
Lottery Trees:
Motivational Deployment of Networked Systems

John R. Douceur
Microsoft Research

Redmond WA 98052
johndo@microsoft.com

Thomas Moscibroda
Microsoft Research

Redmond WA 98052
moscitho@microsoft.com

ABSTRACT
We address a critical deployment issue for network systems, namely
motivating people to install and run a distributed service. This work
is aimed primarily at peer-to-peer systems, in which the decision
and effort to install a service falls to individuals rather than to a
central planner. This problem is relevant for bootstrapping systems
that rely on the network effect, wherein the benefits are not felt
until deployment reaches a significant scale, and also for deploy-
ing asymmetric systems, wherein the set of contributors is different
than the set of beneficiaries. Our solution is the lottery tree (lottree),
a mechanism that probabilistically encourages both participation in
the system and also solicitation of new participants. We define the
lottree mechanism and formally state seven properties that encour-
age contribution, solicitation, and fair play. We then present the
Pachira lottree scheme, which satisfies five of these seven proper-
ties, and we prove this to be a maximal satisfiable subset. Using
simulation, we determine optimal parameters for the Pachira lot-
tree scheme, and we determine how to configure a lottree system
for achieving various deployment scales based on expected instal-
lation effort. We also present extensive sensitivity analyses, which
bolster the generality of our conclusions.

Categories and Subject Descriptors
C.2.3 [Computer-Communication Networks]: Network Opera-
tions—network management; H.5.3 [Information Interfaces and
Presentation]: Group and Organization Interfaces—collaborative
computing; J.4 [Social and Behavioral Sciences]: economics, psy-
chology, sociology; K.5.2 [Legal Aspects of Computing]: Gov-
ernmental Issues—regulation

General Terms
Algorithms, Economics, Human Factors, Legal Aspects, Theory

Keywords
Incentive systems, networked systems, deployment, bootstrapping,
lotteries, prospect theory, desiderata, impossibility results

1. INTRODUCTION
Network protocols, distributed systems, and communication over-

lays require several critical qualities to achieve deployment: They

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

must be effective at their intended goal, compatible with existing
infrastructure, robust to failures, secure against attack, incremen-
tally deployable, scalable, and so forth. Yet in addition to these
much-studied aspects, networked systems must also be attractive
to the people who are needed to deploy them.

For a central planner, the end goal itself may be sufficient mo-
tivation to deploy; for example, an AS may be motivated to de-
ploy a new intra-domain routing protocol that promises to improve
resource efficiency. However, many of the most interesting net-
worked systems proposed in recent years are intended to be de-
ployed on end hosts, which are under the control of individuals.
Some of these systems are asymmetric, in the sense that the partic-
ipants contribute resources or effort to the system but receive noth-
ing directly in return. Other systems, although symmetric insofar
as the contributors are also the benefactors, rely on the network
effect [20] to make the benefit of the system significant.

Symmetric network-effect systems, such as recommendation net-
works [13], file-sharing services [12], social forums [1], open data-
bases [24], or collaborative reference works [3], can become self-
sustaining when the scale becomes large enough for the benefit of
participation to outweigh the cost. However, such systems are noto-
riously difficult to bootstrap, as evidenced by the numerous devel-
oped peer-to-peer systems [5], few of which have become popular.

Asymmetric distributed systems, such as BOINC [4], GPU [25]
and Folding@Home / Genome@Home [21], are even more prob-
lematic. Because potential contributors are asked to provide com-
putation, storage, or bandwidth toward a goal that does not directly
benefit them, they have little or no incentive to join the system.
Evidently, some people do choose to contribute, for various rea-
sons including a selfless desire to help [10], a hope that the work
may eventually benefit them [17], the “geek chic” associated with
high contribution levels displayed on public ranking sites [7], and
even the meager value of looking at pretty pictures on a screen-
saver [30]. Once such systems reach a threshold of popularity, they
seem able to sustain substantial ongoing contribution. Following
the principle of “a crowd draws a crowd,” the media attention and
buzz that accompanies a large congregation can inspire others to
join. In most cases, however, potentially useful systems languish in
unpopularity [7], having never managed to inspire a critical mass
of participants.

The key problem that prevents a large number of symmetric and
asymmetric networked systems from ever becoming popular is boot-
strapping, i.e., attracting a sufficiently large initial user base. Two
motivational challenges confront bootstrapping such systems. First,
participants might reasonably expect their investment of effort and
resources to return some palpable value, which neither asymmet-
ric systems nor small network-effect systems provide. The simple
expedient of monetarily compensating early adopters may not be a

practical option, particularly for small research groups whose lim-
ited budgets may be vastly insufficient to compensate contributors
at a level that many would find satisfactory.

Second, participants have little or no incentive to persuade their
friends and acquaintances to join. Even for network-effect systems,
wherein the value of the system grows as the population grows,
the marginal benefit provided by each new participant is diffusely
spread among the entire pool of participants, rather than accruing
significantly to the person who solicited the new member. Thus,
there is no inherent incentive that fosters system propagation.

This paper addresses these two challenges with a general mech-
anism for motivating bootstrap deployment of networked systems.
The mechanism, which we call lottery trees (lottrees), employs the
leverage of lottery psychology [29] to disproportionally motivate
people to contribute to a developing system. In addition, lottrees
employ a mechanism similar to a multilevel marketing scheme [9]
to motivate participants to solicit other people to contribute as well.
Consequently, lottrees can significantly increase the rate of network
deployment and/or reduce the financial investment required to en-
sure rapid and eventually self-sustaining growth.

Our impetus for developing lottrees is an asymmetric distributed
system we are currently building, which involves participation from
a large number of geographically dispersed home computers. It did
not take us long to realize that the lack of direct benefit to par-
ticipants, the severe limitations of our budget, and the absence of
effective and economical advertising would call for a creative so-
lution to motivate participation, particularly when we observed the
lackluster fate of so many similar projects [7].

Interestingly, there exists little or no literature in the networking
community that addresses incentive mechanisms for motivational
deployment. Previously researched incentive mechanisms [8, 11,
18, 19, 23, 27, 28, 31, 32, 36] operate on the premise that people
participate in a networked system if the utility they receive from
the system is higher than the cost of joining the system. Such
mechanisms are inherently unsuited for bootstrapping asymmetric
or small-sized systems from which the users get little or nothing in
return. Our lottree mechanism thus marks a fundamental departure
from existing incentive mechanisms in that it incentivizes partic-
ipation even in these systems. Consequently, neither our formal
definitions nor our theoretical proofs rely at all on the notoriously
hard-to-define notion of utility. Even our simulation studies employ
only a weak notion of comparative value, namely the “time value
of money.” We further note that our theoretical results apply to the
full lottree mechanism, not merely to an abstracted or simplified
model.

The following section describes the general lottree mechanism,
including definitions we will use throughout the paper. In Section 3,
we formally state seven desirable properties for a lottree, which col-
lectively encourage participation, propagation, and fair play. Sec-
tion 4 introduces some simple lottree schemes that illustrate the
challenges involved in achieving our desired properties. Section 5
then presents Pachira, which is the strongest lottree scheme we have
developed. Although Pachira satisfies only five of our desired prop-
erties, Section 6 proves that these five constitute a maximal satisfi-
able subset, insofar as any scheme satisfying these five properties
cannot also satisfy the remaining two. Section 7 uses simulation to
determine optimal parameters for the Pachira lottree scheme, to de-
rive configuration parameters for specific lottree deployments, and
to evaluate the sensitivity of our results to our various modeling as-
sumptions. Section 8 addresses the relevant legal issues involved
in using lottree schemes for motivational deployment of networked
systems. Finally, Sections 9 and 10 present related work and our
conclusions.

2. LOTTERY TREES
A lottery tree (lottree) is a mechanism that employs a lottery to

probabilistically compensate people who participate in a networked
system and/or who successfully encourage others to join the system
as well and contribute to it. Depending on the specific networked
system under consideration, contributing to or participating in this
system can mean such different things as performing computation,
storing information, transmitting data, testing a software applica-
tion, providing recommendations, and so forth.

Regardless of the specific nature of the contributions, lottrees
work as follows. Assume that there is an executive entity (a person,
company, or research group) whose goal it is to deploy a networked
system for which it needs to attract a large number of participants
with sufficiently high contribution. We further assume that this ex-
ecutive entity of a network is willing and able to invest a certain
amount of money (or any other item of value)—which we term the
payout—for attracting a sufficient user base of this network. The
function of the lottree is then, after a certain amount of time has
passed, to select one contributor of the network as the recipient of
the payout.1 Ideally, a good lottree performs this selection in such
a way that encourages high participation, contribution, and solici-
tation among participants.

