
EtherFuse: An Ethernet Watchdog

Khaled Elmeleegy, Alan L. Cox, T. S. Eugene Ng
Department of Computer Science

Rice University

Abstract
Ethernet is pervasive. This is due in part to its ease of use. Equip-
ment can be added to an Ethernet network with little or no manual
configuration. Furthermore, Ethernet is self-healing in the event of
equipment failure or removal. However, there are scenarios where
a local event can lead to network-wide packet loss and congestion
due to slow or faulty reconfiguration of the spanning tree. More-
over, in some cases the packet loss and congestion may persist in-
definitely.

To address these problems, we introduce the EtherFuse, a new
device that can be inserted into an existing Ethernet to speed the
reconfiguration of the spanning tree and prevent congestion due to
packet duplication. EtherFuse is backward compatible and requires
no change to the existing hardware, software, or protocols. We de-
scribe a prototype EtherFuse implementation and experimentally
demonstrate its effectiveness. Specifically, we characterize how
quickly it responds to network failures, its ability to reduce packet
loss and duplication, and its benefits on the end-to-end performance
of common applications.

Categories and Subject Descriptors
C.2.1 [Network Architecture and Design]: Packet Switching Net-
works; C.2.3 [Network Operations]: Network Monitoring; C.2.5
[Local and Wide-Area Networks]: Ethernet

General Terms
Management, Performance, Reliability, Experimentation

Keywords
Network Watchdog, Ethernet, Reliability, Count to Infinity, For-
warding Loop

1. INTRODUCTION
This paper introduces the EtherFuse, a new device that can be

inserted into an existing Ethernet in order to increase the network’s
robustness. The EtherFuse is backward compatible and requires no
change to the existing hardware, software, or protocols.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

Ethernet is the dominant networking technology in a wide range
of environments, including home and office networks, data center
networks, and campus networks. Moreover, Ethernet is increas-
ingly used in mission-critical applications. Consequently, the net-
works supporting these applications are designed with redundant
connectivity to handle failures.

Although modern Ethernet is based on a point-to-point switched
network technology, Ethernet still relies on packet flooding to de-
liver a packet to a new destination address whose topological lo-
cation in the network is unknown. Moreover, Ethernet relies on
switches observing the flooding of a packet to learn the topologi-
cal location of an address. Specifically, a switch observes the port
at which a packet from a particular source address S arrives. This
port then becomes the outgoing port for packets destined for S and
so flooding is not required to deliver future packets to S.

To support the flooding of packets for new destinations and ad-
dress learning, an Ethernet network dynamically builds a cycle-free
active forwarding topology using a spanning tree protocol. This
active forwarding topology is a logical overlay on the underlying
physical topology. This logical overlay is implemented by config-
uring the switch ports to either forward or block the flow of data
packets.

Redundant connectivity in the physical topology provides pro-
tection in the event of a link or switch failure. However, it is
essential that the active forwarding topology be cycle free. First
of all, broadcast packets will persist indefinitely in a network cy-
cle because Ethernet packets do not include a time-to-live field.
Moreover, unicast packets may be mis-forwarded if a cycle exists.
Specifically, address learning may not function correctly because a
switch may receive packets from a source on multiple switch ports,
making it impossible to build the forwarding table correctly.

The dependability of Ethernet therefore heavily relies on the abil-
ity of the spanning tree protocol to quickly recompute a cycle-free
active forwarding topology upon a network failure. While the ac-
tive forwarding topology is being recomputed, localized packet loss
is to be expected. Unfortunately, under each of the standard span-
ning tree protocols [16, 15], there are scenarios in which a localized
network failure can lead to network-wide packet loss and conges-
tion due to slow or faulty reconfiguration of the spanning tree or
the formation of a forwarding loop.

Detecting and debugging the causes of these problems is labor
intensive. For example, Cisco’s prescribed way for troubleshoot-
ing forwarding loops is to maintain a current diagram of the net-
work topology showing the ports that block data packets. Then, the
administrator must check the state of each of these ports. If any
of these ports is forwarding, then a failure at that port is the likely
cause for the forwarding loop [8]. However, when there is network-
wide packet loss and congestion, remote management tools may

also be affected, making it difficult to obtain an up-to-date view of
the network state. Consequently, the network administrator may
have to walk to every switch to check its state, which can be time
consuming.

