
PPR: Partial Packet Recovery for Wireless Networks

Kyle Jamieson and Hari Balakrishnan
MIT Computer Science and Artificial Intelligence Laboratory

{jamieson, hari}@csail.mit.edu

ABSTRACT
Bit errors occur in wireless communication when interference or
noise overcomes the coded and modulated transmission. Current
wireless protocols may use forward error correction (FEC) to cor-
rect some small number of bit errors, but generally retransmit the
whole packet if the FEC is insufficient. We observe that current
wireless mesh network protocols retransmit a number of packets
and that most of these retransmissions end up sending bits that have
already been received multiple times, wasting network capacity. To
overcome this inefficiency, we develop, implement, and evaluate a
partial packet recovery (PPR) system.

PPR incorporates two new ideas: (1) SoftPHY, an expanded
physical layer (PHY) interface that provides PHY-independent
hints to higher layers about the PHY’s confidence in each bit it
decodes, and (2) a postamble scheme to recover data even when a
packet preamble is corrupted and not decodable at the receiver.

Finally, we present PP-ARQ, an asynchronous link-layer ARQ
protocol built on PPR that allows a receiver to compactly encode a
request for retransmission of only those bits in a packet that are
likely in error. Our experimental results from a 31-node Zigbee
(802.15.4) testbed that includes Telos motes with 2.4 GHz Chipcon
radios and GNU Radio nodes implementing the 802.15.4 standard
show that PP-ARQ increases end-to-end capacity by a factor of 2×
under moderate load.

Categories and Subject Descriptors
C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design—Wireless Communication

General Terms
Design, experimentation, measurement

Keywords
Wireless, 802.11, Zigbee, layering, synchronization, ARQ

1. INTRODUCTION
Bit errors over wireless channels occur when the signal to inter-

ference and noise ratio (SINR) is not high enough to decode infor-

This work was supported by the National Science Foundation under Award
Numbers CNS-0520032 and CNS-0205445.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

mation correctly. In addition to noise, poor SINR arises from the
interference caused by one or more concurrent transmissions in the
network, and varies in time even within a single packet transmis-
sion. Thus a tension arises between permitting concurrent trans-
missions to increase spatial reuse, and receiving those transmis-
sions correctly. Even with a variety of physical layer (PHY) tech-
niques such as spread-spectrum and OFDM modulation, channel
coding, and the like, current systems rely heavily on link-layer re-
transmissions to recover from bit errors and achieve high capacity.
Since wireless channels are hard to model and predict, designing an
error-free communication link generally entails sacrificing signifi-
cant capacity; instead, a design that occasionally causes errors to
occur fares better in this regard. Retransmissions allow a receiver
to recover from lost packets.

Retransmitting entire packets works well over wired networks
where bit-level corruption is rare and a packet loss implies that all
the bits of the packet were lost (e.g., due to a queue overflow in a
switch). Over radio, however, all the bits in a packet don’t share the
same fate: very often, only a small number of bits in a packet are in
error; the rest are correct. Thus, it is wasteful to re-send the entire
packet: our goal is to eliminate this waste.

There are several challenges in realizing this goal. First, how
can a receiver tell which bits are correct and which are not? Sec-
ond, since most PHYs require the receiver to synchronize with the
sender on a preamble before decoding a packet’s contents, wouldn’t
any corruption to the preamble (caused, for instance, by a packet
collision from another transmission) greatly diminish the potential
benefits of the proposed scheme? Third, how can higher layer pro-
tocols use partial packets to improve end-to-end performance?

This paper presents the design, implementation, and evaluation
of PPR, a Partial Packet Recovery system that improves aggregate
network capacity by greatly reducing the number of redundant bits
transmitted. Our key insight is to use information from the physical
layer to improve error resilience. PPR incorporates the following
two novel techniques, to meet the challenges mentioned above:

The SoftPHY interface (Section 2) allows the receiver to deter-
mine, with no additional feedback or information from the sender,
which bits are likely to be correct in any given packet reception
using hints from the PHY. The key insight in SoftPHY is that the
PHY should pass up information about how close each received
symbol or codeword was to the symbol or codeword the PHY de-
cided upon. The higher layer can then use this information as a hint,
independent of the underlying details in the PHY.

Postamble decoding (Section 3) allows a receiver to receive and
decode bits correctly even from packets whose preambles are cor-
rupted by other transmissions or noise. The main idea here is to
replicate the information in the preamble and packet header in a
postamble and a packet trailer, allowing a receiver to lock on the

Preamble frame
synchronization

PP-ARQ

Postamble frame
synchronization

Hard symbol-decision
DSSS decoder

Soft-output
Viterbi decoder

QPSK/QAM detector SoftPH
Y

 Interface

Bits and
SoftPHY hints

Partial packets and
SoftPHY hints

Physical Layer MAC Layer

Packets
OR

OR

OR OTHERS...

Figure 1: Block diagram of the PPR system; dark blocks and the SoftPHY interface are the contributions of this paper. Our contri-
butions fit above one of many different types of receiver structure, modified to pass up SoftPHY hints (Section 2) to the MAC layer.
Postamble decoding, described in Section 3, increases the number of opportunities for recovering partial packets from the receiver.
SoftPHY hints propagate to PP-ARQ, the partial packet retransmission layer, described in Section 4.

postamble and then “roll back” in time to recover data that was
previously impossible to decode.

Using PPR, we have designed PP-ARQ (Section 4), a link-layer
retransmission protocol in which the receiver compactly requests
the retransmission of only the select portions of a packet where
there are bits likely to be wrong. In response, the sender retrans-
mits the bits and checksums for those ranges, so that the receiver
can eventually be certain that all the bits in the packet are correct.
The receiver’s request encoding uses a dynamic programming algo-
rithm that minimizes the expected bit overhead of communicating
this feedback, balancing that against the cost of the sender retrans-
mitting bits already received correctly.

We have implemented each of the three above ideas for 802.15.4,
the Zigbee standard. Our implementation is compatible with that
specification. The SoftPHY and postamble decoding steps running
at the receiver can recover partial packets from unmodified Zigbee
senders, while PP-ARQ requires sender-side modifications. For ad-
ditional insight, we have implemented PPR in an uncoded DQPSK
receiver. Section 6 gives the details of all our implementation work.

The underlying premise in PPR is that significant performance
gains can be obtained by the combination of a more aggressive,
higher-rate PHY and being more flexible about the granularity
of error recovery in wireless networks. Our techniques can im-
prove performance in both access point-based networks and wire-
less mesh networks. Section 7 shows several experimental results
that confirm this premise: in that section, we describe a 31-node in-
door testbed consisting of telos motes with 2.4 GHz Zigbee radios
from Chipcon and six GNU Radio nodes. Our results show factor-
of-two gains over the status quo in aggregate end-to-end through-
put using PP-ARQ. Our gains are even higher (4× better aggregate
end-to-end throughput) under heavy load, which causes a number
of links to have marginal quality. Even at light load we find that
on the links with the lowest loss rates (which would be the ones se-
lected by routing protocols), the raw success rate improves by 1.6×.
We also compare PPR to other ways of determining which bits are
likely to be correct, such as fragmented packet checksums.

2. SOFTPHY INTERFACE AND DESIGN
In current receivers, the PHY outputs only a sequence of bits

after demodulation and channel decoding. This interface is rather
limiting, since higher layers have no easy way of assertaining the
certainty that the PHY has in each bit it outputs. The PHY, how-
ever, has this information, and in this section we discuss how it
can annotate each group of bits output with the confidence it has
in those bits’ correctness. For three common receiver designs span-
ning the PHY design space, we specify this information and discuss

u(f)

e tfj 02π−

h*(−t)
kT akˆ

ϕ k

)(tr
yk

Figure 2: SoftPHY in a standard demodulator. For each output
symbol âk, the demodulator produces SoftPHY hint ϕk.

implementation methods. In the following sections, we consider
SoftPHY in an uncoded demodulator, a DSSS receiver with hard-
decision symbol decoding, and soft-decision decoders. We begin
with a key observation regarding the PHY’s digital abstraction.