More precisely, consider the network to be initialized with a sin-
gle root node which represents the executive entity. Whenever a
new person joins the network, he does so as a child of some person
that is already a node in the system. For example, people might
sign up their computers to the network by visiting a web site that
records information and installs an application. If someone visits
the site on his own, his computer joins as a child of the root. Once
a member, he is able to send solicitations, perhaps in the form of
coded email links, to friends and associates. Anyone who follows
the coded link to the web site will join as a child of the member
who sent the link, whom we call the solicitor. After the system has
grown to a size that the executive entity judges to be sufficient, she
farms out work units to the nodes and records each node’s contri-
bution. The lottree then selects a winner based on the tree structure
and on nodes’ contributions.

The challenge in designing a lottree scheme is how to define the
rules of selecting a winner in such a way that encourages both con-
tribution and system growth. Simple schemes that readily provide
some benefits tend to fail to provide others. For example, an ob-
vious scheme is employ a simple lottery that randomly selects a
winner in proportion to its contribution to the network. Although
this encourages contribution, it discourages participants from solic-
iting others, since any new member decreases the current members’
chances of winning. What we require is a scheme that encourages
contribution, solicitation, and fair play.

2.1 Definitions
Each participant that joins a lottree is represented as a tree node,

and a directed edge from a node u to node v indicates that u was
v’s solicitor. Let Tr denote a tree rooted at node r. Formally, we
represent a tree T as a set containing nodes n and ordered node-
pairs (p, c) that indicate parent-child edges. This representation
allows trees to be partially ordered using subset and superset rela-
tions. Standard tree properties are assumed to hold. We generalize
the notation for a forest FR, constructed as a union of independent
trees, wherein R is the set of roots of the trees.

The following operators on trees are used in the paper: Sub(T, n)
is the subtree of T rooted at node n; Path(T, n) is the set of nodes
1Alternatively, a lottree may periodically select a winner or may opt for
choosing multiple winners in each period. All these mechanisms fall into
the realm of possible lottery-tree strategies.

on the path from node n to the root of tree T following edges back-
wards, including the root, but excluding n; and Parent(T,n) in-
dicates node n’s parent in T . The set of nodes in tree T is denoted
by N (T) and the set of edges by E(T).

A crucial ingredient of lottrees is that every participant has a cer-
tain amount of measurable contribution. Formally, we model this
contribution using a contribution function C(n) that maps each
node n to the non-negative sum of its accumulated contribution;
larger values of C(n) indicate greater contributions of resources to
the system (e.g., more recommendations submitted, more comput-
ing cycles offered, etc.). For a set of nodes N , we use the nota-
tional shortcut C(N) :=

�
n∈N C(n), and for a tree, C(T) :=

C(N (T)).
Although different lottrees may differ in both functionality and

implementation, they have in common that they select one or more
lottery winners based on the topology of the tree (solicitations) as
well as the contribution by individual participants. Hence, based on
these commonalities, we formalize a lottree as a function L(T, C, n)
that for each node n ∈ N (T) in a tree T and a contribution func-
tion C, determines node n’s expected value, i.e., the value that it
gains from the lottery in expectation. In the sequel, it is convenient
to normalize these values such that,

�
n∈N (T) L(T, C, n) = 1.

Finally, throughout the paper, we denote the entire lottree, the so-
called system tree, by TS , and the root of the system tree is called
Sys.

3. DESIDERATA
As alluded to at the end of Section 2, a lottree scheme should

achieve diverse, and sometimes opposing, goals. While a lottree’s
main objective is to provide incentive to contribute and to solicit
new participants, it should also maintain a notion of fairness and be
robust against various forms of strategic behavior by participants.
With these goals in mind, this section formalizes seven properties
that are desirable in a lottery tree. Collectively, these properties en-
courage contribution to the system, encourage solicitation of new
nodes, inhibit certain forms of gaming the system, and address
practical considerations. We begin with a very simple property that
expresses that every participant should have an interest in contribut-
ing more resources to the system.

Continuing contribution incentive (CCI):
A lottree L satisfies CCI if it provides nodes with increasing ex-
pected value in response to increased contribution. This encourages
nodes to continue contributing to the system.

If node m is in the system tree: m ∈ N (TS)

and m’s contribution increases: C′(m) > C(m)

and all other nodes maintain the same level of contribution:
∀n �= m : C′(n) = C(n)

Then m’s expected value increases:
L(TS , C′, m) > L(TS , C, m)

Value proportional to contribution (VPC):
Intuitively, we believe that participants are more likely to contribute
to the system if they perceive the payout distribution to be fair rel-
ative to their contributions. We say that a lottree L satisfies ϕ-VPC
for some ϕ > 0 if it ensures that each node’s expected value is at
least ϕ times the relative contribution made by that node.

If m is in the system tree: m ∈ N (TS)

and m contributes fraction cm of all contribution:
cm = C(m)/C(TS)

Then: L(TS, C, m) ≥ ϕ cm

Strong solicitation incentive (SSI):
To encourage system growth, participants should have an incentive
to solicit new participants. Formally, we say that a lottree L satis-
fies SSI if a node’s expected value increases when that node gains
a contributing descendent. This encourages nodes to solicit new
nodes to join their subtrees, which is key in ensuring the growth of
the overall system.

If node m is in the system tree: Tm ⊂ TS

and m’s subtree includes some node p: p ∈ N (Tm)
and there is a new node n: n �∈ N (TS) with C(n) > 0
and which joins the system as a child of p:

T ′
S = TS ∪ {n, (p, n)}

Then m’s expected value increases:
L(T ′

S, C, m) > L(TS , C, m)

Weak solicitation incentive (WSI):
Because SSI is difficult to satisfy, we introduce a slightly weaker
solicitation property, WSI. This property is satisfied by a lottree
L if, when a new contributing node joins the system, an existing
node’s expected value is greater if the new node becomes its de-
scendent than if the new node joins elsewhere in the tree. This
property promotes competition for new descendent nodes, which
encourages solicitation.

If node m is in the system tree: Tm ⊂ TS , C(m) > 0
and m’s subtree includes some node p: p ∈ N (Tm)
but does not include some other node q: q ∈ N (TS \ Tm)
and there is a new node n: n �∈ N (TS) with C(n) > 0
and which in case 1 joins the system as a child of p:

T ′
S = TS ∪ {n, (p, n)}

and which in case 2 joins the system as a child of q:
T ′′

S = TS ∪ {n, (q, n)}
Then m’s expected value is greater in case 1:

L(T ′
S, C, m) > L(T ′′

S , C, m)

Unprofitable solicitor bypassing (USB):
Besides attracting contribution and providing incentives for solic-
itation, lottrees must also be secure against different notions of
strategic behavior of its participants. If, for instance, new nodes
tend to join the system not as children of the nodes that solicited
them, then participants will lose interest in soliciting new nodes.
We thus introduce USB, which a lottree L satisfies if a new node
can never gain expected value by joining as a child of someone
other than its solicitor.

If nodes m and p are in the system tree: {m, p} ⊂ N (TS)
and there is a new node n that may eventually solicit its own

subtree of nodes: Tn ∩ TS = ∅
and which in case 1 joins the system as a child of m:

T ′
S = TS ∪ Tn ∪ {(m, n)}

and which in case 2 joins the system as a child of p:
T ′′

S = TS ∪ Tn ∪ {(p, n)}
Then n’s expected value is no greater in case 2:

L(T ′
S, C, n) ≥ L(T ′′

S , C, n)
which, by symmetry, implies: L(T ′

S , C, n) = L(T ′′
S , C, n)

Unprofitable Sybil attack (USA):
An equally important property is that no participant can increase its
odds by pretending to have multiple identities. That is, a lottree L
satisfies USA if a node does not gain expected value by joining the
system as a set of Sybil nodes [14] instead of joining singly. (This
formalism employs Hilbert’s ε operator. εx : P (x) means “choose
some x that satisfies P (x).”)
If the system tree contains node p and node set Q:

{p} ∪ Q ⊂ N (TS)
and there is a new node n: n �∈ N (TS)
which can appear as a new node set S: S ∩N (TS) = ∅

wherein S’s aggregate contribution does not exceed n’s
contribution: C(S) ≤ C(n)

and n may eventually solicit a forest FH of other nodes:
FH ∩ TS = ∅

and in case 1, n joins the system as a child of p:
T ′

S = TS ∪ {n, (p, n)} ∪ {(n, h) : h ∈ H} ∪ FH

and in case 2, S joins as descendents of Q:
T ′′

S = TS ∪ S ∪ {(εq : q ∈ Q ∪ S, s) : s ∈ S}
∪ {(εs : s ∈ S, h) : h ∈ H} ∪ FH

Then n’s expected value is no greater in case 2:
L(T ′

S , C, n) ≥�s∈S L(T ′′
S , C, s)

Zero value to root (ZVR):
A lottree L satisfies ZVR if the expected value to the root of the
system tree is zero. In a practical lottree, the prize value should
be disbursed to participants and contributors, not retained by the
system: L(TS, C, Sys) = 0. (Clearly, ZVR is impossible to satisfy
in the degenerate case in which the root has no children.)

