 3.2.3 were quantitatively evaluated using 1000 virtual
networks whose bandwidths are distributed according to a
sample bandwidth distribution measured from PlanetLab
nodes [10]. Software-based virtual routers, implemented as
OpenVZ containers, offer an aggregate bandwidth of 100
Mbps. FPGA-based virtual routers offer up to 1 Gbps ag-
gregate throughput. It is assumed that virtual networks
addition and removal requests arrive according to a Pois-
son distribution with a mean arrival period of 2 hours. The
mean lifetime of a virtual network is a Poisson distribution
with a mean of 64 hours. Additionally, it is assumed that
the bandwidth of each active virtual network changes every
hour by an amount which ranges from 0% up to a maximum
variance. The change in bandwidth for each specific network
is uniformly distributed up to the maximum percentage vari-
ance. A high variance value indicates large fluctuations in
real-time bandwidth requirements (both increases and de-
creases). If a bandwidth variation increase cannot be met,
the current bandwidth is maintained.

Region Dynamic Power (mW)

PR-Region1 173.38
PR-Region2 165.68
Static-Region 593.56

Table 2: Dynamic power consumption in a Virtex II
device

Figure 10 shows the percentage of successful bandwidth
revisions for different variance values for cases when vir-
tual network migration is performed and when it is not per-
formed. A larger number of bandwidth revisions are granted
when virtual networks have small fluctuations from their ini-
tial bandwidth assignments. Reallocation and virtual net-
work migration are not needed in most of these cases. How-
ever, when virtual networks show large fluctuations from
their current bandwidth assignments, reallocation and vir-
tual network migration play important roles in satisfying
10-15% more bandwidth revision requests. Virtual network
additions and removals were included in generating these
results.

5.5 Power Consumption
Table 2 shows the dynamic power consumption of the Vir-

tex II system running at 62.5 MHz with two IP routing
data planes. The dynamic power consumption of the vir-
tual routers is dependent on their internal structure. Total
static power consumption of the Virtex II device is 158.75
mW. When a virtual router is unused, the corresponding
reconfigurable region can be shut down by downloading a
blank configuration bitstream, saving approximately 16% of
total device power consumption.

6. CONCLUSION AND FUTURE WORK
We have described a heterogeneous network virtualiza-

tion platform that integrates several software virtual routers
with partially-reconfigurable hardware virtual routers. Ex-
perimental results with a Virtex II Pro based FPGA board
indicate that hardware virtual networks can forward packets
at line rate and can be reconfigured within a fraction of a
second. This result represents a 20x improvement over a pre-
vious approach which required complete FPGA reconfigura-
tion. In the future, we plan to investigate the use of partial
reconfiguration for network virtualization in larger Virtex 6
devices. The use of intra-FPGA ICAP interfaces for faster
reconfiguration is also an interesting possibility. Our future
work will also focus on developing user-friendly interfaces to
generate and download partial bitstreams for network oper-
ators with little hardware knowledge. More robust virtual
network allocation algorithms will also be explored.
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