The network disruption at the Beth Israel Deaconess Medical
Center in Boston illustrates the difficulty of troubleshooting Eth-
ernet failures [2, 3]. In this incident, the network suffered from
disruptions for more than three days due to problems with the span-
ning tree protocol.

A variety of approaches have been proposed to address the reli-
ability problems with Ethernet. Some researchers have argued that
Ethernet should be redesigned from the ground up [19, 18, 20].
In contrast, others have proposed keeping the basic spanning tree
model but changing the protocol responsible for its maintenance
to improve performance and reliability [11]. Proprietary solutions
to a few specific spanning tree problems have been implemented
in some existing switches, including Cisco’s Loop Guard [6] and
Unidirectional Link Detection (UDLD) protocol [9]. However, to-
gether these proprietary solutions still do not address all of Ether-
net’s reliability problems.

Instead of changing the spanning tree protocol, we introduce the
EtherFuse, a new device that can be inserted into redundant links
in an existing Ethernet to speed the reconfiguration of the span-
ning tree and prevent congestion due to packet duplication. The
EtherFuse is compatible with any of Ethernet’s standard spanning
tree protocols and requires no change to the existing hardware, soft-
ware, or protocols. In effect, the EtherFuse allows for the redundant
connectivity that is required by mission critical applications while
mitigating the potential problems that might arise.

We describe a prototype EtherFuse implementation and experi-
mentally demonstrate its effectiveness. Specifically, we character-
ize how quickly it responds to network failures, its ability to reduce
packet loss and duplication, and its benefits on the end-to-end per-
formance of common applications.

The rest of this paper is organized as follows. The next section
describes the problems that are addressed by the EtherFuse. Sec-
tion 3 describes the EtherFuse’s design and operation. Section 4
describes a prototype implementation of the EtherFuse. Section 5
describes our experimental setup. Section 6 presents an evaluation
of the EtherFuse’s effectiveness. Section 7 discusses related work.
Finally, Section 8 states our conclusions.

2. ETHERNET FAILURES
The three IEEE standard Ethernet spanning tree protocols are

the Spanning Tree Protocol (STP), the Rapid Spanning Tree Pro-
tocol (RSTP), and the Multiple Spanning Tree Protocol (MSTP).
RSTP was introduced in the IEEE 802.1w standard and revised in
the IEEE 802.1D (2004) standard. It is the successor to STP. It
was created to overcome STP’s long convergence time that could
reach up to 50 seconds [7]. In STP, each bridge maintains a sin-
gle spanning tree path. There are no backup paths. In contrast, in
RSTP, bridges compute alternate spanning tree paths using redun-
dant links that are not included in the active forwarding topology.
These alternate paths are used for fast failover when the primary
spanning tree path fails. Moreover, to eliminate the long delay
used in STP for ensuring the convergence of bridges’ spanning tree
topology state, RSTP bridges use a hop-by-hop hand-shake mecha-
nism called sync to explicitly synchronize the state among bridges.
A tutorial by Cisco [10] provides a more detailed description of
RSTP. MSTP is defined by the IEEE 802.1Q-2003 standard. It was
created to support load balancing within networks having multiple
VLANs. Specifically, in contrast to RSTP and STP, MSTP allows
for the creation of multiple spanning trees within the network and

the assignment of one or more VLANs to each of these spanning
trees. Many of its basic mechanisms are derived from RSTP.

The remainder of this section describes the problems that can
occur under each of these spanning tree protocols that are addressed
by the EtherFuse.

2.1 Count to Infinity
The RSTP and MSTP protocols are known to exhibit count-to-

infinity behavior under some failure conditions [18, 11]. Specifi-
cally, count to infinity can occur when the network is partitioned
and the root bridge of a spanning tree is separated from one or
more physical cycles. During count to infinity, the spanning tree
topology is continuously being reconfigured and ports in the net-
work can oscillate between forwarding and blocking data packets.
Consequently, many data packets may get dropped.