Discussion: Each of the above seven properties captures a specific
important characteristic that an ideal lottree scheme should fulfill
in order to robustly motivate significant participation. We further
believe (but cannot prove) that these properties collectively charac-
terize a lottree that would be ideal for practical use.

As a possible criticism of our formal statement of these proper-
ties, one might argue that when a person decides whether to join a
specific lottree system or whether to solicit an acquaintance, he is
unlikely to be guided by a rigid and detailed verification of proper-
ties such as SSI or USB. However, we believe that strictly satisfying
these properties is of real importance for practical deployments, for
the simple reason that lottrees involve the transfer of money. In any
such system, issues of trust and security are of utmost importance.
There should be no way of increasing one’s odds by circumvent-
ing the rules. Solicitation properties like SSI and WSI are crucial
as well, especially as we consider deployment scenarios in which
purely altruistic motivations for joining have often been insufficient
to yield large deployments.

4. SIMPLE LOTTREE SCHEMES
It might seem that the properties enumerated in Section 3 should

be fairly trivial to satisfy. To demonstrate that this is not the case,
this section constructs two fairly simple lottree schemes, and we
show that they fail to satisfy several important properties.

4.1 The PS (proportional selection) lottree
We first consider a very simple lottree scheme, which does not

account for any solicitation structure and simply selects a winning
node based on its own contribution. The PS (proportional selec-
tion) lottree scheme selects each participant n ∈ N (TS) to be the
winner with odds of on = C(n)/C(TS), regardless of the solicita-
tion structure.

While providing optimal fairness (1-VPC) and robustness against
various forms of gaming (satisfying USB and USA, for instance), it
fails to provide any incentive for nodes that have already joined the
lottree to solicit new members. It thus clearly violates both weak
and strong solicitation-incentive properties (WSI and SSI).

4.2 The Luxor lottree
We next present the Luxor lottree scheme, which—unlike the

PS scheme—provides a solicitation incentive to nodes in the tree.
Although it is more involved than the PS scheme, it is a relatively
straightforward extension wherein each node passes some of its win
odds up to its parent.

Algorithm 1 The Luxor lottree - Winner Selection

Input: A lottree TS with N peers. C(n) denotes the
contribution of a peer n ∈ N (TS).
Two parameters 0 ≤ μ, ρ ≤ 1.

Output: A winner n̂ ∈ N (TS) that wins the lottery.
1: n̂ := ∅.
2: Set w(n) := C(n)/C(TS) for each n ∈ N (TS).
3: Randomly select one peer m from N (TS) such that the proba-

bility of selecting peer n is w(n).
4: With probability μ, set n̂ := m and stop.
5: cur := Parent(TS, m).
6: while n̂ = ∅ and cur �= Sys do
7: With probability ρ, set n̂ := cur and stop.
8: cur := Parent(TS, cur);
9: end while

10: if n̂ := ∅ then n̂ := Sys.

Winner selection in the Luxor lottree, characterized by two para-
meters μ and ρ, proceeds in two passes. First, it randomly selects a
node m ∈ N (TS) in proportion to its contribution, just as in the PS
lottree scheme. However, m is merely a candidate; it only becomes
the winner with probability μ. With probability 1 − μ, the winner
is one of m’s ancestors. As shown in Algorithm 1, Luxor moves
incrementally up the path Path(TS, m) from Parent(TS, m) to
the root Sys, letting each successive candidate cur win the lottery
with probability ρ. Upon selection of a winner n̂, the process stops.

The parameter μ can be used to tune the tradeoff between solici-
tation incentive and fairness. Increasing μ increases fairness at the
expense of decreasing solicitation incentive.

Algorithm 1 procedurally describes the Luxor scheme. We can
also describe Luxor by formally defining its lottree function LL as

LL(TS, C, n) = μ · w(n) +
�

z∈N (Tn),
z �=n

w(z)pnz,

where puv := P [n̂ = u|m = v] denotes the probability that node
u wins the lottery conditioned on the event that node v �= u was
initially selected as the candidate. Letting duv be the hop-distance
between two nodes u and v, puv is defined by

puv =

�
(1 − μ)(1 − ρ)duv−1ρ , u ∈ Path(TS, v)
0 , otherwise.

The Luxor lottree scheme satisfies several desirable properties,
as stated in Theorem 4.1. The proof is omitted due to lack of space.

THEOREM 4.1. The Luxor lottree scheme satisfies properties
CCI, WSI, USB, and ϕ-VPC for ϕ = μ. The scheme also satis-
fies SSI unless for some node n, there exists a node z ∈ N (Tn) for
which pnz ≥ L(TS \ {(Parent(TS, z), z)}, C, n).

The previous theorem characterizes scenarios for which the Luxor
scheme satisfies the SSI property. We will later present Theo-
rem 6.1, a consequence of which is that there must exist scenar-
ios for which the Luxor scheme does not satisfy SSI. In addition,
the following theorem states that this scheme fails to satisfy two
additional properties.

THEOREM 4.2. The Luxor scheme violates USA and ZVR.

PROOF. It is clear that ZVR is violated because there is a non-
zero probability that the root is selected as the winner. The interest-
ing property is USA. Consider Figure 1 and assume node z is capa-
ble of contributing a total of C(z) and joins as a child of n. Its ex-
pected value is therefore μ·C(z)/C(TS). In contrast, if z launches

n

z

n

z1z2

zk z

Figure 1: The Luxor scheme is vulnerable to Sybil attacks. z
increases its expected value by splitting its contribution among
Sybil nodes z1, . . . , zn.

a Sybil attack by splitting itself up into two (or more) nodes z1 and
z2 and divides its contribution such that C(z1)+C(z2) = C(n), it
can increase its expected value. Specifically, z1 joins as a child of
n and z2 becomes a child of z1. That way, the combined expected
value L(TS, C, z1) + L(TS , C, z2) exceeds L(TS, C, z), because
of pz1z2 > 0. In the extreme case, a new node z could split it-
self up into a large number of Sybil nodes z1, . . . , zk, arranged in
form of a large chain, and have C(z1) = . . . = C(zk−1) = 0
and C(zk) = C(z). In this case, the cumulated expected gain of z
reaches C(z)/C(TS), which is by a factor 1/μ larger than if it had
joined as a single node.

The fact that Luxor does not satisfy USA and is thus not robust
against Sybil attacks is particularly problematic, because it encour-
ages gaming behavior, which can significantly undermine people’s
trust in the system. Since lottrees distribute money in return for
participation, this lack of trust could decrease people’s willingness
to participate. We address this problem in the following section
by presenting the Pachira lottree scheme, which is provably robust
against Sybil attacks.

5. THE PACHIRA LOTTREE
This section introduces a general and practical lottree scheme

called Pachira, which satisfies all properties satisfied by the Luxor
scheme, but additionally satisfies the USA property, which Luxor
fails (Theorem 4.2).

5.1 Theoretical Underpinnings
The Pachira lottree has two input parameters β and δ that trade

off solicitation incentive against fairness. In its general version, the
Pachira lottree is defined using a function π(c) defined on [0, 1]
with the following characteristics:

I) π(0) = 0, π(1) = 1

II) ∀c ∈ [0, 1] : dπ(c)
dc

≥ β (minimum slope of β)

III) ∀c ∈ [0, 1] : d2π(c)

dc2
> 0 (strictly convex)

The following two inequalities directly follow from the strict con-
vexity of π(c). First, for any c1 > c2 and ε > 0,

π(c1 + ε) − π(c1) > π(c2 + ε) − π(c2). (1)

Secondly, it holds that

π

��
ci∈C

ci

�
≥
�
ci∈C

π(ci). (2)

In principle, the Pachira lottree can be defined using any function
π that follows the above mentioned properties. In the sequel, we
are going to use the following particularly convenient and intuitive
function with these characteristics:

π(c) = β c + (1 − β)c1+δ, (3)

Algorithm 2 The Pachira lottree - Winner Selection

Input: A lottree TS with N peers. C(n) denotes the
contribution of a peer n ∈ N (TS).
Two parameters 0 ≤ β, δ ≤ 1.

Output: A winner n̂ ∈ N (TS) that wins the lottery.
1: Compute C(TS) =

�
m∈N (TS) C(m)

2: for each n ∈ N (TS) in post-order of TS do
3: Compute C(Sub(TS, n)) by summing up C(n)

and C(Sub(TS , m)) for all children m of n.
4: Compute W (TS, C, Sub(TS, n)) using (3) and (4).
5: Compute LP (TS, C, n) according to (5).
6: end for
7: Select n̂ randomly such that every node is selected with prob-

ability LP (TS, C, n).

where β and δ > 0 are the input parameters of Pachira. Our
scheme makes use of this function in the following way: Each
node in the tree computes its weight as the function π applied
to the node’s proportional contribution. Formally, for tree T and
contribution function C, the weight W (T, C, n) of a node n is
W (T,C, n) = π(C(n)/C(T)). Also, the weight for a subtree
Sub(T, n) is defined as

W (T, C, Sub(T, n)) = π

�
C(Sub(T, n))

C(T)

�
. (4)

Finally, notice that for any leaf node n, it holds that W (T,C, n) =
W (T,C, Sub(T, n)) = π(C(n)/C(T)).

