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ABSTRACT
We describe Currawong, a tool to perform system software
architecture optimisation. Currawong is an extensible tool
which applies optimisations at the point where an applica-
tion invokes framework or library code. Currawong does
not require source code to perform optimisations, effectively
decoupling the relationship between compilation and optimi-
sation. We show, through examples written for the popular
Android smartphone platform, that Currawong is capable
of significant performance improvement to existing applica-
tions.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Performance

Keywords
Optimization, performance, Prolog, Android

1. INTRODUCTION
Modern operating systems have large and complex APIs,

and writing software that uses these APIs efficiently can
be challenging. There may be multiple ways to accomplish
the same task, in which the only differences between two
or more alternatives are performance characteristics. Some-
times the right choice for one device is the wrong choice for
another device. Even correct and efficient API usage can be-
come inefficient as the API evolves, making the right choice
a moving target.
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API-related inefficiencies are particularly important for
mobile devices, such as smartphones. Their relatively-low-
powered processors, slow buses, constrained graphics hard-
ware, and limited RAM make inefficiencies more obvious
than they would be on more powerful hardware. Unneces-
sary use of the CPU or of devices also impacts power con-
sumption, an important factor for hand-held devices.

We propose a novel optimisation technique that addresses
API inefficiencies: system software architecture optimisa-
tion, or architecture optimisation for short. Architecture
optimisation performs work at API boundaries: that is, at
the point where application code interacts with the rest of
the system. This interaction usually involves system frame-
works or libraries, so Currawong improves performance by
modifying the way in which framework invocations or library
calls take place. Architecture optimisation does not require
application source code. This is important, because it means
that a system designer or end user could perform API-level
optimisation on an application, instead of waiting for the de-
veloper to produce a faster version for their hardware. This
gives users more control over their applications, particularly
if the developer is unable or unwilling to support them.

In this paper we describe the principles behind architec-
ture optimisation through reference to our experimental op-
timisation tool, Currawong (named after the distinctive Aus-
tralasian bird). Currawong performs architecture-level op-
timisation of Java programs on the Android platform. Sec-
tion 2 gives a brief overview of Android and introduces two
motivating examples which are used throughout the paper.
Section 3 discusses the design of Currawong with reference
to the running examples. Section 4 shows the results of
running Currawong on the running examples. Section 5 dis-
cusses related work, and Section 6 concludes.

2. ANDROID
Android is a mobile operating system developed by Google

which runs on smartphones, netbooks, and similar devices [3].
In Android, applications are reliant on a system framework
for services, some of which run in a separate process. Appli-
cations communicate across processes using a custom IPC
mechanism. For example, applications communicate with
an external component to draw graphics to the display.

The framework services that cannot be implemented as
application-local libraries are implemented in the System
Server, a privileged application which runs in a separate
process. An example interaction with the System Server is
shown in Figure 1. The application transmits bitmaps to
the System Server for display using shared memory (repre-
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Figure 1: Android application communication

sented by small squares in the diagram). It communicates
via function-call-based IPC to instruct the drawing server
to update the display (the “Drawing ctl.” connector). The
System Server communicates via the same IPC mechanism
to notify the application of input events, such as a finger
moving on the touch screen.

Android applications are written in Java and execute on
Dalvik, a custom virtual machine.

2.1 Case studies
We illustrate the design of Currawong with two Android-

based examples of architecture optimisation.
The touch events optimisation modifies the way ap-

plications are notified of touch events—finger-presses on a
touch-sensitive screen. In the standard model, shown in Fig-
ure 2 (A), touch events are handled by the System Server
component. Data representing the event are marshalled and
sent to the foreground application using IPC. In the opti-
mised version, shown in Figure 2 (B), the application reads
directly from the relevant device node representing the touch
screen hardware. This eliminates the cost of the IPC. IPC in
Android is surprisingly slow, so this optimisation can have
a noticeable effect.
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Figure 2: Touch events optimisation

The redraw optimisation modifies the way applications
re-draw their displays. Android offers multiple ways to draw
2D graphics. The recommended method for relatively-static
graphics is to use an API called onDraw(). This method
is called whenever the display should be updated. This ar-
rangement is shown in Figure 3 (A). Despite it being rec-
ommended only for relatively-static displays, this approach
is sometimes also used for high-frame-rate games. Unfor-
tunately, the onDraw() method is very CPU-intensive: for
every frame, a Surface object, which contains bitmap data,
is re-initialised and cleared.