To construct a spanning tree, every bridge in the network has a
port that connects it to its parent in the tree. This port is called the
root port and it is used for connectivity to the root bridge. In RSTP
and MSTP, some bridges have ports with a different role, called
alternate ports. An alternate port exists if there is a loop in the
physical topology, and it is blocked to cut this loop. An alternate
port also caches topology information about an alternate path to the
root bridge which gets used if the bridge loses connectivity to the
root bridge through its root port.

When the root bridge is separated from a physical cycle, the
topology information cached at an alternate port in the cycle im-
mediately becomes stale. Unfortunately, RSTP and MSTP use this
stale topology information and spread it through protocol messages
called Bridge Protocol Data Units (BPDUs), triggering a count to
infinity. The count to infinity ends when the message age of the BP-
DUs carrying stale information reaches a limit. A smaller value of
this limit would decrease the duration of a count to infinity. How-
ever, because a BPDU’s message age increases as it passes from
one bridge to the next, this limit also imposes an upper bound on
the height of the spanning tree. Thus, having a small value for this
limit restricts the size of the overall network. Another factor that
increases the duration of the count to infinity is that RSTP spec-
ifies that a bridge can only transmit a limited number of BPDUs
per port per second. This number is given by the TxHoldCount
parameter. RSTP uses this parameter to limit processing load. Al-
together, these factors can make a count to infinity last for tens of
seconds [11].

2.2 Forwarding Loops
Having forwarding loops in Ethernet can be disastrous. A for-

warding loop can cause packets to keep circulating inside the net-
work. Also, if broadcast packets get trapped in a loop, they will
generate broadcast storms. Moreover, multiple forwarding loops
can cause the trapped packets to multiply exponentially.

At a high level, a forwarding loop is formed when a bridge’s
port erroneously switches from a blocked state to a forwarding state
where it starts forwarding data packets. Forwarding loops can be
short lived allowing the network to quickly resume normal oper-
ation after the loop is broken, or they can be long lived or even
permanent rendering the network unusable. In the following, we
explain various cases where forwarding loops can form under each
of the spanning tree protocols. Finally, we explain how forwarding
loops can break Ethernet’s address learning mechanism.

2.2.1 BPDU Loss Induced Forwarding Loops
In all of the spanning tree protocols a port is blocked if it is not

the root port and it receives BPDUs from a peer bridge that adver-
tise a lower-cost path to the root bridge than the BPDUs it sends.

B1

B2

B3

B4

B5

B6

B7

B8

B14

B13

B12

B11

B10

B9

Blocked port

B1

B2

B3

B4

B5

B6

B7

B8

B14

B13

B12

B11

B10

B9

B1

B2

B3

B4

B5

B6

B7

B8

B14

B13

B12

B11

B10

B9

B15

B16

B17

B18

B19

B20

(a) Before link failure. (b) After failure. (c) Multiple loops.

Figure 1: Examples of permanent forwarding loops forming under STP when the spanning tree height exceeds the MaxAge limit due to a link failure. In the figure,

only blocked ports are not forwarding data packets. The network has the MaxAge value set to 6.

However, if the port fails to receive BPDUs from its peer bridge
for an extended period of time, it may start forwarding data. For
example, in RSTP, this period is three times the interval between
regular BPDU transmissions. BPDU loss can be due to an overload
of some resource, like the control CPU or a link’s bandwidth. It
can also be because of hardware failures and bugs in the firmware
running on Ethernet bridges.

One scenario in which the control CPU can become overloaded
is when a bridge’s CPU is involved in the processing of data pack-
ets. Normally, Ethernet frames circulating around a forwarding
loop are handled by the bridge’s line cards in hardware and would
not be processed by the control CPU. However, sometimes bridges
do Internet Group Management Protocol (IGMP) snooping to opti-
mize IP multicast [5]. Since IGMP packets are indistinguishable
from multicast data packets at layer 2, a switch running IGMP
snooping must examine every multicast data packet to see whether
it contains any pertinent IGMP control information. If IGMP snoop-
ing is implemented in software, the switch’s CPU can get over-
whelmed by multicast packets. When the control CPU is over-
loaded, it may no longer process and transmit BPDUs in a timely
fashion.

