
Structured Streams: a New Transport Abstraction

Bryan Ford
Massachusetts Institute of Technology

ABSTRACT
Internet applications currently have a choice between stream
and datagram transport abstractions. Datagrams efficiently
support small transactions and streams are suited for long-
running conversations, but neither abstraction adequately
supports applications like HTTP that exhibit a mixture of
transaction sizes, or applications like FTP and SIP that use
multiple transport instances. Structured Stream Transport
(SST) enhances the traditional stream abstraction with a hi-
erarchical hereditary structure, allowing applications to cre-
ate lightweight child streams from any existing stream. Un-
like TCP streams, these lightweight streams incur neither
3-way handshaking delays on startup nor TIME-WAIT pe-
riods on close. Each stream offers independent data transfer
and flow control, allowing different transactions to proceed
in parallel without head-of-line blocking, but all streams
share one congestion control context. SST supports both
reliable and best-effort delivery in a way that semantically
unifies datagrams with streams and solves the classic “large
datagram” problem, where a datagram’s loss probability in-
creases exponentially with fragment count. Finally, an ap-
plication can prioritize its streams relative to each other and
adjust priorities dynamically through out-of-band signaling.
A user-space prototype shows that SST is TCP-friendly to
within 2%, and performs comparably to a user-space TCP
and to within 10% of kernel TCP on a WiFi network.

Categories and Subject Descriptors
C.2.2 [Computer-Communication Networks]: Network
Protocols; C.2.6 [Computer-Communication Networks]:
Internetworking—Standards (e.g., TCP/IP)

General Terms
Algorithms, Design, Performance, Security, Standardization

Keywords
SST, transport protocols, stream, datagram, reliable, best-
effort, web transport, multimedia, mobility, fairness, TCP

1. INTRODUCTION
Current Internet transports offer applications a choice be-

tween two abstractions: reliable byte streams as in TCP [52]
or SCTP [49], or best-effort datagrams as in UDP [41] or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

DCCP [32]. Streams are convenient for large or long-running
activities that must preserve data content and order, such
as terminal sessions or file transfers, but datagrams more ef-
ficiently support numerous small transactions that need to
proceed independently as quickly as possible, such as DNS
requests or frames of a media stream. An application with
a mixture of many small and a few large transactions faces
awkward tradeoffs, because it could benefit from the effi-
ciency of UDP for small transactions but needs TCP to
handle the occasional large ones. Using one TCP stream
per transaction as in HTTP/1.0 [8] makes poor use of net-
work resources and is unfair to other applications when a
client uses many concurrent streams; serializing transactions
onto persistent streams increases transaction latency [38];
and implementing pipelining correctly in web servers has
proven challenging enough that seven years after the stan-
dardization of HTTP/1.1 [19], popular browsers still leave
pipelining disabled for compatibility [33,37].

Applications face further tradeoffs because neither streams
nor datagrams offer a means to associate related transport
instances. Applications such as FTP [42] and SIP [45] asso-
ciate transport instances manually by passing IP addresses
and port numbers in messages, causing protocol fragility and
problems traversing NATs [26]. Other applications multi-
plex many activities onto one TCP stream, as with SSH
tunneling [55], but performance suffers from TCP’s total
ordering of the multiplexed stream, where one lost packet
blocks delivery of all data queued behind it in the stream.

Structured Stream Transport, or SST, addresses these prob-
lems of transaction size and instance association by aug-
menting traditional streams with an explicit hereditary struc-
ture. A structured stream provides not only reliable data
delivery as in TCP, but also permits the creation of addi-
tional lightweight child streams or substreams. When an
application spawns a child from an existing stream, SST
conveys this parent/child relationship to the remote appli-
cation, ensuring that only the intended recipient can ac-
cept the new stream and preserving its structural context.
Each stream delivers data reliably and in order within that
stream, with its own receiver-directed flow control, while
other streams may proceed independently with no head-of-
line blocking. SST shares sequencing, congestion control,
and security state among all streams between a pair of hosts,
minimizing per-stream state overhead and allowing the ap-
plication to use as many concurrent streams as convenient
to match its logical structure. The application may also
create and destroy streams rapidly to match the natural
longevity of its transactions, because SST eliminates TCP’s
3-way handshake delay on all streams after the first, and
also eliminates the 4-minute TIME-WAIT period on close
that can cause TCP state overload [18]. The application
can transmit datagrams on an SST stream with best-effort
delivery, but SST treats these datagrams as ephemeral sub-

streams that are semantically indistinguishable to the re-
ceiving application from ordinary substreams, allowing SST
to fall back to stream-oriented delivery for “datagrams” too
large to transmit as such without unacceptable probability
of loss. Finally, the application can prioritize SST streams
relative to each other, giving preference to interactive or
multimedia streams over background activities, and applica-
tions can use substreams for out-of-band signaling to change
priorities mid-stream, e.g., expediting the loading of images
in the currently visible area of a web page.

A user-space prototype implementation, running on real
and simulated networks, attests to SST’s practicality and
utility. The prototype achieves within 10% of the bandwidth
of mature native TCP implementations on “consumer-grade”
DSL and WiFi connections, and its congestion control is
TCP-fair to within ±2%. Under a simulated web browsing
workload, using one HTTP/1.0-style transaction per stream
with SST achieves the performance of HTTP/1.1 pipelin-
ing, with lower application complexity, and more flexibility
as demonstrated by a simulation of dynamic Web download
prioritization in response to user actions.

The primary contributions of this work are: (a) the struc-
tured stream abstraction, (b) a novel protocol design that
implements this abstraction by splitting the transport into
separate stream and channel layers, and (c) a user-space
prototype for easy experimentation and deployment.

The next section introduces SST’s design as seen by ap-
plications. Section 3 explores specific ways applications can
benefit from structured streams, Section 4 describes SST’s
protocol design in detail, and Section 5 experimentally eval-
uates the performance of the prototype. Section 6 relates
SST to prior work, and Section 7 concludes.

2. STRUCTURED STREAMS
This section describes the structured stream abstraction

as viewed by an application using SST, leaving technical
details of the SST protocol itself to Section 4.

Like a TCP stream [52], an SST stream is a reliable, byte-
oriented conversation between applications. Apart from the
ability to create substreams, SST streams are semantically
almost identical to TCP streams, so porting application pro-
tocols from TCP to SST is straightforward.

2.1 Creating and Accepting Substreams
An application can use an SST stream not only to transfer

data but also to “fork off” child streams or substreams. The
terms “substream” and “child stream” refer only to hered-
itary relationships between streams: once created, there is
no semantic difference between a “top-level” stream and a
substream. SST extends the traditional sockets API with
three new operations for creating substreams:

• create_substream(stream) → new stream:
creates a new child stream from an existing stream.

• listen_substream(stream):
indicates willingness to accept substreams on a stream.

• accept_substream(stream) → new stream:
accepts a substream initiated by the other endpoint.

An application calls listen_substream to indicate will-
ingness to accept new streams as children of an existing
stream, much as the application would use a traditional
listen socket to receive incoming top-level streams. The

peer application on the existing stream’s other endpoint
may then initiate a substream by calling create_substream

on the existing stream. SST notifies the listening applica-
tion of the incoming substream, and the listener accepts it
via accept_substream. Once created and accepted, child
streams are independent of and may outlive their parents.
SST endeavors to make streams “lightweight enough” for
the application to use a new stream for each logical transac-
tion regardless of size, enabling the application to “frame”
its protocol data units according to its needs [14].

SST ensures reliability and data ordering within a stream
but not between streams, so the loss and retransmission of
a data segment on one stream does not delay communica-
tion on other streams. If a client issues many requests to a
server at once on separate streams, for example, the server
may accept several requests concurrently and respond to
them in any order, completing “easy” requests quickly with-
out blocking them behind long-running requests submitted
earlier. Each stream provides independent flow control, so
the receiving application may accept data at different rates
on different streams, or accept data continuously on one
stream while temporarily blocking the sender on another.
SST’s flow control applies to new child streams as well as
to stream data, allowing a server to prevent its clients from
overloading it with too many concurrent requests.