When the optimisation is applied, as shown in Figure 3
(B), several changes are made to the application. The appli-
cation is modified to start a new thread, labelled“Currawong
thread” in the diagram. This thread then calls the appro-
priate application code to re-draw the surface. Importantly,
the Currawong thread maintains a persistent Surface ob-
ject, rather than re-creating one each time.
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Figure 3: Redraw optimisation

3. DESIGN
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Figure 4: Currawong data flow

Figure 4 shows a high-level overview of Currawong. Cur-
rawong requires as input a specification and an application.
The specification is parsed and tokenised, and the applica-
tion is disassembled. The specification is then evaluated.
The specification is written in a logic programming lan-
guage, so evaluation of the specification either fails (in which
case the application cannot be optimised by this specifica-
tion), or it results in a new, rewritten application. In the
latter case, this new application is reassembled and writ-
ten to disk. Each of these parts is discussed in more detail
below.

3.1 Specification
Currawong decides how and what to optimise based on

an optimisation specification. An optimisation specification
consists of two parts: verification that an optimisation can
be applied, and then implementation of that optimisation.
Figure 5 shows the complete specification of the redraw opti-
misation. The source code for the touch events optimisation
is omitted for space reasons, but is conceptually similar.

Optimisation specifications are written in a custom lan-
guage named Currawong Specification Language (CSL). CSL
is a templated, declarative, extensible logic language. Each
of these features plays an important role in making CSL
maximally expressive with minimal overhead.

Its logic-language roots mean that CSL is declarative: op-
timisations are specified in terms of what they should do,
rather than how they should do it. In addition to hiding im-
plementation details, declarative specifications are compar-
atively concise. The features of a logic language are rather
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1 MatchOnDraw is Java {
2 class $C extends android.view.View {
3 protected void onDraw(Canvas _)
4 { }
5 }
6 }
7
8 MergeOnDraw is Java {
9 class $ClassName {
10 private int _cw_tok;
11 public void surfaceChanged(SurfaceHolder _,
12 int _, int _, int _) {
13 _cw_tok = au.com.nicta.cw.Draw2D.init(this);
14 }
15 }
16 }
17
18 optimise(ondraw, App) is
19 Match = App.match(MatchOnDraw),
20 App.add_module(’au.com.nicta.cw’),
21 App.rename_method(Match.C, onDraw, _onDraw),
22 App.rename_call(Match.C, invalidate, _invalidate),
23 App.merge(Match, MergeOnDraw).

Figure 5: Specification for the redraw optimisation

well-suited to the type of optimisation that Currawong aims
to perform. For example, CSL employs unification as its ex-
ecution mechanism, as it is based on Prolog. Unification and
backtracking along an optimisation specification provide an
approximation to the F (eventually) operator of linear tem-
poral logic [9], and other operators can also be represented.
It is common to use temporal logics for optimisation specifi-
cation (see Section 5 for details) because of their expressive
power. Currawong provides the same level of expressivity,
but does so in a relatively simple way.

CSL is a complete programming language. This means
that CSL is extensible—optimisation support libraries writ-
ten in CSL could be used to make specific optimisations
simpler to write.

The language example shown in Figure 5 includes a clause
named optimise. This is the optimisation’s entry point.