The Pachira lottree scheme proceeds as follows. Each node n ∈
N (TS) is assigned an expected value, LP , defined as the weight of
the subtree rooted at n minus the weights of all child subtrees of n.
Formally,

LP (T, C, n) = W (T,C, Sub(T, n)) (5)

−
�

(n,m)∈E(T)

W (T,C, Sub(T, m)).

Notice that in general, LP (T, C, n) �= W (T, C, n), i.e., a node’s
expected value is different from its weight.

As we show in the following section, this theoretical formulation
of the Pachira lottree scheme easily lends itself to efficient imple-
mentation, which renders the scheme a good candidate for practical
use in a variety of networked systems.

5.2 Implementation
The Pachira lottree scheme can be implemented and its winner

computed in a straightforward way. Besides summing up all con-
tributions, a single post-order traversal of the tree suffices to assign
winning probabilities to each node. The details of the selection
scheme are presented in Algorithm 2.

The algorithm first sums up the contributions of all nodes. It then
performs a post-order traversal of the tree, considering each node
only after computing results for the node’s children. For each node
n, Pachira first computes the total contribution C(Sub(TS , n)) of
n’s subtree. Next, it computes the weight W (TS, C, Sub(TS, n))
of the subtree rooted at n by applying the function π to the ratio
C(Sub(TS , n))/C(TS). And last, it computes n’s expected value
LP (TS , C, n) by taking the subtree weight W (TS, C, Sub(TS, n))
and subtracting from it the weight of n’s children’s subtrees (cf (5)).
Once all expected values LP (TS, C, n) are computed, the winner
is selected in proportion to the expected values.

Because Pachira’s winner-selection mechanism requires only a
single bottom-up traversal of the tree, its running time is linear in

the number of participating nodes. Computational complexity is
thus not a significant impediment to practical use of a Pachira lot-
tree. We address other practical issues in Sections 8 and 10.

5.3 Rescaling
The Pachira lottree does not satisfy ZVR, because the root node

Sys may be selected as the winner. A deceptively simple solution
to this problem is to re-run the winner-selection algorithm until a
non-root node is selected. This is equivalent to rescaling the lot-
tree by distributing the root’s winning probability among the other
nodes in proportion to their winning probabilities. Formally, let-
ting ln refer to the expected value LP (TS , C, n) for any node n,
the win odds on thus become

on =

�
0 , n = Sys
ln/(1 − lS) , otherwise.

However, if the win odds are thus rescaled but the payout is left
unchanged, the modified lottree will violate the USB property. To
see why this is so, note that when a new node joins the system,
although its location in the tree does not affect its own expected
value, its location does affect the root’s expected value, because if
it joins a heavily weighted subtree, it will pull more weight away
from the root than if it joins a lightly weighted subtree, due to con-
vexity of the weight function π. Because rescaling distributes the
root’s expected value among the other nodes, a node can game the
system by deliberately joining a lightly weighted subtree (for ex-
ample, joining as a child of the root), rather than joining as a child
of its solicitor. This leaves more win probability for the root, which
when distributed among all other nodes, increases the newly join-
ing node’s expected value.

This violation of USB can be avoided by rescaling the payout
amount to keep the expected values unchanged. This is achieved by
multiplying the payout by a factor of (1 − lS). The practicality of
this approach is limited by whether the payout is something (such
as money) that can be arbitrarily rescaled, and by other issues as
described in Section 8.

5.4 Analysis
We begin by proving an important lemma that states that the

weight W (T,C, n) of a node n is a lower bound for its expected
value.

LEMMA 5.1. It holds for all T , C, and n ∈ N (T) that

LP (T, C, n) ≥ W (T, C, n).

PROOF. The property follows from π(c)’s convexity. First, it
follows from the definition (5) of LP (T, C, n) that if n is a leaf in
T , then LP (T, C, n) = W (T,C, n). For every n, it holds

LP (T, C, n)= W (T,C, Sub(T, n)) −
�

(n,m)∈E(T)

W (T, C, Sub(T, m))

= π

�
C(Sub(T, n))

C(T)

�
−
�

(n,m)∈E(T)

π

�
C(Sub(T, m))

C(T)

�

≥ π

�
C(n)

C(T)

�
,

where the inequality follows from the convexity Inequality (2) and
the fact that C(Sub(T,n))

C(T)
=
�

(n,m)∈E(T)
C(Sub(T,m))

C(T)
+ C(n)

C(T)
.

This concludes the proof.

Based in part on this lemma, we can now precisely characterize
the set of desirable desiderata properties that are satisfied by the
Pachira lottree scheme. We begin with the simplest one and show
that Pachira always incentivizes increasing contribution.

LEMMA 5.2. Pachira satisfies CCI.

PROOF. Assume a node m increases its contribution, while all
other contributions in the tree remain the same. The relative con-
tribution C(Sub(TS , n)) increases and, because π(c) has positive
slope (property II of π’s definition), the weight of m’s subtree in-
creases. Conversely, the weights of m’s children’s subtrees (if it
has any) decrease. It then follows by the definition of LP that
LP (TS , C′, m) > LP (TS, C, m).

The following lemma follows immediately from Lemma 5.1 and
shows that Pachira achieves provable fairness bounds.

LEMMA 5.3. Pachira satisfies ϕ-VPC for ϕ ≥ β

PROOF. Let cm = C(m)/C(TS). By Lemma 5.1 and the defi-
nition of π(c), we obtain

LP (TS , C, m) ≥ W (T,C, m) = π(cm) ≥ β cm.

LEMMA 5.4. Pachira satisfies WSI.

PROOF. Recalling the definition of the WSI property, let m be
a node and let a be one of m’s children (if any exist, otherwise,
a = m). Suppose that there is a node n that newly joins the lot-
tree, either as a child of a node p ∈ N (Ta) or as a child of a node
q ∈ N (TS \ Tm) that is not in m’s subtree. T ′

S and T ′′
S denote

the resulting trees when the new node n joins as a child of p or
q, respectively. Finally, we use the following notational abbrevia-
tions:

• let cn := C(n)/C(T ′
S) and cm := C(m)/C(T ′

S)

• let cA := C(Ta)/C(T ′
S)

• let cZ := C(Tm \ ({m} ∪ Ta))/C(T ′
S); that is, cZ is the total

contribution of all nodes in those subtrees of m that n does not
join

• let Z be the set of m’s children other than a; formally, Z :=
{z | (m,z) ∈ E(TS) ∧ z �= a}

• let wZ :=
�

z∈Z π(C(Tz)/C(T ′
S)) be the total weight of all

subtrees rooted at children of m other than Ta

With these definitions, we can now express the expected value of
m both in case n joins a subtree of m, and otherwise. In both cases,
we use Equality (5) and plug in (4).

LP (T ′
S, C, m) = π(cm + cn + cA + cZ)

− π(cn + cA) − wZ

LP (T ′′
S , C, m) = π(cm + cA + cZ) − π(cA) − wZ .

Clearly, it holds that C(T ′
S) = C(T ′′

S). Hence, when substituting
c1 = cn+cA, c2 = cA, and ε = cm+cO , we can write the increase
Δ of m’s expected value if p joins its own subtree (as opposed to
someone else’s subtree) as

Δ = LP (T ′
S, C, m) − LP (T ′′

S , C, m)

= π(c1 + ε) − π(c1) − (π(c2 + ε) − π(c2)).

From (1), it follows that Δ > 0 and hence, LP (T ′
S, C, m) >

LP (T ′′
S , C, m).

LEMMA 5.5. Pachira satisfies USB.

PROOF. The claim can easily be verified by observing that for
any n ∈ N (TS), the expected value LP (T, C, n) is independent of
the structure of tree T outside of n’s subtree Tn. Hence, the initial
position in the tree is irrelevant.

Unlike the Luxor scheme, the Pachira lottree is robust against
Sybil attacks:

LEMMA 5.6. Pachira satisfies USA.