2.2 Datagrams as Ephemeral Substreams
SST has a send_datagram operation providing best-effort

delivery, but SST treats this operation as equivalent to cre-
ating a child stream, sending data on it, and closing the child
with a short linger timeout to avoid buffering the sent data.
SST’s receive_datagram operation is similarly a shorthand
for accepting a substream, reading data, and closing the sub-
stream. Since an SST “datagram” is semantically just an
ephemeral substream, the receiver can accept the substream
with accept_substream instead of receive_datagram, and
can then read the substream’s content as it would with a
normal substream. The receiver gets a connection reset if it
ever tries to send on this ephemeral substream. The receiv-
ing application thus cannot tell whether the sender invoked
send_datagram or the equivalent sequence of operations.

SST can use an optimization described later to deliver
best-effort datagrams efficiently and statelessly as in data-
gram transports such as UDP or DCCP. Because the re-
ceiving application cannot tell whether this optimization
was used, however, the sending SST is free not to use it
when network conditions may not be suitable. If for ex-
ample a datagram to be sent is large enough that at least
one fragment is likely to be lost, given the current loss rate
computed from congestion control statistics, SST forgoes
the datagram delivery optimization and sends the datagram
instead on a “real” substream, transparently to the appli-
cation. SST thus solves the “large datagram” problem of
traditional best-effort services, where datagram loss rates
quickly become unacceptable as datagram size increases.

2.3 Other Application-Visible Features
SST may be deployed either at system level as a “native

transport” alongside TCP and UDP, or at application level
atop UDP. The latter usage allows applications to ship with
a library implementation of SST without requiring special
privileges or extensions to existing operating systems, and
they can use it as they would SSL/TLS [17] or DTLS [43].

Deploying SST atop UDP also allows it to traverse existing
NATs that only natively support TCP and UDP.

Since communication security is now essential for most
applications on today’s Internet, but IP-layer security [31] is
still not widely deployed other than for VPNs, SST provides
optional transport-layer security built on standard practices.

3. USING STRUCTURED STREAMS
To examine the practical benefits of structured streams,

this section briefly explores requirements and challenges faced
by several classic application protocols. We use these pro-
tocols for illustrative purposes only, without implying that
specific applications should necessarily be migrated to SST.

3.1 Application Protocol Modularity
FTP [42] modularizes its operation across multiple trans-

port instances: one TCP stream for control signaling and a
separate stream for each file transfer. Internet telephony
similarly uses a TCP stream for call setup via SIP [45],
and separate UDP streams for media delivery via RTP and
RTCP [46]. With SST, such applications can use a top-level
stream for control and simply open substreams for data com-
munication. Since SST conveys the parent/child relation-
ship on substream creation, the application protocols need
not communicate IP addresses or port numbers explicitly
to associate the related transport instances, simplifying the
application and avoiding difficulties traversing NATs [26].

3.2 Transactional Protocols
The need to support transaction-oriented applications ef-

ficiently has long been recognized [9,11,13]. In the absence
of a general transport satisfying this demand, HTTP/1.0 [8]
used a separate TCP connection for each request, each re-
quiring a 3-way handshake and TIME-WAIT period after
close, leading to unacceptable overhead as the Web became
riddled with small images. Since TCP congestion control
distributes available bandwidth per stream, opening many
concurrent TCP connections is also unfair to other users [3].
HTTP/1.1 [19] allows reuse of a TCP connection for suc-
cessive requests, reducing the total number of connections,
with the disadvantage of serializing requests and often mak-
ing pages take longer to load [38]. In theory requests may
be pipelined to improve latency, but seven years after the
publication of HTTP/1.1, today’s common browsers still
avoid pipelining by default because many servers implement
it incorrectly [33, 37]. Pipelining also fixes response order
to request order, blocking the server from satisfying simple
static content requests promptly until it finishes processing
dynamic content requests submitted earlier for example.

HTTP could benefit from UDP’s efficiency—particularly
for the many conditional GET requests browsers use to test
the freshness of cached objects, whose responses are usually
small—but HTTP cannot use UDP because responses may
be arbitrarily large, and the client has no way of knowing
this when it submits the request. SIP supports operation
over UDP, but gets into trouble for precisely this reason [24].

With SST, applications can use one stream per transac-
tion, with minimal startup latency on all streams after the
first, and without serialization of independent requests or
long-term state retention after close. Alternatively, appli-
cations can use SST as a best-effort datagram transport,
sending requests and replies in separate ephemeral streams,
achieving UDP’s statelessness for small messages without

Figure 1: SST Protocol Architecture

UDP’s message size limits. In either case, SST ensures fair-
ness relative to TCP applications that use only one stream,
since all of an application’s SST streams between the same
pair of hosts share a single congestion control context.

3.3 Out-of-Band Signaling
Many application protocols require some form of out-of-

band signaling, and traditionally must use ad hoc methods
to implement it due to the lack of transport layer support.
Internet telephony sets up two separate UDP media sessions,
for example: an RTP stream for data and a parallel RTCP
stream for related out-of-band signaling [46]. With SST, an
application need not set up out-of-band control channels in
advance: the application can create a new substream at any
time in which to convey an out-of-band message relating
to the parent stream, without interfering with the normal
operation of the parent. Section 5 explores one experimental
use of out-of-band signaling in SST.

4. PROTOCOL DESIGN
SST consists of three related protocols, organized as shown

in Figure 1. The channel protocol is a connection-oriented
best-effort delivery service that provides packet sequencing,
integrity and privacy protection, selective acknowledgment,
and congestion control. The negotiation protocol sets up the
channel protocol’s state, negotiating shared security keys
and optional features. Finally, the stream protocol builds
on the channel and negotiation protocols to implement the
reliable structured stream abstraction SST presents to the
application. For space reasons this paper focuses on the
channel and stream protocols, which are of primary impor-
tance for implementing the structured stream abstraction.

4.1 Packets, Channels, and Streams
Figure 2 illustrates three key communication abstractions

that form the interfaces between SST’s layers—packets, chan-
nels, and streams—and how instances of these communica-
tion abstractions relate to each other over time.

At the lowest level, SST assumes that the underlying pro-
tocol (e.g., IP or UDP) provides only an unreliable, connec-
tionless, unicast packet delivery service, in which packets
are independent of each other and have ephemeral lifetimes.
Each packet carries some number of bytes, up to the network
path’s current maximum transfer unit (MTU), which may
change at any time. All communication within a channel or
stream ultimately reduces to a series of packets at this level.

On top of this connectionless service SST’s channel proto-
col builds a connection-oriented packet delivery service. Se-
mantically, the channel protocol’s most important functions
are to associate each transmitted packet with a particular

Figure 2: SST Communication Abstractions

connection instance or channel, and to assign monotonically
increasing packet sequence numbers to all packets transmit-
ted within a particular channel. The channel protocol also
attaches acknowledgment information to packets to deter-
mine when packets have arrived successfully, and uses this
acknowledgment information internally to implement con-
gestion control at channel granularity. Finally, the channel
protocol protects each packet with a message authenticator
and an optional encryption wrapper to provide end-to-end
security for all packets transmitted over the channel.

The stream protocol builds on this intermediate chan-
nel abstraction to provide TCP-like reliable byte streams to
the application. The stream protocol handles segmentation
and reassembly, retransmission of lost segments, receiver-
directed flow control, and substream creation and manage-
ment. At any point in time, the stream protocol normally
multiplexes all streams between the same pair of hosts onto
a single channel. The fact that a channel’s sequence number
space does not wrap facilitates efficient stream creation and
termination, but this property also implies that the stream
protocol must migrate long-lived streams from one channel
to another to give streams unlimited lifetimes as in TCP.