2.1 SoftPHY architecture
One benefit of the current layered receiver architecture is that the

PHY provides a digital abstraction, which isolates layers above the
PHY from implementation details of the PHY itself. While a va-
riety of PHY implementations can provide the SoftPHY interface,
the semantics of SoftPHY hints are tied to the details of the PHY,
potentially violating this digital abstraction.

In PPR, layers above the PHY are not aware of how SoftPHY
hints are calculated. Instead, they adapt their decisions on how to
handle each bit based on observation. For example, the MAC layer
could observe the correlation between a particular threshold and the
correctness of the hint, and adapt the threshold dynamically. This
approach can be used as long as the PHY simply provides a “mono-
tonicity” contract; i.e., given any two SoftPHY hint values, h1 and
h2, h1 < h2 always implies that the PHY has a higher confidence in
the bits associated with h1 than with h2 (or vice-versa).

Thus, while SoftPHY hints themselves are PHY-dependent, lay-
ers above the PHY use SoftPHY hints in a PHY-independent man-
ner, retaining the benefits of the PHY’s digital abstraction. At the
same time, from an information-theoretic perspective, the SoftPHY
design necessitates no loss of information: the bits and the hints can
contain the same amount of information as the raw signal samples.
We now briefly delve into the PHY, describing how three common
designs can yield SoftPHY hints.

2.2 SoftPHY for an uncoded channel
Figure 2 gives a picture of a rudimentary digital receiver that has

been agumented to return SoftPHY hints. Once the incoming signal
r(t) has been downconverted to baseband, the structure that maxi-

S Symbols ↔ S/B codewords
B/k symbols

Codeword ↔ b bits

len
dst
src

len
dst
src

Header Trailer
Training
Sequence

SFD

Preamble

Training
Sequence

E
FD

Postamble

cksum
Figure 3: A frame is composed of S symbols, preceeded by a start-of-frame delimiter (SFD) and followed by an end-of-frame
delimeter (EFD). Using the notation of Section 2.3, symbols are organized into S/B codewords of B/k symbols each by channel coding
or direct-sequence spread spectrum. Each codeword encodes b data bits. Our novel contribution to the frame layout, the postamble,
is shown in bold.

mizes SNR at the output of the receiver [7] is a filter h∗(−t) matched
to the shape of the transmitted signal as seen through the channel,
h(t). After sampling, the key element in the receiver is the slicer,
which quantizes the sampled signal to one of a few symbols âk. For
each quantized output symbol, we obtain PHY hints ϕk as the dif-
ference between the sampler output and the slicer output, as shown
in Figure 2. This SoftPHY hint can be interpreted as the distance
in signal space between r(t)’s constellation point and the decoded
symbol’s constellation point. We have implemented the design in
Figure 2 for a DQPSK receiver. In Section 7.4, we evaluate these
SoftPHY hints at marginal SNR.

2.3 SoftPHY in a hard-decision block decoder
Our Zigbee implementation, evaluated in Section 7.1, uses a hard

decision decoder (HDD). To understand how SoftPHY works in our
Zigbee receiver, a conceptual model of the wireless communication
system will be helpful. This model also applies to common direct-
sequence spread spectrum (DSSS) or OFDM-DSSS radio. In par-
ticular, it applies to both 802.15.4 (Zigbee) and 802.11b/g (WiFi),
two common standards.

In block coding, the PHY maps groups of b source bits to a B-
bit (B-chip) codeword as shown in Figure 3. Since there are only
2b unique b-bit strings, the space of valid codewords is extremely
sparse. The sender then groups the codewords into channel symbols
encoding k ≥ 1 bits each, and sends the channel symbols over the
air, modulated over some baseband transmit waveform. In Zigbee,
k = 2, b = 4, and B = 32, thus each group of four source bits in
the original packet gets spread over 32 chips, or B/k = 16 channel
symbols.

In an HDD design, the demodulator outputs hard symbol de-
cisions (âk in Figure 2) for each symbol in turn, independent of
other symbols. It then sends that information to the channel de-
coder, which maps the received codeword to the closest valid code-
word. The proximity of this mapping, measured as the Hamming
distance between the received word and the codeword (the number
of distinct elements between the two words), can serve as a useful
confidence hint; we evaluate its performance below in Section 2.5.

2.4 SoftPHY in a decoder with soft decisions
For better performance at low SINR, a decoder can use soft-

decision decoding (SDD) [7]. The SDD decoder works directly on
samples of received symbols yk, before they are sliced, thus using
more information to make its decisions. However, SDD will still
produce incorrect codewords at very low SINR, and does not re-
cover correct bits particularly well during packet collisions.

In a block-based code, the SDD decoder calculates the corre-

lation C between the received samples Y and each codeword Ci
(whose jth bit is ci j) defined as:

C (Y,Ci) =
n∑

j=1

y jci j. (1)

C can then serve as a SoftPHY hint from the PHY to higher layers.
In the case of a convolutional code, SoftPHY can use the soft

output of the Viterbi [16] or BCJR [6] decoder. This output is a
measure of how well the received symbol sequence matches with
the path through the coding trellis associated with the chosen code-
word.

In some ways, SoftPHY might seem analogous to soft-decision
decoding, but there is a crucial architectural difference. With soft-
decision decoding, the demodulator’s interface to the decoder is
quite different from hard decoding. In the former, the demodulator
does not attempt to make a decoding decision, instead propagating
received signal samples up to the decoder. In contrast, in the Soft-
PHY design, the PHY doesn’t simply pass up all its raw informa-
tion to the higher layer. The PHY still makes “hard” decisions, thus
preserving layering boundaries. This architecture preserves a clean
decomposition between PHY and higher layers while enabling per-
formance gains.

2.5 SoftPHY experiments
We have conducted preliminary experiments with the HDD and

SDD schemes described above. We found that our bit errors were
mostly attributable to collisions, and in this case, the difference be-
tween HDD and SDD was not significant. Because the HDD imple-
mentation was conceptually simpler, we developed a complete im-
plementation of that idea and conducted several experiments with
it (described in detail in Section 7.1). Here, we give brief experi-
mental results showing that Hamming distance is a good SoftPHY
hint.

We first take a detailed look at a particular partial packet re-
ception, showing the receiver’s view of each codeword. Figure 4
shows a receiver’s view of a packet sent from one sender, at two
different codeword synchronization offsets. The packet contains a
known bit pattern, against which we test each received codeword
for correctness. The result of each test is indicated by the presence
or absence of a triangle in the figure.1 The upper plot in Figure 4
shows the packet arriving at the receiver at time2 0, and achiev-
ing synchronization at time 10 (lower plot). When the PHY syn-

1For clarity, we show the result of every fourth codeword-
correctness test.
2Measured in units of codeword-time, 16 µs in our radios.

 0

 10

 0 90

H
am

m
in

g
 d

is
ta

n
ce

Time (codeword number)

Hamming distance
Packet correct codewords

 0

 10

 0 10 47

H
am

m
in

g
 d

is
ta

n
ce

Time (codeword number)

Hamming distance
Packet correct codewords

Figure 4: Partial packet reception at two different codeword synchronization offsets during a loss in codeword/symbol synchroniza-
tion: codeword correctness (triangle indicators) and each codeword’s associated Hamming distance (curves). Despite uncertainty in
PHY codeword timing recovery, Hamming distance indicates the correct parts of the packet to higher layers.

chronizes on the packet, symbol timing recovery succeeds and the
receiver decodes approximately 40 codewords correctly (including
the preamble) before losing symbol or codeword synchronization.
We see that Hamming distance remains at 0 for the duration of the
correct codeword decisions, and rises at time 47 when the burst of
errors occurs. The PHY passes these Hamming distance hints up to
the ARQ layer along with all the codewords in the packet.