PROOF. We must show that a node does not increase its ex-
pected value by joining as multiple nodes, even when these Sybil
nodes form subtrees among each other and join as such (like the
chain in Figure 1). Assume that a new node z joins the lottree. Al-
ternatively, z can join as a set of Sybil nodes Z = {z1, . . . , zk}
such that

�
zi∈Z C(zi) ≤ C(z). Let T ′

S and T ′′
S be the resulting

trees in the former and latter cases, respectively. If all nodes in Z
join as independent nodes, the expected value of z is

L(T ′
S, C, z) = β

�
zi∈Z

czi + (1 − β)

�
��

zi∈Z

czi

�
	

1+δ

≥ β
�
zi∈Z

czi + (1 − β)
�
zi∈Z

c1+δ
zi

=
�
zi∈Z

L(T ′
S, C, zi),

which proves the lemma in this case.
It remains to prove the case when nodes in Z join as a forest FH

with root set H instead of independent nodes. The key ingredient
in the proof is that the cumulated expected value of all nodes in
a subtree Tr with root r is always equivalent to the weight of Tr.
Formally, this can be derived as
�

s∈N (T)

L(TS , C, s) =
�

s∈N (T)

W (TS, C, Sub(TS , s))

−
�

(s,s′)∈E(TS)

W (TS, C, Sub(TS , s′))
�

= W (TS, C, Sub(TS, r)), (6)

where the second equality stems from the fact that all terms, except
for the one at r, cancel out. From this, it follows that the cumulated
expected value of nodes in Z is�

zi∈Z

L(TS, C, zi) =
�
h∈H

W (TS, C, Sub(TS, h)).

In other words, we can shrink each tree Th consisting of nodes zi

into a single node zh that has the same contribution as the entire
tree before changing the expected value of nodes in Z. Since these
shrunk zh are now independent nodes, the proof is finished analo-
gously to the case in which all nodes are independent.

It is instructive to consider the above proof in relation to the ex-
ample given in Figure 1 in which the Luxor lottree proved to be
vulnerable to Sybil attacks. In Luxor, the sum of the expected val-
ues of nodes in a tree T not only depends on the relative total con-
tribution of nodes in T compared to the entire contribution C(TS).
Instead, it also depends on the topology formed by nodes in T . The
combined expected value of two nodes z1 and z2 joining the lottree
as siblings {(n, z1), (n, z2)} of a parent n is smaller than the same
nodes joining the tree as child and grandchild, {(n, z1), (z1, z2)}
of n. Instead, Equality (6) proves that in Pachira the total expected
value of nodes is always equal to the weight of the subtree. It is this
additional property that prevents Sybil attacks.

6. IMPOSSIBILITY RESULTS
The Pachira lottree scheme satisfies the five desirable properties

CCI, VPC, WSI, USB, and USA, thereby providing incentives to
contribute to the system, to solicit new contributors, and to avoid
attempts at gaming. However, Pachira fails to achieve both SSI

and ZVR, which would also be desirable. An ideal lottree should
simultaneously satisfy all mutually achievable desiderata.

In this section, we prove that Pachira does, in fact, satisfy all mu-
tually achievable desiderata, in the sense that no lottree can satisfy
any additional property without violating at least one of the prop-
erties that Pachira satisfies, which implies that these five properties
constitute a maximal satisfiable subset.

The following theorem states that satisfying VPC precludes sat-
isfying SSI.

THEOREM 6.1. Given an arbitrary topology TS , there is no
lottree that simultaneously satisfies both SSI and ϕ-VPC, for any
ϕ > 0, on TS .

PROOF. Consider an arbitrary tree TS , and assume for contra-
diction that there is a lottree scheme that satisfies SSI and ϕ-VPC
on TS . The theorem holds for any distribution of the contribu-
tions among the nodes in TS . Let mi, i = 0, . . . , x be a sequence
of nodes joining TS . Node m0 joints at an arbitrary node z and
each subsequent new node mi joins as a child of mi−1. We define
Pz := Path(TS, z) and denote by CO :=

�
n∈N (TS\Pz) C(n)

the total contribution of all nodes node on the path PZ . Define the
contribution of node mi to be 2i · C(TS). It follows from the fair-
ness property that the first new node m0 needs to get an expected
value L(TS, C, m0) of at least ϕ/2 because C(m0) = C(TS). For
the same reason, each subsequent new node mi also must have an
expected value L(TS , C, mi) ≥ ϕ/2. As each new node is added
as a child of the same path, the SSI property implies that the ex-
pected value of nodes on the path Path(TS, z) or any mi must not
decrease. Hence, after inserting node mx for x = �2CO/ϕ + 1,
the total expected value of nodes m0, . . . , mx must be at least
(�2CO/ϕ + 1) · ϕ/2 > CO. Since CO was the total expected
value of nodes in N (TS \ Pz), this implies that there must be at
least one new node or a node on Pz whose expected value has de-
creased, which contradicts the SSI property.

One might conceivably argue that SSI is a more important prop-
erty than VPC, and so a preferable lottree would be one that satis-
fies the former at the expense of the latter, unlike Pachira. How-
ever, the simulations in Section 7—specifically, Figure 3 (right)—
demonstrate that the absence of SSI can be ameliorated with even
a moderately sized initial set of participants. By contrast, in Fig-
ure 2 (middle), as fairness (lower bounded by β) decreases, the
effectiveness of the lottree also decreases. (This is not as apparent
in the curves for small values of δ, because for small δ, Pachira
satisfies ϕ-VPC for ϕ � β.)

The Pachira scheme also fails to satisfy ZVR, as does the Luxor
scheme. This turns out to be unavoidable for both.

THEOREM 6.2. There is no lottree that can guarantee the si-
multaneous satisfaction of WSI, USB, and ZVR.

PROOF. A simple counterexample suffices for the proof. Con-
sider the two systems TS = {Sys, a, b, (Sys, a), (Sys, b)} and
T ′

S = {Sys, a, b, (Sys, a), (a, b)}, and take any contribution func-
tion C for which C(a) > 0 and C(b) > 0. Assume for contra-
diction a lottree scheme L that satisfies WSI, USB, and ZVR. As
shorthand, for any node n, let ln refer to L(TS , C, n) and l′n refer
to L(T ′

S, C, n).
By construction, the expected values of each lottree must sum to

one, i.e., l′a + l′b + l′S = la + lb + lS . By ZVR, l′S = lS = 0, so
l′a + l′b = la + lb. By USB, l′b = lb, so l′a = la. However, by WSI,
l′a > la, which is a contradiction.

The unavoidable absence of ZVR is not a major problem. As
described in Section 5.3, it is often possible to rescale the lottree

to ensure that a non-root node wins, without changing the expected
values to each node. In this case, the root has non-zero expected
value because it retains a fraction of the payout that is disbursed to
the winning node.

We can now state and easily prove our main theorem, which cap-
tures the optimality of the Pachira lottree scheme.

THEOREM 6.3. Pachira achieves a maximal satisfiable subset
of desirable properties.

PROOF. By Lemmas 5.2–5.6, Pachira satisfies all desiderata ex-
cept SSI and ZVR. By Theorem 6.1, SSI is incompatible with VPC;
and by Theorem 6.2, ZVR is incompatible with WSI and USB.

7. EVALUATION
In order to gain a better understanding of the solicitation and

participation generated by the Pachira lottree scheme, we conduct
extensive simulations. Our goals are:

• to derive good choices for the parameters β and δ

• to determine an appropriate payout amount based on target de-
ployment scale and expected participation effort

• to determine the required count of initial participants to avoid
problems from the absence of SSI

• to analyze the sensitivity of our evaluation to our modeling as-
sumptions and hidden parameters

7.1 Simulation framework
We use a frame-based simulator with a finite population of com-

puter users, each frame representing one day of simulated time.
The simulation procedure is presented in Algorithm 3. In outline,
the simulator first establishes a small subset of the population as an
initial set (IS) of participants. Then, on each frame, each partic-
ipant decides whether to solicit other users: If the perceived gain
from soliciting outweighs the cost of sending a solicitation, the par-
ticipant solicits a subset of acquaintances. Each solicited person
first decides whether to even consider joining; if he does consider
it, he evaluates the perceived gain from joining relative to the cost
of joining, and joins if the gain outweighs the cost.

7.1.1 Challenges
Because human behavior is notoriously difficult to model, sim-

ulating a system involving humans is tremendously challenging.
The above simulation description implies the need for answers to
the following behavioral questions:

I) Which people are acquainted with which other people?

II) How do people perceive the benefit from the lottery?

III) Does each solicitor consider other solicitors to be in competi-
tion for new participants?

IV) How do people perceive the cost of soliciting others and the
cost of joining the system?

V) How likely are people to even consider a solicitation?

VI) How much will each person contribute to the system?

7.1.2 Models
In our simulation, we deal with the above challenges by employ-

ing a set of theories and models that have been used and widely
accepted in literature on economics and cognitive psychology.

I) Social Network Model G: We model the acquaintanceship of
people using a social network model. Many such models have
been proposed [26], broadly classifiable as either random graphs or

Algorithm 3 Simulation procedure

Input: Parameters STC, JTC, SAF, initSize, and τ̂ ,
Undirected social network graph G,
Lottree scheme L and payout amount AP ,
Valuation models for payout VP and time VT ,
Diffusion model D and contribution model C.