Figure 3 shows the layout of a typical SST packet. The
channel header is always eight bytes in the current version
of SST, and includes fields for channel identification, packet
sequencing, and acknowledgment. The stream header is typ-
ically four or eight bytes depending on packet type, and con-
tains fields for stream identification, receive window control,
and sequencing bytes within a stream. Following the appli-
cation payload, the channel protocol’s trailing message au-
thenticator is typically four bytes for lightweight TCP-grade
security, and 12 or more bytes for cryptographic security.

The next section details SST’s channel protocol, and Sec-
tion 4.3 describes the stream protocol. Finally, Section 4.4
briefly outlines the negotiation protocol.

4.2 Channel Protocol
The channel protocol’s purpose is to provide transport ser-

vices that are independent of how the application “frames”
its communication into protocol data units [14], or streams
in SST. The communication state required to provide these
services is thus shareable across many application streams.

SST borrows its connection state, sequencing, and packet
security model from IPsec [31] instead of TCP. SST channels
are inspired by IPsec security associations, and SST packet

Figure 3: SST Packet Layout

sequence numbers work like those IPsec uses for replay pro-
tection in the AH and ESP [30]. While IPsec “hides” its
sequencing semantics from upper layers in the interest of
operating invisibly to existing transports, one of SST’s de-
sign insights is that this sequencing model provides a useful
building block for new, richer transport services.

The following sections detail the channel protocol’s iden-
tification, sequencing, security, acknowledgment, and con-
gestion control services. While one packet submitted to
the channel protocol currently translates to one packet in
the underlying protocol (e.g., IP or UDP), the channel pro-
tocol could be extended to provide services such as chunk
bundling [49] or quality-of-service enhancement [50].

4.2.1 Channel Identification
SST’s negotiation protocol sets up a channel’s initial state

when an application first connects to a target host: each run
of the negotiation protocol yields a new channel. As part
of channel negotiation, each host assigns a channel ID for
each direction of flow. Each transmitted packet includes the
receiver’s channel ID, enabling the receiver to find the asso-
ciated channel instance state; channel IDs thus play the role
of IPsec’s security parameters index (SPI). A channel’s ID
may be reassigned immediately once the channel’s lifetime
ends: the packet authenticator described below rejects old
or replayed packets from prior channel instances. As SST’s
channel protocol is designed for use by the stream proto-
col, which needs at most a few active channels at once, the
channel ID field may be relatively small (currently 8 bits).
Channel zero is reserved for the negotiation protocol.

4.2.2 Packet Sequencing and Replay Protection
TCP uses its byte sequence numbers for three different

purposes: to distinguish and order data segments within
a connection instance, to distinguish segments belonging to
entirely different connection instances [51,53], and to protect
against packet forgery [5]. SST uses its packet sequence
numbers for only the first purpose, leaving the other two
functions to an explicit packet authenticator.

Each channel has a 64-bit packet sequence number space
for each direction of flow, from which the channel proto-
col assigns sequence numbers consecutively to each packet
transmitted. As in IPsec or DCCP [32], every packet sent
gets a new sequence number, including acknowledgments
and retransmissions. The sequence number space does not
wrap, so if a host sends 264 packets on one channel, it nego-
tiates and switches to a new channel with a fresh space.

Like IPsec’s 64-bit sequence number extension [30], SST
authenticates packets using full sequence numbers but trans-
mits only the low bits explicitly in each packet. While the
size of the sequence number space limits a channel’s total
lifetime, the size of the sequence number field in the packet

header limits the window of packets a host may transmit
within one round-trip. SST’s current 24-bit sequence num-
ber field requires the sender to stay less than about 222

packets ahead of the receiver to ensure that the receiver
extrapolates sequence numbers correctly. To achieve max-
imum performance on fast links with long delay, SST may
need an optional header extension like DCCP’s long header
format [32], or a timestamp extension as in PAWS [29].

Also like IPsec, the channel protocol checks the sequence
number of each received packet against a bit mask of se-
quence numbers recently received, and discards without fur-
ther processing both duplicates and packets too old to be
covered by the bit mask. The width of this bit mask there-
fore limits how far out of order within a channel’s sequence
space a packet may be delivered to upper-layer protocols;
we call this value the channel’s mis-ordering limit (MOL).

4.2.3 Authentication and Encryption
SST’s packet security follows the design of IPsec’s ESP [30].

If strong security is not needed, the application can disable
encryption and request a lightweight 32-bit authenticator in
place of a cryptographic MAC. The lightweight authentica-
tor protects the channel against stale or replayed packets
sent in prior channel instances, and against attackers who
can inject forged packets but cannot monitor the communi-
cation stream, providing security comparable to other unse-
cured Internet transports like TCP. SST computes this au-
thenticator by calculating an ordinary 32-bit checksum over
the packet and a pseudo-header containing the full 64-bit
sequence number, then adding two values to the resulting
checksum: first, the same 4-microsecond timer that TCP
uses to choose its initial sequence numbers [16,53]; and sec-
ond, a hash of the connection identifiers and a random inter-
nal secret, as in Bellovin’s method of “keying” TCP ISNs [5].
SST’s keyed checksum offers slightly better protection than
TCP’s keyed sequence numbers, because an SST attacker
must blindly guess exactly the correct checksum key, not
just any sequence number within some validity window.

4.2.4 Acknowledgments and Congestion Control
The channel protocol attaches acknowledgment informa-

tion to each transmitted packet, and uses this information
to implement congestion control. Each transmitted packet
acknowledges a contiguous range of received sequence num-
bers, indicated in the packet header’s Ack Sequence Num-
ber (ASN) and Ack Count (AckCt) fields. A host sends an
acknowledgment for every one or two upper-level data seg-
ments received as in TCP [2], but sets the AckCt field as
large as possible reflecting the most recent contiguous run
of packets received. Successive acknowledgments therefore
usually cover overlapping sequence number ranges, minimiz-
ing the effects of a lost acknowledgment. Figure 4 for ex-
ample illustrates the behavior of a host that acknowledges
every packet, upon receiving sequence numbers 1 through 7
in order except for a lost packet with sequence number 4.

Sending an acknowledgment range in each packet gives
SST the benefits of selective acknowledgment without the
overhead or complexity of variable-length SACK headers [34].
Because SST assigns each packet a fresh sequence number,
including retransmissions of previously-transmitted data, its
acknowledgments provide more information than even TCP
with D-SACK [20]: the sender can tell exactly which copy
of a retransmitted segment arrived and detect false retrans-

Figure 4: Packet Acknowledgment Example

mits before the receiver has seen duplication. SST can thus
implement improvements to TCP congestion control [2] such
as forward acknowledgment [35], reordering tolerance [10],
and delay-sensitive schemes like TFRC [25]. As SST im-
plements congestion control at channel granularity, applica-
tions may use many concurrent streams without behaving
“antisocially” as with redundant TCP connections [19].

4.3 Stream Protocol
The stream layer multiplexes streams onto channels by di-

viding application data into segments according to the cur-
rent maximum transfer unit (MTU) of the network path,
and transmitting each segment as a separate packet on the
current channel. The receiving stream layer accepts these
potentially out-of-order segments and delivers them in or-
der to the application. The sender uses the channel layer’s
packet-oriented acknowledgments to determine when a seg-
ment has been successfully received, so the stream layer re-
quires no byte-oriented acknowledgments as in TCP.

The stream layer can attach a stream to a new channel
before detaching it from the old one, allowing the applica-
tion to continue using the stream without interruption while
transparently migrating the stream to the new channel. SST
does not treat channel failure due to loss of connectivity
as a “hard failure” like a TCP timeout. At the applica-
tion’s option, SST can retain stream state indefinitely until
connectivity resumes and the negotiation protocol creates a
new channel. At this point SST migrates the application’s
streams to the new channel and the application resumes
where it left off. Stream migration also supports end-to-end
host mobility [47, 48]: if a host’s IP address changes, SST
channels bound to that address fail, but if either endpoint
can find the other’s new address (e.g., one host is non-mobile
or has a dynamic DNS name), SST can create a fresh chan-
nel between the new address pair and transparently migrate
the application’s streams to the new channel. Of course, if
one endpoint host reboots, then its stream state is normally
lost and the application must create new streams.