CSL’s templating support lets optimisation authors spec-
ify structural matches in a convenient way. The Match-

OnDraw (lines 1 to 6) and MergeOnDraw (lines 8 to 16) clauses
in Figure 5, for example, are written in a language which
closely resembles Java, but allows pattern matching. This
means that a portion of application code can be specified
and, when it is found, parts of that code (such as the class
name in this example) can be used directly within the opti-

mise clause.
The optimise clause itself first directs Currawong to lo-

cate a portion of the application which matches the Match-

OnDraw template (line 19). It then proceeds to modify the
application: first, it adds a Java module (line 20). It then
renames two methods within the matched portion of the
application (lines 21 and 22). Finally, it adds additional
code to the application by adding the code supplied within
the MergeOnDraw clause to the class matched by the Match-

OnDraw clause (line 23).

3.2 Application input
Applications are supplied to Currawong in Android Pack-

age (APK) format, which is the standard format for applica-

tions on Android systems. APK files contain, among other
things, the compiled form of the Java code.

Currawong creates an internal representation of Java bi-
naries by disassembling them and creating in-memory rep-
resentations of each class. The disassembly requires special
tools, because Android’s Java implementation does not use
standard Java bytecode. We use the Android-specific Baks-
mali disassembler [5]. Baksmali’s output is parsed and an
in-memory representation is built. This representation in-
cludes descriptions of each class, the methods in each class,
and all outgoing calls made by the methods. More detail
could be added if necessary, but this level of representation
has so far proved sufficient. Importantly, use of a disassem-
bler means that Currawong does not require any application-
specific knowledge: the optimisations it applies can be writ-
ten by a framework expert without any knowledge of the
particular applications to which they will be applied.

3.3 Finding optimisation candidates
Optimisation candidates are found through matching code

templates against application code. This process is driven
by match commands within the specification. When match-
ing, Currawong steps through each class in the application,
attempting to apply the code template to the class. A class
matches a template if the inheritance chain in the class is
the same as the inheritance chain in the template, and all
methods in the template match those in the class. A method
matches another method if its signature is exactly the same.
Additionally, match templates may include the special name
“ ”, which matches any name; or a name starting with a dol-
lar sign (such as “$ClassName”) which both matches any
name and makes that name available to the optimiser for
further reference.

3.4 Output
To apply an optimisation, changes must be made to the

application’s binary code. In the case of Java code, those
changes are made to the assembly language representation of
the code. The assembly-language files are then re-assembled
using the Android-specific Smali assembler [5].

After re-assembly of source code, Currawong re-builds
the APK. Because the code has changed, the file must be
re-signed using a key created for Currawong. The result-
ing APK may be installed on the system via any standard
method. Re-signing the application does not introduce any
security issues by itself, because the unoptimised application
must be downloaded and verified using its original signature.
A minor annoyance is that updates to optimised applications
must be downloaded manually and re-signed. This is not a
fundamental issue and could be solved through updates to
Android’s application installation mechanism.

3.5 Security properties
Applications’ security properties may change after optimi-

sation. For example, code added by the touch events optimi-
sation reads data from the normally-inaccessible device node
event0. We propose that Currawong re-use the existing An-
droid security framework to manage this change. Android
supports fine-grained security control mediated by a set of
permission strings in the application’s manifest. For exam-
ple, an application may require direct access to the graphics
frame buffer. The user is presented with a list of the applica-
tion’s security requirements prior to installation—thus, the
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Name Cycles Stdev Normalised Time
Standard 49.2 10 100
Optimised 43.2 5 87

Table 1: Touch events optimisation results

Name Cycles Stdev Normalised Time
onDraw 78.1 55 100
lockCanvas 42.6 3 54
onDraw-opt 37.7 5 48
Optimal 15.4 3 20

Table 2: Redraw optimisation results

user is informed of, and must explicitly allow, non-standard
resource access. Additional fine-grained security require-
ments (such as access to event0) could thus be added to
Android’s security mechanism to accommodate Currawong.
This proposal has not yet been implemented.