Output: Lottery tree TS .
1: Initialize TS to {Sys}
2: Select random node subset IS of size initSize from N (G)
3: for each n ∈ N (IS): add n to TS as child of Sys
4: for each simulation frame do
5: for each n ∈ N (TS) \ {Sys} do
6: Using L, AP , and VP , evaluate absolute and

relative perceived gains from successfully
soliciting new participants

7: Using SAF, compute overall perceived gain
8: Using VT , evaluate solicitation time cost STC
9: if perceived gain > solicitation cost then

10: Set θ = neighbors of n in G s.t. θ ∩ N (TS) = ∅
11: Set τ = min(|θ|, τ̂)
12: Select random subset M of size τ from θ
13: for each m ∈ M do
14: Using D, decide whether m considers joining
15: if m considers joining then
16: Using L, AP , VP , and C, evaluate

perceived gain from joining system
17: Using VT , evaluate join time cost JTC
18: if perceived gain > join cost then
19: Add m to TS as child of n
20: end if
21: end if
22: end for
23: end if
24: end for
25: advance simulation time by one day
26: end for

evolving networks. The general consensus is that a model for so-
cial networks should exhibit short average path length, high clus-
tering, broad degree distribution, and community structure. Our
default model, which satisfies these properties, is an evolving net-
work model proposed by Toivonen et al. [33]. In this model, net-
work growth is governed by two processes: (1) attachment to ran-
dom existing nodes and (2) attachment to the neighborhood of the
selected random node. The model is characterized by three para-
meters, pInit, Range, and Seed, for which our default values are
those specified by Toivonen et al. This yields an average degree of
roughly five.

II) Payout Valuation Model VP : To evaluate how people per-
ceive the lottree payout, we use a model based on the cognitive
psychology of lotteries and sweepstakes [29]. The generally ac-
cepted economic model that has replaced expected utility theory is
prospect theory, proposed by Tversky and Kahnemann [34]. Based
on empirical studies, it describes how individuals evaluate losses
and gains in lotteries. It applies a nonlinear transformation of the
probability scale, which over-weights small probabilities and under-
weights moderate and high probabilities. For the model’s two key
parameters, α (power) and γ (probability weighting), we use the
values derived by Tversky and Kahnemann in their refinement of
prospect theory known as cumulative prospect theory [35].

III) Solicitation Assumption Factor SAF: When a person eval-
uates the gain from soliciting an acquaintance, there are two al-
ternatives the person might imagine would result from not making
the solicitation. First, the non-member might remain not part of
the system; second, the non-member might join the system as a
child of someone else. The distinction between these two is essen-
tially the distinction between the SSI and WSI properties, and the
person’s assumption about what would happen if he does not so-
licit has an effect on how he values the gain from the solicitation.
We model this assumption with a Solicitation Assumption Factor
(SAF), which expresses the believed likelihood that an acquain-
tance will join the tree even without a solicitation from the person
making the evaluation. Our default value for SAF is 0.5.

IV) Time Valuation Model VT : As a simple estimate for the costs
of soliciting others and of joining the system, we characterize the
efforts by the temporal cost of performing the task. The time re-
quired to send a solicitation is the Solicitation Time Cost (STC),
and the time required to join the system is the Join Time Cost (JTC).
For comparison against perceived values obtained through the pay-
out valuation model, we must convert these temporal values into
monetary values. For this, we employ a probability distribution of
income per minute for each person, using the US income distribu-
tion in 2005 [2].

V) Diffusion Model D: To determine whether a person considers
each solicitation, we employ a diffusion model, which characterizes
the flow of influences through a social network. These models are
built on the premise that a person’s tendency to accept an idea (or,
in our case, to consider joining a lottree) increases monotonically
as it receives more recommendations (or solicitations). Our default
model is the independent cascade model [16], wherein each solici-
tation succeeds with a certain fixed probability p. In our sensitivity
analysis, we also consider two other models: the diminishing cas-
cade model [6], wherein the success probability p decreases by a
factor of q < 1 with each repeated solicitation, and a model de-
rived from empirical data [6] of LiveJournal community joining.
For all our diffusion models, once a person decides to consider a
solicitation, she will never consider it again.

VI) Contribution Model C: To model how much each person con-
tributes to the system, our default model is based on the distribution
of computer availability [15], which would be appropriate for sys-
tems in which the contribution is related to machine time. In our
sensitivity analysis, we also consider a random uniform distribution
and a constant uniform distribution.

7.1.3 Parameters
Most of the above models come with a rich set of parameters

that can be set to tune the model behavior. Table 1 shows our de-
fault values for these parameters (wherever possible taken from the
corresponding literature). All our evaluations are performed us-
ing these values unless stated otherwise. Our values of β and δ in
Pachira are derived in Section 7.2.2, and sensitivity of these values
with regard to changes in the other parameters and environmental
factors is evaluated in Section 7.2.6.

7.2 Results
In order to reduce variance, all our simulation results were re-

peated 20 times and the respective average values are plotted. In
all cases, the experienced variance is small (within 10%) and error
bars are therefore omitted. We call the number of people that end
up joining the lottree, after simulating one year of deployment, the
penetration.

Solicitation Assumption Factor (SAF) 0.5
Payout 1000
Solicitation Time Cost (STC) 30 seconds
Join Time Cost (JTC) 30 minutes
Population Size 107

Diffusion Probability p 0.1
Diminishing Cascade Factor q 0.9
Social Network Model: Toivonen et al.
pInit, Range, Seed 0.95, 3, 30 [33]
Prospect Theory: α, γ 0.88, 0.61 [35]
Income Distribution Model USA 2005 [2]
Contribution Model: b = 0.3; c = 2.7;
Availability parameters g = 9.2; r = 11 [15]
Pachira Parameter Settings: β, δ 0.5, 0.08

Table 1: Baseline simulation configuration

7.2.1 Population effects
Before reporting actual results, we first show that the size limi-

tations of our simulation are not an issue. Our simulated popula-
tion is ten million people, which is significantly smaller than the
population that could be reached in the real world. However, Fig-
ure 2 (left) shows that the penetration substantially levels out as the
population increases. By the time we reach a population of 106,
there is little additional penetration from increasing population.

7.2.2 Optimal β and δ

Our first order of business is to determine optimal values for the
Pachira lottree parameters β and δ. Figure 2 (middle) shows the
penetration as a function of these parameters. Only a small range
of δ values is shown because higher and lower δ results in signifi-
cantly reduced penetration. The plots show that, although the opti-
mal choice of β and δ depends upon specific environmental factors,
the curves exhibit a regular shape. Based on these and other results,
we select default values of β = 0.5 and δ = 0.08. Although not
optimal in every setting, our sensitivity analysis in Section 7.2.6
shows that these settings exhibit good behavior even as we vary the
different model parameters.

7.2.3 Deployment tuning
A key question for an executive who wishes to use a lottree

for system deployment is how much money to offer as a payout.
The answer is a function of the desired penetration and the ex-
pected effort of sending solicitations and of joining the system.
Figures 3 (left) and (middle) show how the penetration depends
on the selected payout, the JTC and STC. As an example, to obtain
100K participants in a system with a STC of 30 seconds and a JTC
of 30 minutes, Figure 3 (left) shows that we should offer a payout
of 5000 dollars.

Discussion: We can see that expected penetration increases with
increasing payout and decreasing JTC; and high values of STC
have a negative impact on penetration. However, it is interesting to
compare the impact of the STC for different values of JTC. If JTC
is 10 minutes, the achieved penetration nearly doubles when STC is
reduced from 1 minute to 30 seconds. Conversely, for JTC of 100
minutes, the penetration is virtually equal regardless of whether
STC is higher or lower. The reason for this behavior is that in
the former case, because JTC is so low, the bottleneck that limits
growth are solicitations. In contrast, if JTC is large, people stop
becoming new participants because their perceived value predicted
by Prospect theory becomes too small faster than solicitations be-
coming a bottleneck. The plot shows that the equilibrium point
in which joining and solicitations start become limiting factors at
roughly the same size is reached at about JTC of 30 minutes.

 10

 100

 1000

 10000

 100000

 100 1000 10000 100000 1e+06 1e+07

P
e
n
e
t
r
a
t
i
o
n

People

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 0.2 0.4 0.6 0.8 1

P
e
n
e
t
r
a
t
i
o
n

i
n

1
0
0
0

Pachira Parameter β

δ=0.03
δ=0.05
δ=0.08

δ=0.1
δ=0.15

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 5 10 15 20 25

P
r
o
b
a
b
i
l
i
t
y

Tree Level

Node Distribution CDF
Win Distribution CDF

Figure 2: Impact of population size (left). Impact of varying β and δ (middle). Tree-depth distribution of nodes and wins (right).