A subtle case of a BPDU loss induced forwarding loop can result
from a uni-directional link. Although Ethernet links are normally
bi-directional, the failure of a transceiver on an optical fiber link
can cause the link to become uni-directional. In this case, if BPDUs
are transmitted in the failed direction, they will be lost. Such BPDU
loss can cause a port that was previously blocked to suddenly start
forwarding data packets in the direction that is still functional and
create a forwarding loop. Thus, a single transceiver failure can lead
to a permanent forwarding loop.

2.2.2 MaxAge Induced Forwarding Loops
In all the Ethernet spanning tree protocols, the maximum height

of the spanning tree is limited. In STP and RSTP, the limit is given
by the MaxAge. Whereas, in MSTP, the limit is given by the TTL
in the BPDUs from the root bridge. If a network is too large, the
BPDUs from the root bridge will not reach all bridges in the net-
work. Suppose bridge A sends a BPDU to bridge B but the BPDU
arrives with a message age equal to MaxAge or a TTL equal to
zero. Under RSTP and MSTP, B would block its port to A, par-
titioning the network. However, under STP the BPDU with the
maximum message age is completely ignored by B. The end result
is as if B is not connected to A at all, and the port connecting B
to A will become forwarding by default. Moreover, those distant
bridges that do not receive BPDUs from the true root bridge will
try to construct a spanning tree among themselves. The two span-
ning trees in the network can be conjoined at the leaves and lead to
a forwarding loop.

Unfortunately, such a forwarding loop can form as a result of
a single, localized failure. For example, a single link failure can
cause a perfectly functional Ethernet network to violate the maxi-
mum spanning tree height limit, leading to a sudden, complete net-
work breakdown. Figure 1 gives an example of such a problem. B1
is the root bridge of the network. Assume that the value of MaxAge
is set to 6. Figure 1(a) shows the network before the failure, and
Figure 1(b) shows what happens after the link connecting bridge
B1 to bridge B8 fails.

Before the failure, all bridges are within 4 hops of the root bridge
B1. The blocked ports at B5 and B11 cut the physical cycles to cre-
ate a spanning tree. However, after the failure, B8 becomes 7 hops
away from B1. As a result, the message age of BPDUs from B1
will have reached MaxAge when they arrive at bridge B8 and so
they are dropped by B8. Without receiving any valid BPDUs from
its neighbors, bridge B8 believes that it is the root of the spanning
tree and makes the ports that connect it to bridges B7 and B9 des-
ignated ports. On the other hand, both B7 and B9 believe that B1
is the root of the spanning tree as the BPDUs they receive convey-
ing this information have message age below MaxAge. B7 and
B9 both believe that B8 is their child in the spanning tree and thus
they make their ports connecting them to B8 designated ports. All
the ports in the network are thus forwarding data packets, and a
permanent forwarding loop is formed.

In networks with more complex topologies, this problem can cre-
ate multiple forwarding loops. Figure 1(c) generalizes the previous
example to illustrate the formation of multiple forwarding loops
after the failure of the link between bridges B1 and B8. In this
network, broadcast packets will be replicated at the junctions at B1
and B8. This creates an exponentially increasing number of du-
plicate packets in the network that may render the entire network
inoperative.

2.2.3 Count to Infinity Induced Forwarding Loops
All of the spanning tree protocols are specified as a set of concur-

rent state machines. It has been discovered that in RSTP the com-
bination of the count-to-infinity behavior, a race condition between
RSTP state machines, and the non-determinism within a state ma-
chine can cause an Ethernet network to have a temporary forward-
ing loop during the count to infinity. This problem is explained in
detail in [12]. Here, we provide a sketch of the explanation.

Normally, during a count to infinity, a hand-shake operation be-
tween adjacent bridges, called sync, prevents a forwarding loop
from forming. However, a race condition between two RSTP state
machines and a non-deterministic transition within a state machine
that together allow a sync operation to be mistakenly bypassed.
Once the sync operation is bypassed, a forwarding loop is formed
which lasts until the end of the count to infinity.

B2

B3 B4

H1 H2

B1

B5 B6

B2

B3 B4

H1 H2

B1

B5 B6
P1

P2

(a) Before failure. (b) After failure of the root bridge.

Figure 2: Forwarding table pollution caused by a temporary forwarding loop.