Later, at time 90 at the other synchronization offset (upper plot),
the receiver successfully synchronizes on and decodes a run of
codewords extending to the end of the first packet. Since this packet
data is at a different synchronization offset to the preamble, it re-
lies on its postamble in order to frame-synchronize and pass up the
partial packet reception and associated SoftPHY hints.

We perform the next experiment in a 31-node Zigbee/software
radio testbed described below in Section 7. All but four of the
nodes send packets containing a known test pattern, at a constant
rate. There are four receivers, each able to hear and decode some
subset of the senders. Figure 5 shows the distribution of Hamming
distance across each received codeword, separated by whether the
codeword was correctly or incorrectly received (we know this from
the test pattern). Conditioned on a correct decoding, only about one
in 100 codewords have a Hamming distance of two or more. Con-
versely, fewer than one in 10 incorrect codewords have a distance
of two or less.

This result shows that the higher layer can interpret this SoftPHY
hint with a threshold rule. We denote the threshold by η, so that the
higher layer labels groups of bits with d ≤ η “good” and groups
of bits with d > η “bad.” Under the threshold rule then, the two
curves in Figure 5 also show the probability of misclassification
for correct and incorrect symbols, respectively. We analyze these
results further in Section 7.2.

3. POSTAMBLE PACKET DECODING
When many errors occur in the preamble due to collisions or

noise, current radio receivers will not be able to synchronize with
the incoming transmission and decode any bits. In that case, the

10
-3

10
-2

10
-1

1

 0 2 4 6 8 10 12 14

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

 o
r

P
(e

rr
o

r)

Codeword Hamming distance or η

Correct codewords: 1 – CDF
Incorrect codewords: CDF

Figure 5: Distributions of Hamming distances for every code-
word in every received packet, separated by whether the re-
ceived codeword was correctly or incorrectly decoded. Under
the threshold rule, these CDFs can be reinterpreted as curves
plotting probability of misclassification.

potential benefits of SoftPHY will go largely unrealized. We need
a way to mitigate the effects of preamble loss, for example, in the
multi-packet collision shown in Figure 6. In this example, a re-
ceiver would not be able to decode any part of packet P4, since its
preamble was corrupted, while packet P3 would be received and
discarded due to a bad checksum. SoftPHY may help with P3, but
we are interested in P4 as well.

Our approach to synchronizing on packets without an intelligible
preamble is to add a postamble to the end of each packet on which
a receiver can also synchronize. The postamble has a well-known
sequence attached to it that uniquely identifies it as the postam-
ble, and differentiates it from a preamble (“EFD” in Figure 3). In

Figure 6: A four-packet collision. We use P4’s postamble to par-
tially decode that packet, and the techniques described in Sec-
tions 2 and 4 to detect the incorrect parts of both P3 and P4 and
request retransmission of just those parts.

addition, we add a trailer just before the postamble at the end of
the packet, also shown in Figure 3. The trailer contains the packet
length, source, and destination addresses. Just as with header data,
the receiver uses the SoftPHY interface to check the correctness of
the trailer.

To recover the payload after hearing just a postamble, the re-
ceiver maintains a circular buffer of samples of previously-received
symbols even when it has not heard a preamble. In our imple-
mentation, we keep as many sampled symbols as there are in one
maximally-sized packet. When the receiver detects a preamble, the
behavior is the same as in the status quo. If not, then if the receiver
detects a postamble, it takes the following steps:

1. “Roll back” as many symbols as are in the packet trailer.
2. Decode and parse the trailer to find the start of the entire

packet, and the sender and receiver identities.
3. “Roll back” in time as many symbols as are in the entire

packet, to decode as much of the packet as possible.
The main challenge of postamble decoding is addressing how

a receiver can keep a modest number of samples of the incoming
packet in a circular buffer while still allowing the various receiver
subsystems to perform their intended functions. These functions
include carrier recovery, symbol timing recovery, and equalization.
We meet each of these challenges in our implementation, as briefly
outlined below.

Most receivers need to perform symbol timing recovery [7, Chp.
16] to determine when (i.e., with which frequency and phase) to
sample the incoming signal such that the probability of detection
is maximized. In our system, we use the popular decision-directed
timing recovery algorithm [24]. Next, the demodulator may3 need
to perform carrier recovery [7, Chp.15] to estimate the incoming
carrier’s time-varying frequency and phase. A number of tech-
niques for countering inter-symbol interference rely on estimating
the channel impulse response (equalization) [7, Chp. 8]. Typically
the preamble includes a known training sequence to enable the
equalizer to quickly estimate the channel’s response during syn-
chronization. We can therefore include the same training sequence
in the postamble (see Figure 3) and post-process the samples of the
signal in the body of the packet afterwards, using standard signal
processing techniques [17].

4. PP-ARQ: PPR + RETRANSMISSIONS
SoftPHY and postamble detection together allow higher lay-

ers to discover which received codewords are likely to be correct
and which are not. We now examine the problem of how the re-
ceiver can most efficiently communicate this information back to
the sender, to improve the performance of link-level retransmis-
sions.

3Some modulation techniques permit the use of non-coherent de-
tection where carrier recovery is not necessary.

b
1λ

g
1λ

b
2λ g

2λ b
3λ

g
3λ

b
4λ g

4λ

2,1c

c3,3

Figure 7: After computation of run-length representation of a
received packet, the first step in PP-ARQ at the receiver. Run
lengths λb,g

i are as defined in expression 2. Chunk c1,2 is defined
in expression 3.

The naïve way to provide feedback is for each receiver to send
back the bit ranges of each part of the packet believed to be incor-
rect. Unfortunately, doing that may consume a large number of bits,
because encoding the start of a range and its length can take up to
on the order of log S bits for a packet of size S . Hence, we need to
develop a more efficient feedback scheme.

After the receiver has decoded a packet, it has a list of received
symbols S i, 1 ≤ i ≤ N, and a list of associated PHY layer hints ϕi

where ϕi is the confidence the PHY has in symbol S i. Then it uses
the threshold test on each confidence ϕi, and labels each symbol
“good” or “bad.”4 Next, it computes alternating run lengths λg

j , λ
b
j ,

1 ≤ j ≤ L of good and bad symbols, respectively, to form the
run-length representation of the packet as shown in Figure 7. This
representation has the form:

λb
1λ

g
1λ

b
2λ

g
2 · · · λ

b
Lλ

g
L (2)

Here, λg
j is the count of symbols in the jth run of symbols all

rated “good” by SoftPHY, shown with light shading in the figure.
Similarly, λb

k is the size of the kth run of symbols rated “bad” by
SoftPHY, shown with dark shading in the figure.

The receiver forms a list of chunks ci, j: groups of runs that it will
ask the sender to retransmit. Chunk ci, j contains all the bad and
good runs in between and including bad run i and bad run j, so
each chunk starts and ends with bad runs. For example, chunks c1,2

and c3,3 appear in Figure 7. Note that chunk ci, j does not include λg
j ,

the last run of good symbols in the chunk:

ci, j = λ
b
i λ

g
i λ

b
i+1λ

g
i+1 · · · λ

b
j (3)

Once the receiver has made the choice of which chunks to re-
quest from the sender, it sends a feedback packet communicating
this information. We next show that each chunk can be assigned a
cost function, and that the problem of which chunks to request ex-
hibits the “optimal substructure” property in that the cost for an
entire chunk is easily derived from the cost of two suitably di-
vided portions. When the sender responds to the receiver’s feed-
back packet, it also sends the checksums of the good chunks so that
the receiver can verify that they are correct.