4.3.1 Stream Identification and Attachment
When the stream layer creates a new stream on behalf

of an application, it assigns the stream a Unique Stream
Identifier or USID. A stream’s USID is at least 128 bits,
remains fixed through the stream’s lifetime, and identifies
the stream as it migrates from one channel to another. The
stream layer must then attach the stream to a particular

channel before it can transmit application data. In the pro-
cess of attaching the stream to a channel, the stream layer
assigns a shorter, temporary 16-bit Local Stream Identifier
(LSID) to identify the stream efficiently within the scope of
that particular channel. The stream layer uses this LSID in
place of the stream’s full USID in data segments it transmits
on this channel. The stream keeps its USID but gets a new
LSID each time SST attaches it to a different channel. The
application is not normally aware of either USIDs or LSIDs.

While each stream has only one USID, LSIDs are specific
not only to a channel but to each direction of flow within
that channel. Each endpoint has its own LSID space for each
channel, in which it assigns LSIDs to streams independently
of its peer. Each host tracks both its own and its peer’s
LSID space, using its own LSID space to identify the stream
for a data segment it transmits to its peer, and using its
peer’s LSID space to identify the stream for a data segment
it receives. For bidirectional use, a stream must have two
LSIDs, one assigned by each host for each direction of flow.

4.3.2 Root and Top-Level Application Streams
When the stream protocol initiates negotiation of a new

channel, it creates and implicitly attaches a root stream to
the channel. SST uses this root stream only for internal sig-
naling: the application is unaware of its existence. When
an application opens a “top-level” application stream via
connect, SST first opens a channel to the desired host if
none already exists, then creates a child of the channel’s in-
visible root stream for the application’s use. SST can reuse
the same channel and root stream to create many top-level
streams to the same target host, avoiding 3-way handshakes
for successive top-level streams in the same way that it does
for substreams the application creates via create_substream.

TCP uses its port numbers for two purposes: to distin-
guish among transport instances between the same pair of
hosts, and to name application rendezvous points via well-
known port numbers. SST splits these two functions, using
LSIDs exclusively for stream multiplexing, and using explicit
service negotiation for rendezvous. When the stream layer
creates a new top-level stream, before handing this stream to
the application, it first sends a message on the new stream
to the responding host’s stream layer, indicating the ren-
dezvous point the initiating application wishes to connect
to. The responding stream layer intercepts this message and
replies indicating whether an application is listening at the
given rendezvous point. On success, both stream layers then
hand this top-level stream to the respective applications. An
SST rendezvous point is currently a pair of strings: a service
name (e.g., “www”) and a protocol name (e.g., “http”).

4.3.3 Creating Streams
To create a new child of a stream already attached to a

channel, the stream layer sends an Init packet, shown in Fig-
ure 5. The initiator specifies the LSID it assigned the new
stream and the LSID of the existing parent, both in the ini-
tiator’s LSID space. The packet may also carry application
data for the new stream, as described below.

Although Init packets carry no USIDs, the hosts must
agree on a USID for the new stream so they can attach the
stream to other channels. Each host uses a convention for
assigning LSIDs that allows an Init packet’s receiver to ex-
trapolate a USID from the new stream’s 16-bit LSID. Each
host assigns LSIDs in its LSID space for a channel using

Figure 5: Stream Data Transfer Packets

the low 16 bits of a 64-bit counter, and its peer tracks this
counter and extrapolates the full 64-bit value from a received
LSID the same way the channel layer extrapolates packet se-
quence numbers. The hosts use these 64-bit counters, plus
a pseudorandom nonce unique to the channel and flow di-
rection, to agree on the new stream’s USID implicitly. The
initiator may skip counter values corresponding to LSIDs
still in use by other streams, provided it doesn’t get too far
ahead of its peer and lose counter synchronization.

Upon receiving an Init packet with an unknown LSID, the
responder records the new LSID, then sends a Reply packet
to assign its own “return-path” LSID to the new stream for
data transfer in the opposite direction. The Reply packet
has the same format as an Init packet, except it contains the
initiator’s just-assigned LSID for the new stream in place of
the parent stream’s LSID (see Figure 5). The responder
assigns LSIDs using its 64-bit counter as above to maintain
counter synchronization, but does not use the counter to
derive a USID since each stream requires only one USID.

4.3.4 Data Transfer and Acknowledgment
Both Init and Reply packets may contain application data

and stream control flags. The initiator uses Init packets to
start sending data on the new stream immediately with-
out waiting for the receiver’s acknowledgment, eliminating
TCP’s 3-way handshake delay on new streams once a chan-
nel has been opened to the desired host. The responder may
similarly start sending response data immediately via Reply
packets. The Init and Reply packets contain a 16-bit Byte
Sequence Number (BSN) field indicating the data segment’s
logical offset in the new stream, so a host can send up to
216 − 1 + MTU bytes of data this way before it must start
using using ordinary Data packets, which it can do only af-
ter receiving an acknowledgment indicating that the peer is
aware of the newly assigned LSID.

Data packets have the same structure as Init and Reply
packets, except that they have a 32-bit BSN and no PSID
or RSID (see Figure 5). The stream layer uses this BSN
to reassemble data segments in the correct order at the re-
ceiver, using wraparound arithmetic as in TCP, making the
longevity of a stream effectively unlimited.

A host buffers each data segment it sends until it re-
ceives an acknowledgment for that segment, periodically
retransmitting unacknowledged segments. Since the chan-
nel layer’s acknowledgments refer to packet sequence num-

bers and not byte sequence numbers, the sender records the
packet sequence numbers the channel protocol assigns each
data segment during recent transmission attempts, in or-
der to lookup and free the segment when a corresponding
acknowledgment arrives. Since the channel layer’s packet se-
quence numbers are independent of the stream layer’s LSIDs,
a packet in one stream may effectively acknowledge segments
in other streams. The stream layer uses a separate Ack
packet type to send acknowledgments that cannot be piggy-
backed onto data flowing in the opposite direction.

Since the channel layer’s acknowledgments are definitive,
the receiver must only acknowledge a data segment once it
has fully processed and locally buffered the segment. If the
receiver cannot process a segment due to a temporary re-
source shortage, it may drop the segment without acknowl-
edgment, but using flow control to avoid the need to drop
segments is preferred since dropped segments trigger the
sender’s congestion control and affect the entire channel.

If a data segment already transmitted must be retrans-
mitted with a smaller MTU, the sender “re-fragments” the
segment into smaller segments for retransmission, adjusting
the BSN fields in the new segments accordingly. A host may
also repackage an Init or Reply packet’s data into an ordi-
nary Data packet for retransmission, if an acknowledgment
for some other Init or Reply packet arrives in the meantime.

Init, Reply, and Data packets contain Push (P) and Close
(C) flags that work like TCP’s PSH and FIN flags, indicating
data that should be pushed to the application and marking
the end of stream, respectively. Section 4.3.9 below describes
how SST garbage collects stream state after close.

4.3.5 Datagram Delivery
When the application submits a datagram to be sent as

an “ephemeral substream” with best-effort semantics as de-
scribed in Section 2.2, the stream layer checks that the data-
gram is small enough to ensure a reasonable chance of suc-
cessful delivery, and if so transmits it using a sequence of
Datagram packets shown in Figure 5. The first packet in
the sequence has the First (F) flag set, the last packet has
the Last (L) flag set, and the packets have consecutive se-
quence numbers, allowing the receiver to determine when a
received datagram is complete. Each packet’s LSID refers
to the parent stream; the sender never assigns an LSID or
maintains any state for the ephemeral child substream.