4. RESULTS
We applied currawong to several applications resembling

existing applications available publicly for Android. The
test applications were based on the display and touch event
loops of publicly-available applications, with surrounding
logic simplified to provide consistent test results.

For the touch events optimisation, we replayed a simulated
input sequence multiple times (by writing data to the Linux
input device /dev/input/event0).

For the redraw tests, each application was written to re-
draw the display as fast as possible. The test hardware is
limited to a maximum of 60 frames per second. All appli-
cations reached, and stayed at, the expected 60 frames per
second maximum.

In both cases, the test hardware was a Google Android
Developer Phone 1 running the stock version of Android
version 1.6 as supplied by the phone’s manufacturer.

Results for the touch events optimisation are shown in
Table 1. Benchmark data are reported in millions of cycles
executed for the duration of the test, which took several
seconds. The Cycles column shows an average of multiple
runs; the Stdev column reports the standard deviation, also
in millions of cycles; and the Normalised Time column shows
execution time relative to the unoptimised version, which
was defined to execute in 100 units of time. Moving the
touch-processing code to the application itself results in a
modest but not insignificant performance improvement.

Results for the redraw optimisation are shown in Table
2. Benchmark data is reported as total cycles executed
over a period of one second. The “Cycles”, “Stdev”, and
“Normalised time” columns are as per Table 1. Four sepa-
rate applications are shown, ordered from slowest to fastest:
onDraw shows the standard Android method; lockCanvas
shows an alternative Android method; and onDraw-opt shows
the Currawong optimised implementation of the standard
method. Finally, Optimal does not perform screen updates,
but merely writes to an area of non-screen memory 60 times
a second. It shows the CPU time taken by the application
itself, without any framework-imposed drawing overhead.

The lockCanvas method and the Currawong method are
similar in terms of performance, because they do roughly the
same thing. Currawong is slightly faster because it uses na-

tive code whenever possible, whereas lockCanvas uses Java
whenever possible. Importantly, the two-fold performance
improvement due to Currawong was achieved without re-
quiring any involvement from the application author. It is
also interesting to note the high variance in the onDraw
sample, which we suspect is due to memory allocations oc-
casionally triggering garbage collection.

These optimisations are orthogonal. It is quite plausible
that a touch-centric, high-frame-rate Android application
would benefit from both optimisations at once.

5. RELATED WORK
Currawong borrows ideas from two main areas of related

work, Active Libraries and refactoring.
Veldhuizen and Gannon describe an active library as any

library that attempts to guide its compiler to produce domain-
specific optimisations [11]. In the simple case, this covers
any library that makes use of the C preprocessor, or C++
templates, to generate domain-specific code. However, the
definition also applies to those libraries which make use of
a custom compiler. For example, the author of a matrix
manipulation library may wish to include special-case code
for the case when an identity matrix is involved in a mul-
tiplication. She could do this by writing a special check in
the matrix-multiplication routine, but this slows down the
routine in the general case. Instead, she may opt to use a
precompilation tool which performs partial evaluation. In
the cases where it can be discovered at compile time that
the identity matrix is passed as a parameter, the active li-
brary may instruct the preprocessing tool to remove the call
entirely.

The Broadway domain-specific compiler is an implemen-
tation of many concepts behind active libraries [4]. Broad-
way’s compilation process is directed by an annotation file
describing additional data-flow properties of each function in
an active library. Broadway constructs a data-flow lattice
for the entire system, which it then uses to make optimi-
sation decisions. For example, Broadway can perform the
identify-matrix optimisation described above.

Broadway’s focus on a data-flow matrix for static analysis
makes it a very powerful choice for certain classes of libraries,
particularly those related to scientific computing. However,
the most powerful of Broadway’s optimisations as described
in the literature are all for scientific libraries, and it is less
obvious that this choice applies to libraries more generally.
The data-flow model used by Broadway also means that
Broadway requires source code both for the active library
and its client application.