4.1 Dynamic programming to find the best
feedback strategy

If λg
k , i ≤ k ≤ j are all small and j − i is large, we would favor

requesting that the entire chunk ci, j be retransmitted, because the
4We note that this “slicing step” is analogous to hard-decision de-
coding, and leave as future work improvements to PP-ARQ that
take into account the values of the SoftPHY hints themselves, al-
though we perform an analysis of how often SoftPHY hints are
wrong in Section 7.2.

additional bits it would take for the receiver to describe each of the
j − i individual chunks would far exceed that needed to retransmit
the good symbols associated with chunk ci, j. If, on the other hand,
some of the λg

k , i ≤ k ≤ j are large, and/or j − i is small, we would
favor asking for the individual chunks ck,k for each k ∈ [i, j] for the
converse reason.

We define the cost of a chunk as follows (i , j):

C
(
ci,i
)
= log S + log λb

i +min
(
λ

g
i , λC

)
(4)

C
(
ci, j

)
= min

2 log S +
j−1∑
l=i

λ
g
l , min

i≤k≤ j−1

{
C
(
ci,k
)
+ C
(
ck+1, j

)} (5)

For the receiver to describe the length and offset of the ith bad
run to the sender, it takes approximately log S + log λb

i bits, where
S is the packet length. The receiver also sends the ith good run or
a checksum of it to the sender, so that the sender can verify that it
received the good run correctly. This takes min

(
λ

g
i , λC

)
bits, where

λC is the length of the checksum. These two terms form the base
case cost of a chunk in Equation 4.

The receiver then runs the recursive steps of the DP algorithm on
the run-length representation of the packet. Equation 5 describes
this computation. The outer min chooses between leaving chunk ci, j

intact (thus resending all good runs within the chunk), or splitting
the chunk into two smaller chunks and thus diving deeper into the
recursive computation. The innermost min operator chooses how to
make the split, if one is needed.

We compute the optimal chunking bottom-up using a table to
memoize the costs of each possible chunking. Note that because
the chunking algorithm operates on chunks, the table has as many
entries as there are chunks in the packet, L. To analyze the compu-
tational complexity of this algorithm, we note that it can be imple-
mented in a bottom-up fashion using a table to memoize the costs of
each possible chunking. This results in an O(L3) implementation.

4.2 The streaming ACK PP-ARQ protocol
The receiver-side dynamic programming algorithm described

above chooses chunks such that each chunk “covers” all the bad
runs in the packet, and may cover some good runs, if they are short
enough. We now describe the complete PP-ARQ protocol between
sender and receiver.

1. The sender transmits the full packet with checksum.
2. The receiver decodes the packet (possibly partially), and

computes the best feedback as described in Section 4.1.
3. The receiver encodes the feedback set in its reverse-link ac-

knowledgement packet (which may be empty, if the receiver
can verify the forward link packet’s checksum).

4. The sender retransmits only (a) the contents of the runs the
receiver requests, and (b) checksums of the remaining runs.

This process continues, with multiple forward-link data packets
and reverse-link feedback packets being concatenated together in
each transmission, to save per-packet overhead.

5. OTHER APPLICATIONS OF PPR
PPR has the potential to improve the performance of mesh net-

work protocols such as opportunistic routing [10] and network cod-
ing. Using PPR, nodes need only forward or combine the bits likely
to be correct in a packet that does not pass checksum, thus im-
proving network capacity. Rather than use PP-ARQ, the integrated
MAC/link layer that implements ExOR or network coding would
directly work with SoftPHY’s output. Alternatively, PP-ARQ could

operate in the “background” recovering erroneous data, while the
routing protocol sends the correct bits forward.

PPR also has the potential to improve the performance of multi-
radio diversity (MRD) schemes [23] in which multiple access
points listen to a transmission and combine the data to recover er-
rors before forwarding the result, saving on retransmissions. Avu-
dainayagan [5, 35] et al.develop a scheme in which multiple nodes
(e.g., access points) exchange soft decision estimates of each data
symbol and collaboratively use that information to improve decod-
ing performance. For this application, PPR’s SoftPHY hints would
provide a way to design a protocol that does not rely on the specifics
of the PHY, unlike this previous work. Thus, with PPR, we may
be able to obtain the simpler design and PHY-independence of the
block-based combining of [23], while also achieving the perfor-
mance gains of using PHY information.

6. IMPLEMENTATION
Zigbee sender. Each Zigbee sender node is a telos mote with a

Chipcon CC2420 radio [33]. Senders run TinyOS5 on the telos’s
TI MSP430 microprocessor. The CC2420 radio is a 2.4 GHz RF
transceiver that uses direct-sequence spread spectrum (DSSS) at a
rate of 2 Msymbols/s with B = 32 symbol codewords.6 Each of the
16 codewords encodes b = 4 bits, implying a peak link data rate
of 250 Kbits/s when there are no other transmissions in progress.
The radio’s underlying modulation is O-QPSK with half sine pulse
shaping, also known as min-shift keying (MSK) [25].

Zigbee receiver. Each of the Zigbee receivers in the following
experiments is a computer connected to a software-defined radio.
The hardware portion of the receiver is a Universal Software Radio
Peripheral (USRP) [13] with a 2.4 GHz daughterboard; the remain-
der of the receiver’s functionality (demodulation and block decod-
ing as described in Section 2.3) is implemented in software. The
DSSS despreading function was written in C++ in the GNURa-
dio [15] framework by the authors, with parts derived from code
written by Schmid [29]. We implemented preamble and postamble
frame synchronization in C++.

DQPSK transceiver. We have implemented a software-defined
radio transmitter and receiver using a combination of the USRP
hardware with CppSim [26] and Matlab. The transmitter uses
differentially-coded QPSK with square-root raised cosine pulse
shaping, for an aggregate data rate of 1.33 MBps. Apart from the
differential coding, there is no channel coding layer in this radio.

PP-ARQ. We have implemented PP-ARQ both in trace-driven
simulation and in the GNURadio framework. The PP-ARQ re-
ceiver uses SoftPHY to compute the run-length representation of
the packet as defined in Section 4, and runs the dynamic program-
ming algorithm described in Section 4.1 on the run-length rep-
resentation of the packet. It then sends a feedback packet to the
sender summarizing which runs need retransmitting. At the sender,
our PP-ARQ implementation parses the recevier’s feedback packet,
computes checksums of each run needing retransmission, packs the
runs into a fragmented CRC packet (with variable sized fragments),
and transmits the fragmented CRC packet to the receiver.

7. EVALUATION
We now describe our experimental evaluation of the PPR system

and PP-ARQ. We begin in Section 7.1 with an evaluation of PPR
capacity improvements in a busy network where collisions cause
SINR to fluctuate. In Section 7.2 we continue the experiments of
Section 2.5, taking a closer look at SoftPHY hints. In Section 7.3
5See http://tinyos.net.
6We use the notation of Section 2.3.

http://tinyos.net

Experiment (Radio) Section Conclusion
PPR in a busy network 7.1 PPR (SoftPHY and postamble decoding) improve four-fold the amount of correct bits the

PHY delivers to higher layers.
SoftPHY hints in a busy net-
work (DSSS/MSK)

7.2 The pattern of “misses” and “false alarms” under the SoftPHY hints we propose enable
partial packet recovery in a busy network.

PP-ARQ in a busy network
(DSSS/MSK)

7.3 PP-ARQ improves aggregate end-to-end throughput over the status quo by more than 4×
under high load and 2× under moderate load. SoftPHY improves capacity even more than
fragmented CRC, without needing performance tuning.

PPR at marginal SNR
(DQPSK)

7.4 SoftPHY hints work best at low SNRs (BER less than 10−6) but well for BERs as high as
10−3. Coding further improves SoftPHY hint efficacy.