If the sending stream layer judges the ephemeral sub-
stream to be too large for delivery as a datagram, it sends
the substream instead in standard reliable fashion using
Init and Data packets, retransmitting individual segments
as necessary, and closes the substream when finished. The
receiving application obtains no indication of the actual de-
livery method by which the ephemeral substream arrived.

4.3.6 Flow Control
While congestion control operates at channel granularity,

SST provides flow control for each stream individually, al-
lowing the receiving application to accept data at different
rates on each stream. Every packet the stream layer sends
contains a receive window update, indicated in the header’s
5-bit Window field. This field uses an exponential encoding:
a value n indicates a window of at least 2n − 1 bytes. When
the window is large, the sender does not need to know its
size precisely since it will take a while to fill anyway, but the
receiver’s updates become more precise as its buffers fill and

Figure 6: Stream Control Packets

the window shrinks. To avoid a variant of silly window syn-
drome [15], the sender never fragments data segments just
to make a partial segment fit into the receive window: in-
stead it waits until the window can accommodate a full-size
segment, or a short segment containing a Push marker.

TCP uses its cumulative acknowledgment position as a
“base” from which to calculate the window horizon, but SST
has no cumulative acknowledgments from which to calcu-
late such a horizon. SST’s window credit instead represents
the total number of unacknowledged bytes the sender may
have in flight. The receiver deducts from its advertised win-
dow the size of each segment it receives and acknowledges,
and cancels this deduction once it delivers the segment to
the application. The sender similarly deducts each segment
it sends from its window credit and cancels this deduction
when the segment is acknowledged, even if the segment was
received and acknowledged out of order. The sender tracks
the packet sequence numbers of window updates and always
uses only the most recently-sent update.

For flow control, SST treats an Init packet’s data as be-
longing to the parent stream—the stream specified in the
packet’s PSID field—although the data is semantically part
of the new child stream. In effect, when a host sends data on
a new stream without waiting for an initial window size from
the responder, the sender “borrows” from the parent’s re-
ceive window to send this initial data. This borrowing main-
tains proper flow control and avoids receive buffer overrun
while allowing stream creation with no round-trip delay.

4.3.7 Detaching and Migrating Streams
The stream layer sends an Attach packet, shown in Fig-

ure 6, to attach an existing stream to a new channel. The
Attach packet contains the LSID assigned by the sender and
the permanent USID of the stream to be attached. The
sender can attach a stream to a limited number of channels
at once (currently two), and indicates via an attachment slot
number which of these potential attachments it is using. The
receiver looks up the stream by the specified USID, asso-
ciates the specified attachment slot in that stream with the
specified LSID in the channel on which the Attach packet
arrived, and acknowledges the packet via the channel layer.

A host may detach a stream from a channel, freeing the
stream’s LSID in that channel for use by other streams,
by sending a Detach packet (Figure 6). By detaching idle
streams the application has not used for some time and
treating its LSID space as a cache, SST can manage an
arbitrary number of streams. Host API issues may impose
limits on the number of open streams, such as Unix’s file de-
scriptor limit—but in the current user space SST prototype,
which does not use file descriptors for streams, the number
of open streams is limited only by available memory.

4.3.8 Forceful Reset
As in TCP, either host may unilaterally terminate an SST

stream in both directions and discard any buffered data. A
host resets a stream by sending a Reset packet (Figure 6)
containing an LSID in either the sender’s or receiver’s LSID
space, and an O (Orientation) flag indicating in which space
the LSID is to be interpreted. When a host uses a Reset
packet to terminate a stream it believes to be active, it uses
its own LSID referring to the stream, and resends the Reset
packet as necessary until it obtains an acknowledgment.

A host also sends a Reset in response to a packet it receives
referring to an unknown LSID or USID. This situation may
occur if the host has closed and garbage collected its state for
a stream but one of its acknowledgments to its peer’s data
segments is lost in transit, causing its peer to retransmit
those segments. The stateless Reset response indicates to
the peer that it can garbage collect its stream state as well.
Stateless Reset responses always refer to the peer’s LSID
space, since by definition the host itself does not have an
LSID assigned to the unknown stream.

4.3.9 Garbage Collecting and Reusing LSIDs
An SST application that uses one stream per transaction

may create and destroy streams rapidly: in the worst case, a
host can create a stream, assign it an LSID, transmit up to
an MTU of data, and close its end of the stream, all with one
Init packet. The responder may similarly acknowledge the
Init packet, send up to one MTU of response data, and close
the stream, with one Reply packet. SST may therefore reuse
16-bit LSIDs for many successive streams within a channel’s
lifetime, leading to the risk of confusing packets referring to
different uses of the same LSID. This is the same problem
that at a lower level motivates TCP’s ISN selection [51, 53]
and the channel protocol’s keyed authenticators.

To avoid confusing old and new uses of an LSID, after de-
taching an LSID the stream layer imposes a “quiet period”
before creating or attaching another stream with the same
LSID. This quiet period corresponds to TCP’s TIME-WAIT,
but SST counts the duration of this quiet period in packet
sequence numbers instead of wall-clock time, relying on the
channel layer’s mis-ordering limit (MOL). With a 32 packet
MOL, for example, after detachment a host waits for both its
and its peer’s sequence numbers to advance 32 packets be-
yond a point when both hosts know about the detachment.
The channel’s replay logic drops packets that arrive so late
that they might confuse new stream attachments using this
LSID. Because the MOL is a (typically small) constant, and
one packet can attach and/or detach only one stream, the
number of LSIDs that may be stuck in this quiet period is
similarly small, regardless of packet rate. The mis-ordering
limit thus avoids the need for time-bounded TIME-WAITs
and eliminate the risk of state overload under heavy use [18].

4.4 The Negotiation Protocol
The negotiation protocol is responsible for setting up new

channels with either weak or strong security. Negotiation
with weak security sets up the unpredictable checksum key
described in Section 4.2.3. The initiator may piggyback ap-
plication data onto the first negotiation protocol packet, al-
lowing channel setup with no effective round-trip overhead,
but the responder may ignore this initial data and return a
cookie challenge if it is loaded or under DoS attack.

The strong security mode uses Just Fast Keying [1] to
establish shared cryptographic secrets and verify host iden-
tities using a simple, fixed four-message (two round-trip)
exchange. The last two messages may carry piggybacked
application data, for an effective minimum channel setup
overhead of one round trip, identical to TCP’s.

SST is designed to work with UIA ad hoc naming [22] and
UIP routing [21] to support seamless communication among
both fixed and mobile personal devices. UIA, UIP, and
SST use cryptographic host identifiers analogous to those
of HIP [36] to identify endpoints securely, so when a host’s
IP address changes, SST merely reruns the negotiation pro-
tocol to establish a channel between the new addresses, and
migrates existing streams to the new channel.

5. EVALUATION
This section reports on preliminary experience implement-

ing and using SST in real and simulated environments. We
examine how SST scales across transaction sizes in compar-
ison with TCP and UDP, how Web-style transactions on
SST compare with non-persistent, persistent, and pipelined
HTTP over TCP, and how applications can dynamically pri-
oritize SST streams to improve interactive responsiveness.

5.1 Implementation
The initial SST prototype takes the form of a user-space

library written in C++, which runs on Linux, BSD, Mac OS
X, and Windows. The library implements SST atop UDP,
so its use requires no special privileges or OS extensions, and
the library can be statically linked into or distributed with
applications to minimize deployment burden on users. The
prototype implements most of the SST protocol design, in-
cluding classic TCP congestion control [2], but a few features
such as flow control and MTU discovery are still incomplete.
The prototype also allows the application to assign priority
levels to streams, for explicit control of data transmission
within the scope of a congestion controlled channel. For
controlled testing and simulation, the library allows client
applications to run multiple instances of SST simultaneously
in one process, and to virtualize SST’s use of the host’s tim-
ing and networking facilities. The prototype currently totals
about 13,000 source lines, or 4,400 semicolons, and is avail-
able at http://pdos.csail.mit.edu/uia/sst/.