 0

 50

 100

 150

 200

 250

 100 1000 10000

P
e
n
e
t
r
a
t
i
o
n

i
n

1
0
0
0

Payout

JTC=10
JTC=30
JTC=50
JTC=100

 0

 50

 100

 150

 200

 250

 100 1000 10000

P
e
n
e
t
r
a
t
i
o
n

i
n

1
0
0
0

Payout

JTC=10
JTC=30
JTC=50
JTC=100

 0

 0.2

 0.4

 0.6

 0.8

 1

 2 4 6 8 10 12 14 16 18 20

P
r
o
b
a
b
i
l
i
t
y

o
f

n
o
t

s
t
u
n
t
i
n
g

Initial Set Size

SAF=0
SAF=0.2
SAF=0.4
SAF=0.6
SAF=0.8
SAF=1

Figure 3: Impact of payout and JTC for STC= 30 seconds (left) and STC= 1 minute (middle). Impact of IS size on stunting (right).

7.2.4 Distribution of nodes and wins
It is insightful to view the tree structure and its induced win-

probability distribution resulting from the Pachira lottree. For our
default parameters, the lottree grows in average up to depth of 25.
Figure 2 (right) shows the distribution of nodes and win proba-
bilities relative to the different levels of the tree (the root level is
0). These CDFs show that Pachira generates a bell-shaped dis-
tribution in which the majority of the nodes are contained in the
middle levels. Relative to the distribution of nodes, the distribution
of win probability is shifted slightly towards the higher levels, re-
flecting the effect of the solicitation incentive that rewards nodes
with many descendents. The figure shows that our default para-
meters of β = 0.5 and δ = 0.08 strike a subtle balance between
fairness (probability curve follows the node distribution curve) and
solicitation incentive (left shift of the probability curve).

7.2.5 WSI vs. SSI: Stunting and initializing
In the sensitivity analysis of Section 7.2.6, we will show that a

Pachira lottree’s penetration is not significantly affected by vary-
ing the solicitation assumption factor SAF, which indicates that the
absence of SSI is not a critical weakness for Pachira. However,
SAF does have an impact on lottree deployment; specifically, the
SSI property can be violated when the lottree is very small, so low
values of SAF can lead to stunted deployment that never exceeds a
small factor over the initial set size.

Figure 3 (right) shows the probability of stunting with different
values of SAF and different sizes of IS. What we see is that the
probability of achieving sustained growth becomes unity for a suf-
ficiently large initial set. At an initSize of 20, no run was ever
stunted. What is particularly interesting to observe is that the criti-
cal initial set size required to guarantee sustained growth crucially
depends on the given SAF. The higher this value, the higher partic-
ipants weigh their marginal perceived gain in terms of WSI rather
than SSI, the smaller an IS suffices. In the extreme case in which
SAF equals one, stunting never occurs.

These observations lead to the conclusion that Pachira’s violation
of SSI weighs particularly heavy when the number of participants
in the tree is small. Empirically, this shows that while Pachira is
not guaranteed to satisfy SSI, such violations occur only at the very
initial state of the lottree’s growth. This shortcoming can therefore
be circumvented by starting the lottree-based motivational deploy-
ment of a networked system with a sufficiently large IS.

7.2.6 Sensitivity analysis
Through the above experiments, we have derived β = 0.5 and

δ = 0.08 as our default values for the two Pachira parameters. In
order to verify these choices, we conducted an extensive sensitivity
analysis with regard to all our model parameters and environmental
assumptions. We also evaluated these parameters by substituting
entire model blocks.

The sensitivity analysis is based on the following methodology.
We pick a specific environmental factor (for instance JVT or a pa-
rameter from prospect theory) and vary its value. For each sample
point, we determine (1) the average penetration Pour for this set of
parameters when using Pachira with our own choice of β and δ, and
(2) the average penetration Popt when using the optimal values of β
and δ for this particular point in the parameter space, which we de-
noted by β′ and δ′. We then define the competitive ratio Pour/Popt

as the fraction of penetration achieved by β = 0.5 and δ = 0.08
compared to the optimum choice of β and δ for that specific setting.

Because finding β′ and δ′ operation involves a complex search
over a two-dimensional parameter space in which each random
sample point may experience variance, finding optimal values for β
and δ given a set of configuration parameters is a computationally
intensive task. For this reason, we have conducted our sensitiv-
ity analysis with a reduced population size of 106. Resorting to
this smaller population is justified by Figure 2 (left). Our imple-
mentation of the search procedure itself is based on a hill-climbing
algorithm with decreasing step-size.

A few examples of our sensitivity results are shown in Figure 4,
and a summary of our main results is presented in Table 2. The

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
o
m
p
.
R
a
t
i
o

Solicitation Assumption Factor (SAF)

δ=0.05
δ=0.08

δ=0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

 20 40 60 80 100 120 140

C
o
m
p
e
t
i
t
i
v
e

R
a
t
i
o

Join Time Cost (JTC)

δ=0.05
δ=0.08

δ=0.1
 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5

C
o
m
p
e
t
i
t
i
v
e

R
a
t
i
o

Solicitation Time Cost (STC)

δ=0.05
δ=0.08

δ=0.1

Figure 4: Sensitivity Analysis for SAF, JTC, and STC.

SAF 0.0 – 1.0 0.949
Payout 103 – 106 0.977
STC 0 – 5 minutes 0.228
JTC 10 – 150 minutes 0.702
Toivonen: CInit 0.0 – 1.0 0.939
Toivonen: CRange 1 – 10 0.967
Contribution Models Uniform Random 0.972

Uniform Constant 0.976
Prospect Theory α 0.4 – 1 0.82
Prospect Theory γ 0.4 – 1 0.886
Independent Cascade p 0.05 – 1 0.958
Diminishing Cascade p 0.05 – 1 0.957
Diminishing Cascade q, p = 0.1 0.5 – 1 0.803
Diminishing Cascade q, p = 0.2 0.5 – 1 0.924
Diffusion Model LifeJournal [6] 0.993

Table 2: Sensitivity analysis—competitive ratios

table shows the worst competitive ratio achieved by our choices of
β and δ across the simulated range. With one exception, our choice
of β and δ achieves a competitive ratio of at least 0.7 for all para-
meter sweeps. The exception is STC as shown in Figure 4 (right);
the competitive ratio of our parameters starts dropping significantly
as STC increases. In all other cases, our choices were robust to
changes in model settings. Interestingly, this holds even as we
substituted entire model blocks (social network model, diffusion
model, etc...) by other models. For instance, our choices of β and
δ achieve a competitive ratio of more than 0.9 when replacing the
availability-based contribution model [15] by a uniform contribu-
tion model, or when replacing the independent cascade diffusion
model with a model that is based on real diffusion data reported for
the LiveJournal community in [6].

8. LEGAL ISSUES
This section2 applies only to laws of the United States; laws in

other countries may differ considerably.
There are three classes of law that have technical bearing on the

lottree mechanism as presented in this paper: promotion law, tax
law, and the CAN-SPAM Act of 2003.

Two aspects of promotion law impact lottree deployment. First,
depending on the effort required, the installation and running of
a distributed-system component may be judged to be “considera-
tion”, meaning that it is legally regarded as a transfer of tangible
value from the participant to the executive. If so, the executive is
obligated to provide an alternate means of entry (AMOE) by which
a person can become eligible for the payout without participating

2Although we address only those legal issues with direct technical impact,
it exceedingly important to respect all applicable laws when deploying a
lottree system. It is a misdemeanor to run any system in which some form
of value is distributed randomly, if not constructed in accordance with ap-
plicable laws.

in the system. This is the reason behind the “no purchase nec-
essary” disclaimers that typically accompany commercial sweep-
stakes. The potential impact on a lottree deployment is that some
small fraction of “participants” may not actually be contributing in
any way to the system. Second, promotion law generally disallows
variable prize pools, which precludes use of the rescaling technique
described in Section 5.3.

The main issue involving tax law is that any payment in excess
of the 1099 threshold requires the filing of a 1099-MISC tax form.
This threshold is set for each tax year and is 600 dollars for tax
year 2007. The impact on lottree deployment is that a payment in
excess of 600 dollars may be more burdensome for both the system
executive and the lottree winner.

The CAN-SPAM Act of 2003 was designed to legally inhibit
companies from sending unwanted commercial email. It also re-
stricts the degree to which a company can encourage others to send
commercial email on the company’s behalf. This law impacts lot-
tree deployments in two ways: First, the lottree must not encour-
age email solicitations in preference to other modes of solicitation.
Second, the lottree should limit the number of solicitations each
participant can issue per day; in our simulations, we limited this
number to three.

We believe that the Pachira scheme, which we plan to employ to
spur deployment of our own networked system, complies with all
the above laws.