PP-ARQ implementation
(DSSS/MSK)

7.5 PP-ARQ acheives significant end-to-end savings in retransmission cost, a median factor of
50% reduction.

Table 1: A summary of the major experimental contributions of this paper.

0 50 100 feet

5

4

3
21

6

Figure 8: Experimental Zigbee testbed layout: there are 31
nodes in total, spread over 11 rooms in an indoor office environ-
ment. Each unnumbered dot indicates a Zigbee node. Software
radio nodes are shown dark, labeled with numbers.

we evaluate PP-ARQ using trace-driven simulation. In Section 7.4
we evaluate PPR’s efficacy in a quiet network on links close to the
SNR threshold. Finally, in Section 7.5, we present a preliminary
evaluation of a real PP-ARQ implementation. We summarize our
experimental findings in Table 1.

7.1 PPR in a busy network
Each sender in the following experiments is a moteiv tmote sky

wireless sensor node, equipped with an DSSS radio as described in
Section 6. We have deployed 25 sender nodes over eleven rooms in
an indoor office environment, as shown in Figure 8. Each receiver
is a Zigbee software radio, also as described in Section 6. We also
deployed six receivers among the senders; in the absence of any
other traffic, each receiver could hear between four and ten sender
nodes, with the best links having near perfect delivery rates.

We now present trace-driven channel capacity results evaluat-
ing how well the combination of SoftPHY (with the Hamming dis-
tance hint described in Section 2) and postamble decoding performs
against the fragmented CRC scheme described in Section 7.1.2. In
this experiment each node sends a stream of bits, which are formed
into traces and post-processed to simulate a range of packet sizes
realistic for a mesh network [30] (this technique is accurate in the
busy, collision-dominated network that we evaluate in this section).
In the underlying experiments, all senders transmit at the same
time, offering 6.9 Kbits/s/node unless otherwise noted. Data points
represent averages of 14 runs unless otherwise noted, and all error
bars indicate 95% confidence intervals.

Summarizing each scheme:

0 100 200 300 400
Aggregate link-level throughput (Kbits/s)

Carrier sense on

Carrier sense off
Packet CRC

Fragmented CRC

SoftPHY

Figure 9: The impact of carrier sense on aggregate link-
level throughput. Carrier sense improves throughput under
each scheme, but PPR techniques yield further improvements.
Postamble decoding is off in this experiment.

1. Packet CRC computes a 32-bit CRC check over the received
packet payload and discards the packet if it does not pass.

2. Fragmented CRC, described in Section 7.1.2, breaks the
packet into fragments, appending to each a 32-bit CRC. Frag-
mented CRC delivers only those fragments with matching
checksums, discarding the remainder.

3. SoftPHY delivers the high-confidence bits: exactly those bits
in the packet whose codewords had a Hamming distance less
than η = 2.

4. PP-ARQ is an implementation of the full PP-ARQ protocol
(as described in Section 4) using PPR (SoftPHY and postam-
ble decoding).

7.1.1 The impact of carrier sense
One potentially confunding factor in PPR’s evaluation is the use

and efficacy of carrier sense in the senders’ CC2420 radios: carrier
sense can fail due to hidden terminals or backoff slots smaller than
the transmit-to-receive turnaround time [12]. To address this factor,
we examine aggregate throughput for each scheme, with and with-
out carrier sense. In Figure 9 we see that carrier sense improves
throughput by a statistically significant amount over the status quo
(“Packet CRC” with postamble decoding off). Noting that carrier
sense yields additive improvements for each scheme, we narrow
the design space of our evaluation to only include carrier sense on
in the remaining experiments.

7.1.2 An alternative: per-fragment checksum
We will show next that the PPR improves performance signifi-

cantly, but one might ask whether it is necessary to achieve similar
gains. One way to approximate SoftPHY is to adopt a technique
similar to that proposed by Ganti et al. [14], splitting the packet
into fragments, and sending multiple checksums per packet, one
per fragment, as shown in Figure 10. This scheme allows the re-

Figure 10: The per-fragment checksum approach: the packet
includes multiple checksums, with each checksum taken over a
different fragment of the packet.

0 100 200 300 400
Aggregate link-level throughput (Kbits/s)

1500 bytes

150

50

15

5

Figure 11: The impact of fragment size on the performance of
the fragmented checksum scheme. Postamble decoding is off,
carrier sense on in this experiment.

ceiver to identify entire fragments that are correct. If bit errors are
concentrated in only a few bursts, then entire fragments will check-
sum correctly, and the receiver would then only have to recover the
erroneous fragments from the sender.

How big must a fragment, c, be? In an implementation, one
might place a checksum every c bits, where c varies in time. If the
current value leads to a large number of contiguous error-free frag-
ments, then c should be increased; otherwise, it should be reduced
(or remain the same). Alternatively, one might observe the symbol
error rate (or bit error rate), assume some model for how these er-
rors occur, and derive an analytically optimal fragment size (which
will change with time as the error rate changes). In either case, the
fragmented checksum needs tuning for the optimal fragment size.

To find the optimal chunk size for the fragmented CRC scheme,
we conducted experiments comparing aggregate throughput as
fragment size varies. The results are shown in Figure 11. We see
that when chunk size is small, checksum overhead dominates;
while large chunk sizes lose throughput because collisions and in-
terference wipe out entire whole fragments. We therefore choose
a fragment size of 50 bytes (corresponding to 30 fragments per
packet) for the following experiments.

7.1.3 PPR raw throughput
To gain further insight about PP-ARQ’s performance gains, we

first look one layer deeper, at the throughput achieved at the Soft-
PHY interface. Figure 12 compares the per-link distribution of
throughputs at medium offered load for each scheme. Since the
postamble and the preamble usually share fate in the packet-level
CRC scheme, performance with or without postamble decoding is
very close, and so for clarity, we omit the curve for packet-level
CRC with postamble decoding. Per-link, we see that fragmented
CRC yields a substantial throughput gain over the status quo, and
that SoftPHY yields a small gain over fragmented CRC without
the need for tuning the fragment size, as noted above. Furthermore,
postamble decoding yields another small and additive raw through-
put gain over each scheme.

The scatter plot in Figure 13 compares the end-to-end throughput
for fragmented CRC on the x-axis with either SoftPHY (top half)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

 o
f

li
n

k
s

Link-level throughput (Kbits/s)

Packet CRC
Fragmented CRC

SoftPHY
Fragmented CRC + postamble

SoftPHY + postamble

Figure 12: Per-link throughput distribution achieved at the
SoftPHY interface. The offered load is 6.9 Kbits/s/node, close
to channel saturation.

 0

 5

 10

 15

 0 5 10 15

O
th

er
 s

ch
em

e
p

er
-l

in
k

 t
h

ro
u

g
h

p
u

t
(K

b
it

s/
s)

Fragmented CRC per-link throughput (Kbits/s)

Other Scheme = Packet CRC
Other Scheme = SoftPHY

Figure 13: Link-by-link comparison of throughput through the
SoftPHY interface. Each data point represents one link in one
experimental run. Upper half: SoftPHY vs. fragmented CRC.
Lower half: packet-level CRC vs. fragmented CRC.

or packet-level CRC (bottom half). The first comparison we can
draw from this graph is the per-link throughput of SoftPHY com-
pared with fragmented CRC (top-half points). We see that SoftPHY
improves per-link performance over fragmented CRC by roughly a
constant factor. This factor is related to the fragment size, and may
be attributed to fragmented CRC’s need to discard the entire frag-
ment when another transmission corrupts part of it.