5.2 Experience with Applications
The SST prototype is in regular use by Netsteria, an ex-

perimental peer-to-peer application supporting text-based
chat, voice-over-IP calling and conferencing, and swarming
file transfers. Netsteria’s combination of different types of
network activities operating concurrently serves well to ex-
ercise SST’s capabilities and drive its development. The file
transfer mechanism, for example, divides files into variable-
length blocks and uses a separate SST stream for each block
request/reply transaction, making use of SST’s scalability
over transaction sizes. The voice chat mechanism uses SST’s
ephemeral substreams to transmit small media frames effi-
ciently with best-effort delivery to minimize latency.

5.3 Performance Validation
To test SST’s basic performance against the “gold stan-

dard” of TCP, we first run microbenchmarks of raw band-
width and TCP-friendliness on three transports: the SST
prototype, the host operating system’s native TCP, and a

user-space TCP implementation that was developed along-
side the SST library for comparison purposes. Though the
native TCPs are more mature, the user-space TCP can
run on either a real or simulated network like the SST li-
brary. Since SST always uses selective acknowledgments,
the user-space TCP implements TCP’s SACK extension to
ensure a fair comparison, as do the native TCP stacks on the
hosts used for testing. Since TCP does not provide crypto-
graphic security, the benchmarks run SST in its comparable
checksum-based authentication mode.

Downloading a 10MB file from a PC running SuSE Linux
10.0 to a MacBook Pro running Mac OS 10.4.8 over a real
1.5Mbps DSL connection, and taking the best of three runs
to factor out out possible delays caused by unrelated sys-
tem daemon activity, SST was measured to be 1.0% slower
than native TCP, and user-space TCP was 2.1% slower—
a difference barely out of the noise, but attributable to the
overhead of implementing transports outside the kernel atop
UDP. Running the same benchmark over an 802.11g wire-
less LAN providing about 18Mbps maximum throughput,
SST was 7.1% slower than native TCP, and user-space TCP
was 3.6% slower. These results suggest that even the unop-
timized SST prototype performs adequately on “consumer-
grade” networks, although a more optimized implementa-
tion would be desired on high-speed networks. Comparing
SST against the user-space TCP on simulated networks with
similar parameters, the two transports exhibited identical
performance to within 0.2%.

The second benchmark runs two downloads at once—one
using the native TCP, the other using either SST or the
user-space TCP—to verify “TCP-friendly” congestion con-
trol behavior. The user-space transports were found to be
extremely fair, and just barely less aggressive than native
TCP: SST takes a 48.8% bandwidth share against native
TCP’s 51.2% share, and the user-space TCP takes 48.1%
against native TCP’s 51.9%. This result is unsurprising
given that both user-space transports essentially implement
the classic TCP congestion control schemes.

5.4 Scalability over Transaction Size
We now compare SST against TCP and UDP when used

for Web-style transactions in which the request is small
but the response varies in size. Since we wish to exam-
ine how SST’s performance scales when the application uses
transport instances to match its transaction structure, this
test uses one SST or TCP stream per transaction as in
HTTP/1.0, leaving HTTP/1.1 persistent streams to the next
section. The UDP test operates as in DNS or RPC, with
each request datagram soliciting a single response datagram.

Figure 7 shows client-observed transaction latency on a
log/log plot for responses ranging from 32 bytes to two
megabytes, measured on the real 1.5Mbps DSL connection
described above, which has about 50ms minimum latency.
For small transactions where network latency dominates,
TCP takes twice as long as UDP due to its 3-way hand-
shake. UDP ceases functioning beyond around 8KB due to
middleboxes on the test connection, and IP version 4 limits
datagrams to 64KB in any case. In this test the network con-
nection was quiescent and no UDP datagrams were lost, but
in a second test whose results are not shown, on a connection
loaded with two concurrent long-running TCP downloads,
the effective UDP datagram loss rate often exceeded 50%
even at the widely-used 8KB datagram size.

10s
6s
4s

2s

1s
600ms
400ms

200ms

100ms
60ms
40ms

2M512K128K32K8K2K512B128B32B

R
eq

ue
st

 +
 R

es
po

ns
e

T
im

e

Size of Object Transferred

UDP
TCP
SST

Figure 7: Transactional use of UDP, TCP, and SST
over a 216× range of transaction sizes.

As the graph shows, SST can create new streams for small
transactions with the same low latency as UDP, while scal-
ing to support long-running transfers. The SST test runs
its transactions over a “warm” communication channel al-
ready set up by the negotiation protocol, representing the
common case in which a client makes multiple requests to
the same server. Even without a warm channel, SST can
piggyback the first application request and response data
segments onto the negotiation protocol packets if crypto-
graphic security is not required and the responder is not
heavily loaded, retaining a total latency of one round trip.
Otherwise, SST adds one round trip delay for channel setup.

5.5 Web Traffic Workload
HTTP/1.1 addressed the inefficiency of short-lived TCP

streams through persistent connections, which are now in
common use, and pipelining, which is not. Since SST at-
tempts to offer the benefits of persistent streams with the
simplicity of the one-transaction-per-stream model, we now
compare SST against the behavior of several flavors of HTTP
over TCP, under a simulated web workload.

For this test we simulate a series of web page loads, each
page consisting of a “primary” HTTP request for the HTML,
followed by a batch of “secondary” requests for embedded
objects such as images. As the simulation’s workload we use
a fragment of the UC Berkeley Home IP web client traces
available from the Internet Traffic Archive [27]. We sort
the trace by client IP address so that each user’s activities
are contiguous, then we use only the order and sizes of re-
quests to drive the simulation, ignoring time stamps. Since
the traces do not indicate which requests belong to one web
page, the simulation approximates this information by clas-
sifying requests by extension into “primary” (e.g., ‘.html’ or
no extension) and “secondary” (e.g., ‘gif’, ‘.jpg’, ‘.class’),
and then associating each contiguous run of secondary re-
quests with the immediately preceding primary request. The
simulation pessimistically assumes that the browser cannot
begin requesting secondary objects until it has downloaded
the primary object completely, but at this point it can in
theory request all of the secondary objects in parallel.

Figure 8 shows a scatter plot of the total duration of each
web page load against the total size of all downloads for that
page, on the simulated 1.5Mbps network used in Section 5.3.

4s

2s

1s

600ms
400ms

200ms

100ms

60ms

64K8K1K128B64K8K1K128B64K8K1K128B64K8K1K128B64K8K1K128B

R
eq

ue
st

 +
 R

es
po

ns
e

T
im

e

1 request per page 2 requests per page 3-4 requests per page 5-8 requests per page 9+ requests per page

TCP: HTTP/1.0 serial
TCP: HTTP/1.0 parallel
TCP: HTTP/1.1 persistent
TCP: HTTP/1.1 pipelined
SST: HTTP/1.0 parallel

Figure 8: Web workload comparing single-transaction SST streams against four HTTP flavors over TCP.

The plot is divided into five groups by the total number
of HTTP requests per web page. The leftmost group, for
pages with no secondary requests, has a best-case load time
half that of other groups, because in the latter groups sec-
ondary requests do not start until the primary request com-
pletes. The points labeled “HTTP/1.0 serial” reflect the
behavior of early web browsers that load pages by opening
TCP connections for each request sequentially, “HTTP/1.0
parallel” represents browsers that open up to eight single-
transaction TCP streams in parallel, “HTTP/1.1 persis-
tent” represents modern browsers that use up to two con-
current persistent TCP streams as per RFC 2616 [19], and
“HTTP/1.1 pipelined” uses two concurrent streams with up
to four pipelined requests each. The SST case uses one
transaction per stream, as in HTTP/1.0, but imposes no
limit on the number of parallel streams. As the graph indi-
cates, HTTP/1.0 over SST achieves performance compara-
ble to pipelined HTTP/1.1 streams over TCP, both of which
are much faster than other methods, including the current
common case of persistent but non-pipelined TCP streams.