2.2.4 Pollution of Forwarding Tables
Forwarding tables in Ethernet are learned automatically. When

a bridge receives a packet with a source address A via a port p, p
automatically becomes the output port for packets destined for A.
This technique works fine in a loop-free topology. However, when
a forwarding loop occurs, a packet may arrive at a bridge multiple
times via different ports in the loop. This can cause a bridge to
use the wrong output port for a destination address. Moreover, the
effects of such forwarding table pollution can be long lasting.

Figure 2 shows an example of how forwarding tables can get pol-
luted. Figure 2(a) shows the forwarding path, B5-B3-B2-B4-B6,
between end hosts H1 and H2 in the absence of failure. The death
of the root bridge, B1, can lead to a temporary forwarding loop
among B2, B3 and B4 as explained in Section 2.2.3. Figure 2(b)
shows how the forwarding table of bridge B5 can get polluted in the
presence of a forwarding loop among B2, B3 and B4. Initially B5
believes H1 is connected to port P2. However after the forwarding
loop is formed, a packet from H1 can reach B3 then spin around
the loop to reach B3 again, which can send a copy back to B51.
Thus, bridge B5 receives a packet with source address H1 via port
P1 and believes that port P1 should be the output port for H1. Once
this mistake is made by B5, there is no way for H2’s data packets
to reach H1 even after the temporary forwarding loop has ended
because those packets will be dropped by B5 as they arrive on port
P1. This problem will only get fixed when the incorrect forwarding
table entry at B5 times out, or when H1 transmits a data packet.

3. THE DESIGN OF THE ETHERFUSE
The EtherFuse is a device that can be inserted into the physical

cycles in the network to improve Ethernet’s reliability. It has two
ports and is analogous to an electric circuit fuse. If it detects the
formation of a forwarding loop, it breaks the loop by logically dis-
connecting a link on this loop. The EtherFuse can also help mitigate
the effects of the count to infinity in RSTP and MSTP.

3.1 Detecting Count to Infinity
Count to infinity occurs around physical loops in Ethernet. The

way that the EtherFuse detects a count to infinity is by intercepting
all BPDUs flowing through it and checking if there are 3 BPDUs
announcing an increasing cost to the same root R. The EtherFuse
maintains a counter that is incremented every time the EtherFuse
receives a BPDU with increasing cost to the same root. The counter

1 The reason B3 may send a copy to B5 is either because this is a
packet with a broadcast destination, or B3 does not have an entry
for the destination of the packet in its forwarding table and thus it
falls back to flooding the packet on all its ports. B3 may not have
an entry for the packet’s destination in its forwarding table either
because this is the first time it hears of this destination, or because
its forwarding table entry has timed out or has been flushed due to
the reception of a BPDU instructing it to do so.

BCache[p].BPDU.root
== BPDU.root

Receive BPDU
on port p

BCache[p].BPDU= BPDU;
BCache[p].count = 1;

BCache[p].cost = BPDU.cost;

Yes BCache[p].cost
< BPDU.cost

No

BCache[p].BPDU
== BPDU

No

BCache[p].count = 1;
BCache[p].cost = BPDU.cost;

No

Yes

BCache[p].BPDU= BPDU;
BCache[p].count++;

BCache[p].cost = BPDU.cost;

Yes

BCache[p].count >= 3

BPDU.messageAge =
BPDU.maxAge;

Yes

Transmit BPDU on
the other port;

No

Figure 3: Flow chart of how the EtherFuse detects and mitigates a count to

infinity.

is reset to one if the EtherFuse receives two consecutive identical
BPDUs. If this counter reaches the value of 3, it signals that a count
to infinity is taking place. This means that there is stale information
about R that is circling around the loop and will keep doing so until
it is aged out. The reason for checking for 3 consecutive BPDUs
announcing increasing costs is that BPDUs are sent out if the bridge
has new information to announce, or periodically every hello time,
which is typically 2 seconds. Thus, it is unlikely that a path cost to
the root will increase twice during two consecutive hello times, due
to any reason other than a count to infinity. In the unlikely event that
the there was no count to infinity but the network was reconfigured
twice during two consecutive hello times, the BPDU following the
two BPDUs with increasing costs will announce the same cost as
the preceding one. Thus, the EtherFuse will realize that no count
to infinity is taking place and it will not take any further action,
leaving the network to resume its normal operation.