The bottom-half points in Figure 13 compare fragmented CRC
with packet-level CRC. We see that fragmented CRC far out-

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

 o
f

li
n

k
s

Equivalent frame delivery rate

Packet CRC
Fragmented CRC

SoftPHY
Fragmented CRC + postamble

SoftPHY + postamble

Figure 14: Per-link equivalent frame delivery rate with carrier
sense enabled, at moderate offered load (3.5 Kbits/s/node).

performs packet CRC, because it only has to discard a small frag-
ment instead of the entire packet when that fragment is corrupted.
The fact that the circle points are dispersed on the y-axis and not on
the x-axis means that the spread in the link quality distribution de-
creases when moving to smaller fragment sizes or SoftPHY. This
is probably again because collisions do not occur over the entire
packet, but rather often over a small piece of it.

7.1.4 PPR equivalent frame delivery rate
We now examine the rate at which each scheme described above

delivers bits to higher-layers, once it has succesfully acquired a
packet (i.e., the PHY has detected either a preamble or a postam-
ble). We term this rate the equivalent frame delivery rate, because
it measures how efficient each scheme is at delivering bits to higher
layers once the PHY layer successfully synchronizes.

Figure 14 shows the per-link distribution of equivalent frame de-
livery rate in our network when there is a moderate offered load
(3.5 Kbits/s/node). Even when carrier sense and postamble decod-
ing are enabled, we see a large proportion of extremely poor links in
the status quo network, but PPR techniques increase frame delivery
rate substantially. For both SoftPHY and fragmented CRC, postam-
ble decoding increases median frame delivery rate by the fraction
of bits that come from packets whose preamble was undetectable,
roughly 10%. Comparing packet-level CRC with fragmented CRC,
we see a large gain in frame delivery rates because fragmented CRC
does not throw away the entire packet when it detects an error. PPR
improves on frame delivery rates even more by identifying exactly
which portions of the frame are correct and passing exactly those
bits up.

7.2 SoftPHY hints in a busy network
In Section 2 we introduced the SoftPHY hints that we use in

our experimental evaluation; in Section 2.5 we saw that SoftPHY
hints were a good predictor of correct decoding during an exam-
ple packet reception and in a busy network. We now examine the
statistics of the Hamming distance hint in further detail.

10
-5

10
-4

10
-3

10
-2

10
-1

1

 1 10 100

C
o

m
p

le
m

en
ta

ry
 c

u
m

u
la

ti
v

e
d

is
tr

ib
u

ti
o

n

Length of contiguous misses (codewords)

η=1
η=2
η=3

Figure 15: The distribution of lengths of contiguous misses in
every received packet for various thresholds η.

Recall that we label a codeword “good” when its Hamming dis-
tance is less than or equal to η. Therefore the cumulative distribu-
tion function of incorrect codewords in Figure 5 is also the frac-
tion of incorrect codewords that we incorrectly label good, and for
which the CRC check on the resulting packet or partial packet fails.
We call this fraction the miss rate at threshold η, the rate at which
we “miss” labeling a codeword bad at Hamming distance thresold
η. We see from the figure that the miss rate is one in ten codewords
at η = 6, initially a cause for concern. The saving grace is that when
misses occur, it is highly likely that there are correctly-labeled in-
correct codewords around the miss, and so PP-ARQ will choose
to retransmit the missed codewords. Figure 15 verifies this intu-
ition, showing the complementary CDF of contiguous miss lengths
at various thresholds η. We see that a significant fraction of misses
are of length one, and that long runs of misses are extremely rare.

In Figure 5, we see the complementary cumulative distribution of
correct codewords’ Hamming distances. Since we label a codeword
“bad” when its distance exceeds η, this complementary CDF is also
the fraction of correct codewords that we incorrectly label “bad”
(and which PP-ARQ retransmits) at threshold η. Noting that the
overhead of this event is low—just one unnecessarily transmitted
codeword—we see that its occurence is also low.

7.3 PP-ARQ in a busy network
We now present results for an implementation of the PP-ARQ

protocol as described in Section 6. Our results in this section are
from trace-driven simulation of PP-ARQ, using traces from the
testbed of Figure 8. Using trace-driven simulation, we simulate a
range of different packet sizes realistic for a mesh network [30],
attaching a 24-byte preamble [2] to each packet.

Figure 16 shows the aggregate received thoughput across all
links in the testbed for packet-level CRC (the status quo), frag-
mented CRC, and PP-ARQ. We see that PP-ARQ achieves roughly
a 2× capacity improvement over the status quo, without needing
the fragment-size tuning described in Section 7.1.2.

One significant cause of our performance improvements over the
status quo is the avoidance of retransmitting data that reached the
receiver, but was discarded due to a bad checksum. Figure 17 quan-
tifies this intuition. In the status quo (“Packet CRC” in the figure),
retransmissions are always packet-sized in length, and so we see
only the modes of the packet distribution in the retransmit-size dis-
tribution. Fragmented CRC tuned with a fragment size of 50 bytes

0 100 200 300 400
Aggregate end-to-end delivery (Kbits/s)

Packet CRC

Fragmented CRC

PP-ARQ

Figure 16: Comparison of the aggregate end-to-end delivery
rate between packet-level CRC, fragmented CRC, and the PP-
ARQ implementation. Postamble decoding is on in this experi-
ment.

0

0.5

1

28 64 124 224 724 1324

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

 o
f

re
tr

an
sm

it
 p

ac
k

et
s

Retransmission size (bytes)

Packet CRC
Fragmented CRC

PP-ARQ

Figure 17: Comparison of the distribution of retransmission
sizes for packet-level CRC, fragmented CRC, and the PP-ARQ
implementation. Note PP-ARQ’s long tail of short retransmit
sizes.

breaks the retransmissions down into fragments of size 50 × k for
positive integers k, resulting in the stair-step pattern in the figure.
However, fragmented CRC transmits no fragments smaller than
64 bytes. In contrast, PP-ARQ transmits a significant fraction of
very small packets (less than 64 bytes), the cause of its significant
performance gains. Note from Section 4 that PP-ARQ batches its
retransmissions to avoid preamble overhead on each of the smaller
retransmissions.

Figure 18 shows how end-to-end delivery rate changes when we
increase the offered load to in the network. As well as raw offered
load, we show the percentage of link capacity each node offers in
the figure. At higher offered loads we see packet-level CRC per-
formance degrading substantially. There have been several recent
studies that attempt to elucidate the causes of this loss [3, 31, 32].
PP-ARQ’s end-to-end throughput increases despite the overload,
suggesting that only relatively-small parts of frames are actually
being corrupted in overload conditions in the status quo.

7.4 SoftPHY hints at marginal SNR
We now turn from networks with significant interfering trans-

missions to an evaluation of SoftPHY hints in a quiet channel at
marginal SNR. To perform these experiments, we utilized a fre-
quency band that does not overlap with 802.11 [32], the dominant
source of RF interference in our environment.7 The experiments in
this section use a software radio-based DQPSK transmitter and re-
ceiver pair, whose implementation is described above in Section 6.

7We used GNURadio tools to check for significant interference in
our channel between runs of these experiments.

0 100 200 300 400 500
Aggregate end-to-end delivery (Kbits/s)

Packet CRC

Fragmented CRC

3.5 Kbits/s/node
(1.4% link cap./node)

6.9
(2.8%)

13.8
(5.5%)

27.5
(11%)

PP-ARQ

Figure 18: Comparison of end-to-end delivery rate in overload
conditions; PP-ARQ scales favorably compared to the status
quo. Postamble decoding is enabled in this experiment.

10 15 20 25 30
10

−6

10
−4

10
−2

10
0

A
v

er
ag

e
P

ac
k

et
 B

E
R

Received SNR (dB)

Figure 19: Bit error rate (BER) v. received signal-to-noise ratio
for a DQPSK transmitter-receiver pair in a quiet network.

To simulate links with varying amounts of path loss, we send a
stream of packets between the two radios, modulating the transmit
power of the stream of packets (we hold transmit power constant
for the duration of each packet). At the receiver, we calculate the
average received SNR for each packet and check the correctness
of each bit in the packet. Figure 19 shows the resulting BER-SNR
curve. We note the high BER for relatively-high SNR, hypothe-
sizing that better clock-recovery algorithms and of course coding
would shift the curve left as is commonly seen in commercial radio
receivers.