5.6 Dynamic Prioritization
In a final experiment, we consider a hypothetical SST-

enabled web browser in which a user views a “photo album”
page containing several large images. Traditional browsers
load the images on a page from top to bottom, so if the user
immediately scrolls within the page after opening it, or clicks
on a link to a text anchor somewhere in the middle of the
page, she must wait until the browser loads the (probably
invisible) images above the visible area before the desired
images begin to appear. Our SST-enabled browser instead
expedites the loading of the image(s) within the currently
visible scroll area—perhaps in particular the image immedi-
ately under the user’s mouse pointer. In this scenario, the
image to be expedited might change at any time as the user
scrolls the window or moves the mouse.

With persistent or pipelined TCP connections, the browser
cannot change the order of requests already in the pipeline,
but with SST the browser and web server can cooperate to
achieve the desired result. The client specifies an initial pri-
ority for each request it submits, and changes the priority
of a request already in progress by spawning a temporary
substream from the request’s original stream and sending

1.5MB

1MB

512K

 0
 0 5 10 15 20 25 30

T
ot

al
 B

yt
es

 T
ra

ns
fe

rr
ed

high-priority request

priority change request

high-priority request completeRequest 1
Request 2
Request 3

Figure 9: Dynamic Request Prioritization

a short “change priority” message on this substream. On
receipt, the server attaches this new priority level to the ap-
propriate SST stream on its end, causing its stream layer to
transmit data for high-priority streams before others. This
prioritization feature required no changes to the SST proto-
col as described in Section 4, and only a minor API extension
to the SST implementation for the server’s use.

Figure 9 shows the behavior observed by the client in a
simple scenario on the usual simulated 1.5Mbps network.
At time zero the client requests two 1.5MB files at normal
priority, and the server divides return bandwidth evenly be-
tween them. At five seconds the client submits a third re-
quest labeled high-priority, causing the server to commit all
bandwidth to the new request, temporarily blocking the old
ones. At ten seconds the client submits two priority change
requests, changing Request 1 to high-priority and Request
3 to normal, and the client observes the priority changes
take effect one round-trip later. When Request 1 finally
completes, the remaining two requests again divide avail-
able bandwidth evenly until they complete as well.

5.7 Wire Efficiency
Minimizing the per-packet overhead of transport layer

headers is important to many applications, especially voice
applications that frequently send frames only a few bytes
in size. Table 1 compares SST’s header overhead in bytes
against the minimal overhead imposed by several other trans-
ports. The numbers for SST include the 32-bit lightweight
checksum that SST uses in its non-cryptographic security

Stream Delivery Datagram Delivery
SST TCP SCTP SST UDP DCCP

Data Packet 20 20 28 16 8 12
Ack Packet 20 20 28 16 — 16
Sack Packet 20 32+ 28+ 16 — 20+
Data + Ack 20 20 44 16 — 16
Data + Sack 20 32+ 44+ 16 — 20+

Table 1: Transport Layer Header Overhead

SST TCP SCTP DCCP RDP UDP
Prototype 4400 540
Linux 2.6.20 5400 8000 2900 630
FreeBSD 5.4 4400 510
4.3BSD 990 900 170

Table 2: Transport Code Size (Semicolon Count)

mode, but do not include a UDP encapsulation header since
SST could be run directly atop IP like the other transports.
The DCCP numbers are for DCCP’s short header format,
which uses 24-bit sequence numbers instead of 48-bit at the
cost of weakening the protocol against packet forgery at-
tacks. SST also transmits 24-bit sequence numbers in pack-
ets, but does not rely on them to protect against forgery,
instead relying on 32-bit keyed checksums that depend on
full 64-bit internal sequence numbers. SST effectively pro-
vides most of the functionality of SCTP and DCCP, along
with structured stream support not available in any existing
transport, with no more wire overhead than basic TCP.

5.8 Implementation Size
For a rough comparison of implementation complexity,

Table 2 shows the code size of several transports measured
in number of semicolons. The top line shows the user-space
C++ implementations of SST and TCP used in the above
experiments; the other lines show existing transports written
in C. The user-space TCP is “bare-bones” and implements
only the TCP features needed for the above experiments.
The SST prototype will no doubt grow as it matures, but
it already includes cryptographic security functionality that
none of the other transports do. In comparison, libssl from
OpenSSL 0.9.8e is about 13,000 semicolons (41,000 lines).

6. RELATED WORK
Structured streams represent an attempt to design the

principle of application level framing [14] into the transport
layer, in order to provide transport objects that directly
mirror the structure of the “application data units” with
which the application is concerned.

The popularity of SSL [17] and SSH tunneling [55] attest
to the demand for multiplexing logical streams onto a se-
cure channel. MUX [23] and BEEP [44] similarly multiplex
logical streams onto one TCP stream, layering their own
flow control atop TCP’s. These protocols exacerbate TCP’s
drawbacks, however, by totally ordering many unrelated ac-
tivities so that one lost packet blocks everything behind it.

SST builds on many ideas borrowed from other trans-
ports. RDP [39, 40] provides reliable datagram delivery,
in-sequence or as-available according to the application’s
choice at connection setup. SCTP [49] multiplexes multi-
ple “streams of datagrams” onto one session, provides both
reliable and best-effort delivery, and supports “multihomed”
endpoints for rapid failover. Its streams do not have individ-

ual flow control, however, and cannot be dynamically cre-
ated or destroyed, but must be negotiated en masse at ses-
sion startup. DCCP [32] is a best-effort datagram service
with congestion control, comparable to SST’s channel layer,
but without SST’s packet security features. RDP, SCTP,
and DCCP all suffer from the “large datagram” problem:
datagrams with too many fragments are almost certain to
be lost or require many retransmissions.

SST does not provide multihoming as SCTP does, but its
ability to attach streams to more than one channel at once
could be extended to support multihoming, or even to load-
balance a stream across multiple channels following different
network paths. Since SST’s stream protocol relies on the
channel protocol for loss detection and congestion control,
these mechanisms automatically operate at channel—i.e.,
path—granularity. Performing “end-to-end” load balanc-
ing this way could thus avoid both the harmful performance
side-effects caused by load balancing in lower layers [6], and
the complexity of managing multi-path congestion and re-
transmission control in a stream transport [28].

The need for efficient transport support for transaction-
oriented application protocols has long been recognized [9,
11]. VMTP [13] supports lightweight RPC-style communi-
cation in a clustered environment, but provides no conges-
tion control and limits messages to 16KB. T/TCP [12] en-
hances TCP to re-open recently-closed streams quickly, but
this serial reuse has the same disadvantages as HTTP/1.1
persistent connections without the benefits of pipelining [38].

TCP has also been extended to share congestion control
state across streams [3,54]. The Congestion Manager [4] en-
ables congestion control sharing across multiple transports;
SST should fit well into such an architecture if available.

Another TCP extension provides end-to-end support for
host mobility [47]. SST’s separation into channel and stream
layers, and its ability to migrate streams across channels,
provides a cleaner solution reminiscent of a session layer [48].

The rich literature on prioritization in the network layer to
ensure quality of service [56] is relevant to SST’s use of prior-
itization in the transport layer to schedule an application’s
streams relative to each other. Hierarchical schemes [7] may
be particularly well-matched to the structured stream ab-
straction. SST’s channel layer could be enhanced with tech-
niques developed in OverQoS [50] to provide better QoS for
aggregates of logical streams on ordinary Internet paths.

7. CONCLUSION
Although SST is in its infancy and will require refinement,

more optimized implementation, and further analysis, struc-
tured streams appear to be a promising enhancement to the
classic reliable stream abstraction. SST’s multiplexing of in-
dependent lightweight streams onto persistent channels gives
applications the flexibility to match their use of streams to
their natural structure and transaction granularity, avoiding
the start-up delays and serialization imposed by TCP and
the datagram size limitations of UDP.