The EtherFuse does the BPDU monitoring independently for
each of its 2 ports. It uses a BPDU cache (BCache) that maintains
the state of BPDUs it has received at each port. Figure 3 shows a
flow chart explaining how the EtherFuse detects a count to infin-
ity. Since fresh information can chase stale information around the
loop announcing two different roots during a count to infinity, the
cache has two entries per port to record both the fresh and the stale
information. Only two entries are used in the cache because during
the count to infinity there can be BPDUs announcing at most two
different roots [11]. Both the fresh and the stale information are
cached because the EtherFuse can not distinguish between them.
Thus, it monitors both copies in the cache checking if either of
them exhibit two consecutive increases in cost. The details about
maintaining two cache entries per port in the BCache are omitted
from Figure 3 for simplicity.

3.2 Detecting Forwarding Loops
The key idea for detecting forwarding loops in Ethernet is by

detecting packets that are circling around the loop. The EtherFuse
takes a hybrid approach of passively monitoring traffic in the net-
work to infer the existence of a forwarding loop, and actively prob-
ing the network to verify the loop’s existence. Passive monitoring
is preferred as it does not introduce extra network traffic. More-
over, because passive forwarding loop detection takes advantage of
the data packets flowing through the network, it is likely to be faster
than any practical method based on periodic active probing.

To monitor the network for forwarding loops, EtherFuse checks
for duplicate packets. This is because if there is a forwarding loop,
a packet may spin around the loop and arrive again at the EtherFuse.
The EtherFuse checks for duplicates by keeping a history of the

Probe?

Receive
Ethernet Frame

Yes

From me?

No

Me on
Fuse list?

No

Insert Frame
timestamp in

duplicate detector

No

Insert in Fuse list

No

Yes My ID is the
smallest in the

Fuse list?

Drop

No

Transmit Frame on
the other port

Frame.Hash
in duplicate detector

& entry
is fresh?

Build and send probe

Yes
Yes

Loop detected!
Send

Topology Change
BPDUs;
Cut link;

Yes

Figure 4: Flow chart of how the EtherFuse detects and stops forwarding loops.

hashes of the packets it received recently. Every new incoming
packet’s hash is checked against this history. If a fresh copy of
the packet’s hash is found, then the packet is a duplicate signaling
a potential forwarding loop. A hash in the history is fresh if its
timestamp is less than the current time by no more than a threshold.
This threshold should be no less than the maximum network round
trip time. Otherwise, a packet’s hash may expire before the packet
completes a cycle around the loop. If no fresh copy of the received
packet’s hash is found in the history, the hash is recorded in the
history along with its timestamp. As an optimization, the Ethernet
frame’s Cyclic Redundancy Check (CRC) can be used as the hash
of the packet’s contents.

By itself, this forwarding loop detection technique may have
false positives due to collisions between hashes of different pack-
ets or a malicious end host intentionally injecting duplicate packets
into the network to trick the EtherFuse into thinking that there is a
forwarding loop. To avoid false positives in such cases, the Ether-
Fuse uses explicit probing once it suspects the existence of a for-
warding loop. These probes are sent as Ethernet broadcast frames
to guarantee that if there is a loop they will go around it and not be
affected by forwarding tables at the Ethernet switches. The source
address of the probe is the EtherFuse’s MAC address. If the Ether-
Fuse receives a probe it has sent then this implies that there is a
forwarding loop. However, the probe may get dropped even in the
presence of a forwarding loop. In this case, the fuse will receive
more duplicate packets forcing it to send more probes until one of
those probes will make its way around the loop and back to the
EtherFuse again. Duplicate packets in the network can lead to con-
gestion, increasing the chance of probes getting dropped. Hence,
EtherFuse drops all duplicate packets it detects. Figure 4 presents
a flow chart of how loops are detected.