By contrast, Currawong’s other influence, refactoring, is a
simple source-to-source transformation technique. Refactor-
ings modify program structure, but do not modify program
behaviour [2]. A typical refactoring changes a method’s
name, and updates all references to that method to make
use of the new name. Thus refactoring is less focused on op-
timisation than it is on API evolution—adapting old code to
new APIs [1]. Refactoring implementations typically require
source code, but some Keller and Hölzle’s binary component
adaptation scheme can work with Java class files [7]. Cur-
rawong extends this concept by allow code modification as
well as structural changes.

Currawong is not the only optimiser to work directly with
Java bytecode. The Soot optimiser, for example, can per-
form constant propagation, branch elimination, and copy
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propagation [10]. Rosser [12] builds on Soot with the inclu-
sion of a specification language based on a temporal logic.
Rosser’s specification language. This language, however, fo-
cuses on Soot-like optimisations, such as constant propa-
gation and strength reduction; the specification language,
with its focus on data flow, is unsuited to the specification
of large-scale code transformations. However, Currawong’s
and Rosser’s optimisations are orthogonal: a single applica-
tion could benefit from both approaches.

6. DISCUSSION
We have demonstrated a novel optimisation tool, Curra-

wong, which is driven by a complete general-purpose logic
programming language. Currawong distinguishes itself with
its specification language, which provides programmers with
a concise way to specify complex high-level optimisations. In
combination with the unusual traits of not requiring source
code and by working on existing systems, this character-
istic makes Currawong a manifestly practical system: we
have shown that Currawong can produce significant perfor-
mance improvements, from small specifications, on produc-
tion code.

In this paper two APIs have been optimised: touch input,
and graphical output. We suspect that other APIs may also
be optimisable, particularly those related to other forms of
input and output.

We would like to extend Currawong in two directions. The
first direction is to improve Currawong’s ability to find op-
timisation candidates. The examples presented here make
use of pattern matching, a relatively simple technique. Pat-
tern matching is ideal for optimisations focused on individ-
ual API functions, or a set of calls to API functions, be-
cause the specification closely resembles the affected code
syntactically. However, pattern matching by itself is un-
suited to finding data-sensitive optimisation candidates. A
data-sensitive task might involve detecting that the same
object is supplied as a parameter to two consecutive API
calls, forming the basis of an optimisation which coalesces
multiple API calls into one. Other forms of data-sensitive
optimisation involve specialisation based on data values. For
example, an optimisation for a matrix multiplication library
might attempt to detect whether one of the matrices passed
to a particular multiplication operation is the identity ma-
trix.

We have added preliminary support for the detection of
data-sensitive optimisation candidates to Currawong. Cur-
rently Currawong can detect if the same object is passed
to two consecutive API functions. This data-sensitive re-
quirement is specified as an additional predicate within the
optimise clause, via reference to variables within the tem-
plate. Internally, Currawong uses symbolic execution [8] to
determine whether two parameters refer to the same object.
We plan to adding incremental support for additional data-
sensitive analyses.

The second direction in which we would like to extend
Currawong is towards supporting languages other than Java.
We are currently working on adding support for C. Extract-
ing information from compiled C is significantly harder than
extracting the equivalent information from bytecode. Cur-
rawong builds a model of compiled code in a manner similar
to that used by the Cake binary adaptation language [6]. An
internal representation is built consisting of each function in
the library, as well as all calls it makes to external func-

tions. This produces a list of functions and their outgoing
calls. To encapsulate these functions into classes, Currawong
makes use of a feature of the JNI specification that specifies
a special naming system for JNI-accessible functions. This
support is enough to support API modification by replac-
ing API calls. We are currently adding support for static
analysis of the kind discussed above, as well as support for
adding code to existing binaries, so that a wider range of
optimisations becomes available.
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