Acknowledgments
I wish to give special thanks to Frans Kaashoek, Robert
Morris, Craig Partridge, and the anonymous SIGCOMM
reviewers, for careful reading of early drafts and many help-
ful comments that proved instrumental in improving this
paper and the SST protocol itself. This research is spon-
sored by the T-Party Project, a joint research program be-

tween MIT and Quanta Computer Inc., Taiwan, and by the
National Science Foundation under Cooperative Agreement
ANI-0225660 (Project IRIS).

8. REFERENCES
[1] William Aiello et al. Just Fast Keying: Key Agreement In

A Hostile Internet. TISSEC, 7(2):1–32, May 2004.
[2] M. Allman, V. Paxson, and W. Stevens. TCP congestion

control, April 1999. RFC 2581.
[3] Hari Balakrishnan et al. TCP behavior of a busy Internet

server: Analysis and improvements. In IEEE INFOCOM,
March 1998.

[4] Hari Balakrishnan, Hariharan S. Rahul, and Srinivasan
Seshan. An integrated congestion management architecture
for Internet hosts. In ACM SIGCOMM, September 1999.

[5] S. Bellovin. Defending against sequence number attacks,
May 1996. RFC 1948.

[6] Jon C. R. Bennett, Craig Partridge, and Nicholas
Shectman. Packet reordering is not pathological network
behavior. Transactions on Networking, 7:789–798,
December 1999.

[7] Jon C. R. Bennett and Hui Zhang. Hierarchical packet fair
queueing algorithms. In ACM SIGCOMM, pages 143–156,
1996.

[8] T. Berners-Lee, R. Fielding, and H. Frystyk. Hypertext
transfer protocol — HTTP/1.0, May 1996. RFC 1945.

[9] Andrew D. Birrell and Bruce Jay Nelson. Implementing
remote procedure calls. Transactions on Computer
Systems, 2(1):39–59, February 1984.

[10] E. Blanton and M. Allman. On making TCP more robust
to packet reordering. Computer Communications Review,
32(1), January 2002.

[11] R. Braden. Towards a transport service for transaction
processing applications, September 1985. RFC 955.

[12] R. Braden. T/TCP – TCP extensions for transactions, July
1994. RFC 1644.

[13] David R. Cheriton. VMTP: A transport protocol for the
next generation of communication systems. Computer
Communications Review, 16(3):406–415, August 1986.

[14] D. D. Clark and D. L. Tennenhouse. Architectural
considerations for a new generation of protocols. In ACM
SIGCOMM, pages 200–208, 1990.

[15] David D. Clark. Window and acknowledgement strategy in
TCP, July 1982. RFC 813.

[16] Yogen K. Dalal. More on selecting sequence numbers.
SIGOPS Operating Systems Review, 9(3):25–36, July 1975.

[17] T. Dierks and C. Allen. The TLS protocol version 1.0,
January 1999. RFC 2246.

[18] Theodore Faber, Joe Touch, and Wei Yue. The TIME-WAIT
state in TCP and its effects on busy servers. In IEEE
INFOCOM, volume 3, pages 1573–1583, March 1999.

[19] R. Fielding et al. Hypertext transfer protocol —
HTTP/1.1, June 1999. RFC 2616.

[20] S. Floyd, J. Mahdavi, M. Mathis, and M. Podolsky. An
extension to the selective acknowledgement (SACK) option
for TCP, July 2000. RFC 2883.

[21] Bryan Ford. Scalable Internet routing on
topology-independent node identities. Technical Report
926, MIT LCS, October 2003.

[22] Bryan Ford et al. Persistent personal names for globally
connected mobile devices. In 7th OSDI, November 2006.

[23] Jim Gettys. Simple MUX protocol specification, October
1996. W3C Working Draft.

[24] V. Gurbani and S. Lawrence. Handling large user datagram
protocol (UDP) responses in the session initiation protocol
(SIP), October 2006. Internet-Draft (Work in Progress).

[25] M. Handley, S. Floyd, J. Padhye, and J. Widmer. TCP
friendly rate control (TFRC): Protocol specification,
January 2003. RFC 3448.

[26] M. Holdrege and P. Srisuresh. Protocol complications with
the IP network address translator, January 2001. RFC
3027.

[27] The Internet traffic archive. http://ita.ee.lbl.gov/.
[28] Janardhan R. Iyengar, Paul D. Amer, and Randall Stewart.

Concurrent multipath transfer using SCTP multihoming
over independent end-to-end paths. Transactions on
Networking, 14(5):951–964, October 2006.

[29] V. Jacobson, R. Braden, and D. Borman. TCP extensions
for high performance, May 1992. RFC 1323.

[30] S. Kent. IP encapsulating security payload (ESP),
December 2005. RFC 4303.

[31] S. Kent and K. Seo. Security architecture for the Internet
protocol, December 2005. RFC 4301.

[32] E. Kohler, M. Handley, and S. Floyd. Datagram congestion
control protocol (DCCP), March 2006. RFC 4340.

[33] Venkat Kudallur et al. IE7 networking improvements in
content caching and decompression. IEBlog, October 2005.

[34] M. Mathis, J. Mahdav, S. Floyd, and A. Romanow. TCP
selective acknowledgment options, October 1996. RFC
2018.

[35] M. Mathis and J. Mahdavi. Forward acknowledgement:
Refining TCP congestion control. In ACM SIGCOMM,
August 1996.

[36] R. Moskowitz and P. Nikander. Host identity protocol
(HIP) architecture, May 2006. RFC 4423.

[37] Mozilla.org. Firefox tips & tricks: Pipelining.
http://www.mozilla.org/support/firefox/tips#oth pipelining.

[38] H. F. Nielsen et al. Network performance effects of
HTTP/1.1, CSS1, and PNG, June 1997. W3C
NOTE-pipelining-970624.

[39] C. Partridge and R. Hinden. Version 2 of the reliable data
protocol (RDP), April 1990. RFC 1151.

[40] Craig Partridge. Implementing the reliable data protocol
(RDP). In USENIX Summer Conference, June 1987.

[41] J. Postel. User datagram protocol, August 1980. RFC 768.
[42] J. Postel and J. Reynolds. File transfer protocol (FTP),

October 1985. RFC 959.
[43] E. Rescorla and N. Modadugu. Datagram transport layer

security, April 2006. RFC 4347.
[44] M. Rose. The blocks extensible exchange protocol core,

March 2001. RFC 3080.
[45] J. Rosenberg et al. SIP: session initiation protocol, June

2002. RFC 3261.
[46] H. Schulzrinne et al. RTP: A transport protocol for

real-time applications, July 2003. RFC 3550.
[47] Alex C. Snoeren and Hari Balakrishnan. An end-to-end

approach to host mobility. In 6th MOBICOM, August 2000.
[48] Alex C. Snoeren, Hari Balakrishnan, and M. Frans

Kaashoek. Reconsidering Internet mobility. In HotOS-VIII,
May 2001.

[49] R. Stewart et al. Stream control transmission protocol,
October 2000. RFC 2960.

[50] Lakshminarayanan Subramanian et al. OverQoS: An
overlay based architecture for enhancing Internet QoS. In
1st NSDI, San Francisco, CA, March 2004.

[51] Carl A. Sunshine and Yogen K. Dalal. Connection
management in transport protocols. Computer Networks,
2(6):454–473, December 1978.

[52] Transmission control protocol, September 1981. RFC 793.
[53] Raymond S. Tomlinson. Selecting sequence numbers.

SIGOPS Operating Systems Review, 9(3):11–23, July 1975.
[54] J. Touch. TCP control block interdependence, April 1997.

RFC 2140.
[55] T. Ylonen and C. Lonvick, Ed. The secure shell protocol

architecture, January 2006. RFC 4251.
[56] Hui Zhang and Srinivasan Keshav. Comparison of

rate-based service disciplines. In ACM SIGCOMM, pages
113–121, 1991.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