3.2.1 Building the Duplicate Detector
The EtherFuse’s duplicate detector maintains the history of re-

ceived packets in a hash table. However, it is desirable for the du-
plicate detector’s hash table not to use chaining in order to simplify
the implementation of the EtherFuse in hardware. In the follow-
ing discussion, we assume that the range of the hash function that
is applied to received packets is much larger than the size of the
hash table. For example, the Ethernet packet’s 32-bit CRC might
be used as the hash code representing the packet. However, a hash
table with 232 entries would be impractical due to its cost. In such
cases, a simple mapping function, such as mod the table size, is
applied to the hash code to produce an index in the table. Since
packets are represented by a hash code, the duplicate detector can
report false positives. However, it is acceptable to have collisions
with low probability since the EtherFuse will send a probe to verify
that a forwarding loop exists.

There are two design alternatives to construct a duplicate detec-
tor with less entries than the hash function’s range. The first alter-
native is to only store the timestamp in the hash table entry. In this
case, two packets having different hash values may be mistaken as
duplicates. This is because their two distinct hashes may map into
the same location in the table. For this design alternative, false pos-
itives occur when detecting duplicate packets if two different pack-
ets with identical or different hashes map into the same location of
the table. Assuming a uniform hash function, an upper bound for
the probability of false positives occurring for a particular packet
is given by Equation 1, where N is the number of entries in the
duplicate detector, T is the time the packet’s entry is kept in the du-
plicate detector before it expires, B is the network bandwidth, and
F is the Ethernet’s minimum frame size. Equation 1 computes the
complement of the probability that the packet’s entry in the hash
table does not experience any collisions during its valid lifetime.

Pr = 1 −
„

N − 1

N

«(�T×B
F

�)
(1)

The second design alternative to constructing the hash table is
to include the packet’s hash value in every entry along with the
timestamp. In this case, two packets can be mistaken as duplicates
only if they share the same hash value. An upper bound for the
probability of false positives detecting duplicates for a particular
packet is given by Equation 2, where K is the number of bits in
the packet’s hash. Similar to Equation 1, Equation 2 computes the
complement of the probability that the packet’s entry in the hash
table does not experience any collisions during its valid lifetime.

Pr = 1 −
“
1 − 2−K

”(� T×B
F

�)
(2)

However using this approach, EtherFuse can miss some dupli-
cates. For example, if there exists a forwarding loop and a packet
P1 arrives at the EtherFuse, its hash will be recorded. Then by
the time P1 spins around the loop and before it arrives again at
the EtherFuse, another packet, P2, arrives first at the EtherFuse.
If P1 and P2 have different hashes that hash into the same loca-
tion in the hash table, the duplicate detector entry storing P1’s hash
is replaced by P2’s hash. Since the duplicate detector records the
packet’s hash it will detect that P2 is different than P1 and not a
duplicate. Later, when P1 arrives again at the EtherFuse, its hash
will replace P2’s hash in the duplicate detector without detecting
a duplicate. Consequently, the EtherFuse will not detect that there
is a loop. However, the probability of such a false negative is very
low. An upper bound to this probability is given by Equation 3,
where L is the latency around the loop. Equation 3 computes the
probability that (1) packet P1’s hash gets replaced by one or more
other packets’ hashes before P1 arrives again at the EtherFuse after
cycling around the loop, and (2) the last packet of those which re-
placed P1’s hash entry in the duplicate detector has a different hash
than that of P1.

Pr =

1 −

„
N − 1

N

«(� L×B
F

�)
!

×
“
1 − 2−K

”
(3)

Figure 5 plots the probabilities in Equations 1, 2 and 3 with
conservative values of the equations’ parameters. The parameters
were set as follows: T = 100ms, F = 64B, B = 10Gb/s, K = 32 and
L = 10ms, where T is set to an order of magnitude more than L
as a safety margin to minimize the chance of missing duplicates.
In summary, the trade-offs between the two design alternatives are
the following: Not including the packets’ hashes in the hash ta-
ble prevents false negatives when detecting duplicates. Thus, a