We are now in a position to examine SoftPHY hints at low SNRs.
We partition the data into “good,” “grey-zone,” and “bad” transmis-
sions according to average BER, as in Table 2. Figure 20 shows the
distribution of SoftPHY hints in each regime. We see that Soft-
PHY hints are a good predictor of symbol correctness in the good
regime, but an increasingly poorer predictor of symbol correctness

Label SNR BER
Good SNR ≥ 21 BER ≤ 10−3

Grey-zone 13 < SNR < 21 10−3 < BER < 10−2

Bad SNR ≤ 13 BER ≥ 10−2

Table 2: Regimes for evaluating SoftPHY at marginal SNR.

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1
Good packets (SNR > 21 dB)

DQPSK angular error (radians/pi)

C
u
m

u
la

ti
v
e

fr
ac

ti
o
n
 o

f
sy

m
b
o
ls

Correct symbols

Incorrect symbols

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1
Grey−zone packets (13 dB < SNR < 21 dB)

DQPSK angular error (radians/pi)

C
u
m

u
la

ti
v
e

fr
ac

ti
o
n
 o

f
sy

m
b
o
ls

0 0.05 0.1 0.15 0.2 0.25
0

0.2

0.4

0.6

0.8

1
Bad packets (SNR < 13 dB)

DQPSK angular error (radians/pi)

C
u
m

u
la

ti
v
e

fr
ac

ti
o
n
 o

f
sy

m
b
o
ls

Figure 20: The effects of marginal SNR on SoftPHY hints with an uncoded DQPSK receiver in a quiet network.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250

C
u

m
u

la
ti

v
e

d
is

tr
ib

u
ti

o
n

Size of partial retransmission (bytes)

Figure 21: Packet sizes of partial retransmissions between a
pair of nodes transferring data with PP-ARQ. Here each packet
size is 250 bytes.

as SNR decreases, as expected. We note that the SoftPHY hint we
use here, per-symbol angular difference from the hard decision, is
based on an uncoded modulation considering each symbol indepen-
dently, and we have achieved significantly better results in coded
modulations (see Figure 5). These results illustrate the diminishing
utility of SoftPHY hints as SNR decreases, and provide a proof-of-
concept in an alternative modulation.

7.5 PP-ARQ
We now present some preliminary results from our real-time im-

plementation of PP-ARQ. In this single-link experiment, one soft-
ware radio-based DSSS transmitter sends 250 byte data packets
back-to-back to a software radio-based receiver.

Figure 21 shows the sizes of each retransmission packet that the
PP-ARQ sender sent to the PP-ARQ receiver. We see that even in
this implementation, which has yet to be performance-tuned, the
median retransmission size is approximately half the full packet
size. This implies that in a busy network, PP-ARQ may need to
retransmit at most half the data, on half the total retransmissions.

8. RELATED WORK
While each of the three ideas in PPR—SoftPHY, postamble de-

coding, and PP-ARQ—is novel, as is their synthesis into a single
system, these individual ideas are related to and inspired by much
previous work. We survey closely related work in this section.

Physical-layer algorithms for sequence decoding can yield de-
cision confidences to higher layers in several ways. The BCJR al-
gorithm [6] yields a posteriori probabilities directly, with only a
modest increase in complexity from the Viterbi alogorithm. The
Viterbi algorithm has itself been extended with decision confidence
outputs; the resulting “soft-output” Viterbi algorithm (SOVA) [16]
or BCJR may be used in a Turbo decoder [8]. The former work
proposes the use of SOVA in the decoding of outer codes and is
contained within the physical layer, whereas our focus is on con-
structing and propagating hints to higher layers. The two techniques
are complementary, because layered coding could be used in con-
junction with SoftPHY as long as the outer-layer code outputs a
confidence metric.

Rate selection algorithms have been extensively studied in
802.11 wireless networks [9, 18, 28]. As with adjusting the amount
of coding on a wireless link, it is hard to predict how much redun-
dancy a link will need in highly-variable conditions. PPR mitigates
the need for choosing the correct rate by allowing receivers to re-
cover partially-received frames and efficiently retransmit only the
parts missing. Moreover, SoftPHY hints can potentially be used to
perform rate adaptation at finer time-scales than before, because it
is now possible for the MAC layer to estimate the symbol error rate
for different rates and modulations more directly than before.

Ahn et al. [4] propose an adaptive FEC algorithm which dynam-
ically adjusts the amount of FEC coding per packet based on the
presence or absence of receiver acknowledgements.

Hybrid ARQ is a way of combining FEC and ARQ. Type I hybrid
ARQ schemes [19] retransmit the same coded data in response to
receiver NACKs. Chase combining [11] improves on this strategy
by storing corrupted packets and feeding them all to the decoder.
Type II hybrid ARQ schemes [19] forego aggressive FEC while the
channel is quiet, and send parity bits on retransmissions, a tech-
nique called incremental redundancy [21]. Metzner [22] and later
Lin and Yu [20] have developed type II hybrid ARQ schemes based
on incremental redundancy.

PP-ARQ takes a different approach from the above work: in-
stead of using stronger codes for the entire packet on retransmit, it
uses hints from the physical layer about which codewords are more
likely to be in error, and retransmits just those codewords.

Techniques such as coding with interleaving [7, Chp. 12] spread
the bursts of errors associated with collisions and deep fades across
many codewords so that they can be corrected. This technique is
complementary to partial packet recovery, but not easy to imple-
ment, because it is necessary to know the channel conditions a pri-
ori in order to provision the amount of coding required to acheieve
high throughput.

Whitehouse et al. [34] and Priyantha [27] propose avoiding “un-

desirable capture” in packet-based wireless networks in time. Un-
desirable capture occurs when the weaker of two packets arrives
first at a receiving node, so that the stronger, later packet corrupts
the weaker, earlier packet, resulting in neither being decoded cor-
rectly. This can be viewed as a special case of postamble decoding,
which we fully explore in the present work.

9. CONCLUSION
We believe that PPR has the potential to change the way PHY,

link, and MAC protocol designers think about protocols. Today’s
wireless PHY implementations employ significant amounts of re-
dundancy to tolerate worst-case channel conditions. If noise during
one or more codewords is higher than expected, existing PHY lay-
ers will generate incorrect bits, which will cause packet-level CRCs
to fail and require retransmission of the whole packet. Since noise
fluctuations are often large, and the penalty for incorrect decod-
ing is also large, PHY layers tend to conservatively include lots
of redundancy in the form of a high degree of channel coding or
conservative modulation. Similarly, MAC layers tend to be quite
conservative with rate adaptation because the consequences of er-
rors are considered dire. The mind-set seems to be that bit errors are
bad, and must be reduced (though eliminating them is impossible).
As a result, they operate with comparatively low payload bit-rates.

PPR reduces the penalty of incorrect decoding, and thus for
a given environment allows the amount of redundancy to be de-
creased, or equivalently the payload bit-rate to be increased. Put
another way, with SoftPHY and PPR, it may be perfectly fine for
a PHY to design for one or even two orders-of-magnitude higher
BER, because higher layers need no longer cope with high packet
error rates, but can decode and recover partial packets correctly.

In addition to investigating the above idea, our plans for future
work include implementing other ways of obtaining confidence in-
formation (as outlined in Section 2, developing a PHY-independent
SoftPHY interface and showing how a PP-ARQ link layer can use
different SoftPHY implementations without change, performing a
broader set of experiments in more settings, and using SoftPHY in-
formation to improve the performance of routing protocols such as
opportunistic routing [10].

Acknowledgments
We thank Bret Hull, Robert Morris, our shepherd Stefan Savage,
David Wetherall, and the anonymous reviewers for their construc-
tive feedback.