9. RELATED WORK
There exists a vast literature on incentive mechanisms and tech-

niques in the networking literature. However, most prior schemes
are relevant only to symmetric systems in which every node has a
rational interest in participating or contributing. As pointed out in
the introduction, such mechanisms are unsuited to be employed as
a means for motivational deployment to bootstrap asymmetric sys-
tems or symmetric systems that require a sufficiently large network
effect to become self-sustained. Much of this work, for instance,
is tailored to specific peer-to-peer applications, including file shar-
ing [32], routing [8], content distribution [31], and multicast [27].
There has also been research into application-generic symmetric
incentives such as bartering [11], economic systems [36], tit-for-
tat [23] as in BitTorrent, or robustness in BAR models [22]. In
the context of asymmetric systems, CompuP2P [18] is a peer-to-
peer system that constructs decentralized markets for buying and
selling computing resources. CompuP2P assumes the availability
of a electronic payment mechanism to scalably and securely trans-
fer funds from the system’s beneficiaries to its contributors, in ex-
change for use of the contributors’ resources. Kamvar et al. [19]
consider a pay-per-transaction file-sharing system, wherein peers
are in competition for the opportunity to profit by providing re-
quested file content. They show that such competition can lead to
non-cooperation, similar to a lottree without the WSI property.

10. CONCLUSIONS AND FUTURE WORK
In this paper, we addressed the question of how to motivate peo-

ple to join or contribute to a networked system that does not (or
not yet) offer them inherent participation benefit. In answer, we
proposed a lottery tree, a mechanism that probabilistically rewards
each participant in a manner dependant on its contribution as well
as on the contributions of others whose participation it has solicited.

Lottrees are most effective at spurring deployment when systems
are small or medium-sized, which are the scales at which motiva-
tional deployment is most challenging. As the system scale in-
creases, the lottree’s effectiveness begins to wane, just as the self-
sustaining aspects of the networked system can be expected to be-
come active.

We formally defined seven desirable properties for lottrees and
constructed the Pachira lottree scheme, which simultaneously sat-
isfies a maximal satisfiable subset of these properties. We further
showed relatively straightforward work-arounds for the two prop-
erties that Pachira does not satisfy.

We then conducted extensive simulations, with which we derived
good choices for the Pachira lottree’s parameters, determined an
appropriate payout amount based on target deployment scale and
expected participation effort, and determined the required count of
initial participants to preclude stunted deployment. We also per-
formed a wide range of simulation experiments to analyze the sen-
sitivity of our evaluation to our modeling assumptions and hidden
parameters.

We conclude that Pachirais a practically ideal candidate for de-
ploying real networked systems, and we plan to employ this scheme
as part of an ongoing distributed-systems project requiring contri-
butions of CPU and bandwidth from a large number of PC users.

A looming open problem is auditing. The lottree mechanism is
inherently based on the assumption that each participant’s contribu-
tion can be reliably and securely measured and reported to the exec-
utive entity. Depending on the properties of the system in question,
this may be anywhere from thoroughly straightforward to exceed-
ingly challenging.

It may be interesting to consider generalized versions of lottree
systems, such as those not constrained to a tree structure. This
could be relevant, for example, in cases in which a potential partic-
ipant is concurrently solicited by more than one active member of
the system.

11. REFERENCES
[1] myspace.com: a place for friends. http://www.myspace.com/.
[2] US Census 2005, Income data, 2005.
[3] WikiPedia: The Free Encyclopedia.

http://www.wikipedia.org/.
[4] D. P. Anderson. BOINC: A System for Public-Resource

Computing and Storage. In Proc. 5th IEEE/ACM GRID, Nov
2004.

[5] S. Androutsellis-Theotokis and D. Spinellis. A Survey of
Peer-to-Peer Content Distribution Technologies. ACM
Computing Surveys, 36(4):335–371, 2004.

[6] L. Backstrom, D. Huttenlocher, J. Kleiberg, and X. Lan.
Group Formation in Large Social Networks: Membership,
Growth, and Evolution. In Proc. 12th ACM Conference on
Knowledge Discovery and Data Mining (KDD), 2006.

[7] Berkeley Open Infrastructure for Network Computing.
BOINC Combined Statistics.
http://boinc.netsoft-online.com/, 2006.

[8] A. Blanc, Y.-K. Liu, and A. Vahdat. Designing Incentives for
Peer-to-Peer Routing. In 2nd NetEcon, 2004.

[9] M. Brossi. Multilevel marketing: A legal primer : a
handbook for executives, entrepreneurs, managers and
distributors. Direct Selling Association, 1991.

[10] C. Christensen, T. Aina, and D. Stainforth. The challenge of
volunteer computing with lengthy climate model simulations.
In E-SCIENCE, pages 8–15. IEEE Computer Society, 2005.

[11] B. Chun, Y. Fu, and A. Vahdat. Bootstrapping a Distributed
Computational Economy with Peer-to-Peer Bartering. In 1st
NetEcon, 2003.

[12] B. Cohen. Incentives Build Robustness in BitTorrent. In 1st
NetEcon, 2003.

[13] P. Dewan and P. Dasgupta. PRIDE: Peer-to-Peer Reputation
Infrastructure for Decentralized Environments. In WWW
2004, 2004.

[14] J. R. Douceur. The Sybil Attack. In 1st IPTPS, 2002.
[15] J. R. Douceur. Is Remote Host Availability Governed by a

Universal Law? SIGMETRICS Performance Evaluation
Review, 31(3), 2003.

[16] J. Goldenberg, B. Libai, and E. Muller. Using Complex
System Analysis to Advance Marketing Theory
Development. Academy of Marketing Science Review, 2001.

[17] L. Guernsey. Project Uses Simulations to Research Flu
Vaccines. The New York Times, December 2000.

[18] R. Gupta and A. K. Somani. CompuP2P: An Architecture for
Sharing of Compute Power In Peer-to-Peer Networks With
Selfish Nodes. In 2nd NetEcon, 2004.

[19] S. Kamvar, B. Yang, and H. Garcia-Molina. Addressing the
Non-Cooperation Problem in Competitive P2P Networks. In
1st NetEcon, 2003.

[20] M. Katz and C. Shapiro. Systems Competition and Network
Effects. Journal of Economic Perspectives, 8(2):93–115,
1994.

[21] S. M. Larson, C. D. Snow, M. R. Shirts, and V. S. Pande.
Folding@Home and Genome@Home: Using distributed
computing to tackle previously intractable problems in
computational biology. Computational Genomics, 2002.

[22] H. C. Li, A. Clement, E. L. Wong, J. Napper, I. Roy,
L. Alvisi, and M. Dahlin. BAR Gossip. In Proceedings of the
7th Symposium on Operating System Design and
Implementation (OSDI), 2006.

[23] Q. Lian, Y. Peng, M. Yang, Z. Zhang, Y. Dai, and X. Li.
Robust Incentives via Multi-level Tit-for-tat. In 5th IPTPS,
2006.

[24] Magix. freeDB.org. http://www.freedb.org/.
[25] T. Mengotti. GPU, a Framework for Distributed Computing

over Gnutella. ETH Zurich, 2004. CS Masters Thesis.
[26] M. E. J. Newman. The Structure and Function of Complex

Networks. SIAM Review, 45, 2003.
[27] T.-W. Ngan, D. S. Wallach, and P. Druschel.

Incentives-Compatible Peer-to-Peer Multicast. In 2nd
NetEcon, 2004.

[28] V. Pai and A. E. Mohr. Improving Robustness of Peer-to-Peer
Streaming with Incentives. In 1st NetEcon, 2006.

[29] P. Rogers. The Cognitive Psychology of Lottery Gambling:
A Theoretical Review. Journal of Gambling Studies,
14(2):111–134, 1998.

[30] M. Shirts and V. S. Pande. Screensavers of the World, Unite!
Science, 290(5498):1903–1904, December 2000.

[31] M. Sirivianos, X. Yang, and S. Jarecki. Dandelion: Secure
Cooperative Content Distribution with Robust Incentives. In
1st NetEcon, 2006.

[32] K. Tamilmani, V. Pai, and A. E. Mohr. SWIFT: A System
With Incentives For Trading. In 2nd NetEcon, 2004.

[33] R. Toivonen, J.-P. Onnela, J. Saramki, J. Hyvnen, and
K. Kaski. A Model for Social Networks. Physica A, 371(2),
2006.

[34] A. Tversky and D. Kahneman. Prospect Theory: An Analysis
of Decision Under Risk. Econometrica, 47(2), 1979.

[35] A. Tversky and D. Kahneman. Advances in Prospect Theory:
Cumulative Representation of Uncertainty. Journal of Risk
and Uncertainty, 5, 1992.

[36] V. Vishnumurthy, S. Chandrakumar, and E. G. Sirer.
KARMA: A Secure Economic Framework for P2P Resource
Sharing. In 1st NetEcon, 2003.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