10. REFERENCES
[1] Boulder, CO, Nov. 2006.
[2] Wireless LAN Medium Access Control and Physical Layer

Specifications, August 1999. IEEE 802.11 Standard.
[3] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris. Link-Level

Measurements From an 802.11b Mesh Network. In Proc. ACM
SIGCOMM Conf., pages 121–132, Portland, OR, Aug. 2004.

[4] J.-S. Ahn, S.-W. Hong, and J. Heidemann. An Adaptive FEC Code
Control Algorithm for Mobile Wireless Sensor Networks. Journal of
Communications and Networks, 7(4):489–499, 2005.

[5] A. Avudainayagam, J. M. Shea, T. F. Wong, and L. Xin. Reliability
Exchange Schemes for Iterative Packet Combining in Distributed
Arrays. In Proc. of the IEEE WCNC Conf., volume 2, pages
832–837, Mar. 2003.

[6] L. Bahl, J. Cocke, F. Jelinek, and J. Raviv. Optimal Decoding of
Linear Codes for Minimizing Symbol Error Rate. IEEE Trans. Info.
Theory, 20(2):284–287, Mar. 1974.

[7] D. Barry, E. Lee, and D. Messerschmitt. Digital Communication.
Springer, New York, NY, 3rd. edition, 2003.

[8] C. Berrou, A. Glavieux, and P. Thitimajshima. Near Shannon Limit
Error-Correcting Coding and Decoding: Turbo Codes. In Proc. of the
IEEE ICC Conf., pages 54–83, May 1993.

[9] J. Bicket. Bit-Rate Selection in Wireless Networks. Master’s thesis,
Massachusetts Institute of Technology, Feb. 2005.

[10] S. Biswas and R. Morris. ExOR: Opportunistic Multi-hop Routing
for Wireless Networks. In Proc. ACM SIGCOMM Conf., pages
133–144, Philadelphia, PA, Aug. 2005.

[11] D. Chase. Code Combining: A Maximum-Likelihood Decoding
Approach for Combining an Arbitrary Number of Noisy Packets.
IEEE Trans. on Comm., 33(5):385–393, May 1985.

[12] S. Eisenman and A. Campbell. Structuring Contention-Based
Channel Access in Wireless Sensor Networks. In Proc. of ACM/IEEE
IPSN Conf., pages 226–234, Nashville, TN, Apr. 2006.

[13] M. Ettus. Ettus Research, LLC. http://www.ettus.com.
[14] R. Ganti, P. Jayachandran, H. Luo, and T. Abdelzaher. Datalink

Streaming in Wireless Sensor Networks. In Proc. of the SenSys
Conf. [1], pages 209–222.

[15] The GNU Radio Project. http://www.gnu.org/software/gnuradio/.
[16] J. Hagenauer and P. Hoeher. A Viterbi Algorithm with Soft-Decision

Outputs and its Applications. In Proc. of the IEEE GLOBECOM
Conf., Dallas, TX, Nov. 1989.

[17] F. Harris. Multirate Signal Processing for Communication Systems.
Prentice Hall PTR, Upper Saddle River, NJ, 2004.

[18] G. Holland, N. Vaidya, and P. Bahl. A Rate-Adaptive MAC Protocol
for Multihop Wireless Networks. In Proc. ACM MobiCom Conf.,
pages 236–251, Rome, Italy, July 2001.

[19] S. Lin and D. J. Costello. Error Control Coding. Prentice Hall, Upper
Saddle River, NJ, 2nd. edition, 2004.

[20] S. Lin and P. S. Yu. A Hybrid ARQ Scheme with Parity
Retransmission for Error Control of Satellite Channels. IEEE Trans.
on Comm., 30(7):1701–1719, July 1982.

[21] D. Mandelbaum. An Adaptive-Feedback Coding Scheme Using
Incremental Redundancy (Corresp.). IEEE Trans. on Information
Theory, 20(3):388–389, May 1974.

[22] J. Metzner. Improvements in Block-Retransmission Schemes. IEEE
Trans. on Comm., 27(2):524–532, Feb. 1979.

[23] A. Miu, H. Balakrishnan, and C. E. Koksal. Improving Loss
Resilience with Multi-Radio Diversity in Wireless Networks. In
Proc. MobiCom Conf., pages 16–30, Cologne, Germany, Aug. 2005.

[24] K. Mueller and M. Müller. Timing Recovery in Digital Synchronous
Data Receivers. IEEE Trans. on Comm., 24(5), May 1976.

[25] S. Pasupathy. Minimum Shift Keying: A Spectrally-Efficient
Modulation. IEEE Communications Magazine, 7(4):14–22, July
1979.

[26] M. Perrott. The CppSim Behavioral Simulator.
http://www-mtl.mit.edu/researchgroups/perrottgroup/tools.html.

[27] N. B. Priyantha. The Cricket Indoor Location System. PhD thesis,
MIT, May 2005.

[28] B. Sadeghi, V. Kanodia, A. Sabharwal, and E. Knightly.
Opportunistic Media Access for Multirate Ad Hoc Networks. In
Proc. ACM MobiCom Conf., pages 24–35, Atlanta, GA, Sept. 2002.

[29] T. Schmid. Personal communication.
[30] R. Sinha, C. Papadopoulos, and J. Heidemann. Internet Packet Size

Distributions: Some Observations.
http://netweb.usc.edu/~rsinha/pkt-sizes.

[31] D. Son, B. Krishnamachari, and J. Heidemann. Experimental
Analysis of Concurrent Packet Transmissions in Low-Power
Wireless Networks. In Proc. of the SenSys Conf. [1], pages 237–250.

[32] K. Srinivasan, P. Dutta, A. Tavakoli, and P. Levis. Understanding the
Causes of Packet Delivery Success and Failure in Dense Wireless
Sensor Networks. Technical Report SING-06-00, Stanford Univ.,
2006.

[33] TI/Chipcon Products CC2420 Data Sheet.
http://www.chipcon.com/files/CC2420_Data_Sheet_1_3.pdf.

[34] K. Whitehouse, A. Woo, F. Jiang, J. Polastre, and D. Culler.
Exploiting the Capture Effect for Collision Detection and Recovery.
In IEEE EmNets Workshop, Sydney, Australia, May 2005.

[35] T. F. Wong, L. Xin, and J. M. Shea. Iterative Decoding in a
Two-Node Distributed Array. In Proc. of the IEEE MILCOM Conf.,
volume 2, pages 1320–1324, Oct. 2002.

http://www.ettus.com
http://www-mtl.mit.edu/researchgroups/perrottgroup/tools.html
http://netweb.usc.edu/~rsinha/pkt-sizes
http://www.chipcon.com/files/CC2420_Data_Sheet_1_3.pdf

	1 Introduction
	2 SoftPHY interface and design
	2.1 SoftPHY architecture
	2.2 SoftPHY for an uncoded channel
	2.3 SoftPHY in a hard-decision block decoder
	2.4 SoftPHY in a decoder with soft decisions
	2.5 SoftPHY experiments

	3 Postamble packet decoding
	4 PP-ARQ: PPR + Retransmissions
	4.1 Dynamic programming to find the best feedback strategy
	4.2 The streaming ACK PP-ARQ protocol

	5 Other applications of PPR
	6 Implementation
	7 Evaluation
	7.1 PPR in a busy network
	7.1.1 The impact of carrier sense
	7.1.2 An alternative: per-fragment checksum
	7.1.3 PPR raw throughput
	7.1.4 PPR equivalent frame delivery rate

	7.2 SoftPHY hints in a busy network
	7.3 PP-ARQ in a busy network
	7.4 SoftPHY hints at marginal SNR
	7.5 PP-ARQ

	8 Related Work
	9 Conclusion
	10 References