 1e-04

 0.001

 0.01

 0.1

 1

128M64M32M16M1M

P
ro

ba
bi

lit
y

Number of entries in duplicate detector

Eq1
Eq2
Eq3

Figure 5: Plot of equations 1,2 and 3 illustrating the probability of false posi-

tives and negatives for the two design alternatives of the duplicate detector. Equa-

tion parameters were set as follows: T = 100ms, F = 64B, B = 10Gb/s, K = 32, and

L = 10ms

forwarding loop is more likely to be detected as soon as the first
duplicate is received. The down side of this alternative is that it
suffers from a higher false positive rate when detecting duplicates.
This leads to more non-duplicate packets getting dropped than in
the second design alternative. However, for a duplicate detector
with a sufficiently large number of entries, the false positives rate
can be very low. For the second design alternative that includes the
hash in every duplicate detector entry, it achieves a lower rate of
false positives when detecting duplicates. However, this comes at a
cost. First, false negatives occur when detecting duplicates. Thus,
forwarding loop detection may get slightly delayed if a duplicate
arrives at the EtherFuse but is not detected. Second, more memory
is needed to store the hashes in the duplicate detector. Third, more
per-packet computation is performed by the EtherFuse, specifically
to compare the packet’s hash to the corresponding hash in the hash
table entry.

3.3 Mitigating Count to Infinity and Forward-
ing Loops

After detecting a count to infinity or a forwarding loop, the sec-
ond phase is mitigating the problem and its effects.

For the count to infinity, if the EtherFuse detects BPDUs an-
nouncing increasing costs to a root R, it expedites the termination
of the count to infinity by altering the message age field of any BP-
DUs announcing R to be the root. Specifically, it sets their message
age field to MaxAge. However, this may not instantaneously termi-
nate the count to infinity as Ethernet bridges may be caching other
copies of the stale information. If there are other cached copies
of the stale information, they will eventually reach the EtherFuse
again, which in turn will increase their message age until eventu-
ally the count to infinity is terminated. Figure 3 shows how the
EtherFuse handles a count to infinity. For handling the count to
infinity, having more than one EtherFuse in a loop in the physical
topology is not a problem as every EtherFuse can handle the count
to infinity independently without side effects.

On the other hand, having more than one EtherFuse in the same
loop in the event of a forwarding loop is problematic. Only one
of those EtherFuses should cut the loop otherwise a network parti-
tion will occur. To handle this, EtherFuses collaborate to elect an
EtherFuse that is responsible for breaking the loop. To do this, a
probe carries the identities of the EtherFuses it encounters during
its trip around the loop, that is, whenever an EtherFuse receives a
probe originated by another EtherFuse, it adds its identifier to a list
of EtherFuse identifiers in the probe.The EtherFuse’s MAC address
is used as its identifier. Also, the EtherFuse checks for its identi-
fier in the list of identifiers in the probe. If it finds its own, then
this probe has been through a loop. The EtherFuse drops such a
probe as it is not the probe’s originator. If the EtherFuse receives

its own probe, it checks the list of EtherFuse identifiers attached
to the probe. It drops the probe if its identifier is not the smallest
in the probe’s list of EtherFuse identifiers. On the other hand, if its
identifier is the smallest in the list, the EtherFuse is elected to break
the loop. It cuts the loop by blocking one of its ports that connects
the loop. This way the network can continue operating normally
even in the presence of a forwarding loop. However since phys-
ical loops exist in the network for redundancy and fault tolerance
reasons, cutting them leaves the network vulnerable to partitioning
due to future failures. So the EtherFuse tries to restore the network
to its original topological state by unblocking its blocked port after
a timeout period has passed. It does this hoping that the loop was a
temporary loop formed due to ephemeral conditions. If the Ether-
Fuse detects a loop again right after it tries to restore the network,
then it knows that the loop still persists so it cuts the loop again. It
retries this until it eventually gives up assuming this is a permanent
loop. It then notifies the network administrator to take appropri-
ate measures to fix the problem. Figure 4 shows how an EtherFuse
handles a forwarding loop.

Since a forwarding loop may persist for a small duration until it
is detected and corrected, forwarding table pollution may still oc-
cur. To speed recovery from forwarding table pollution, the Ether-
Fuse sends BPDUs on both its ports with the topology change flag
set. This will make bridges receiving this topology change informa-
tion flush their forwarding tables and forward this topology change
message to their neighbor bridges until it has spread throughout the
network. This technique has its limitations though. This is because
the IEEE 802.1D (2004) specification suggests an optimized tech-
nique for flushing entries from the bridge’s forwarding table. This
technique flushes entries for all the ports other than the one that re-
ceives the topology change message on the bridge. This technique
is not mandatory but if it is implemented, there will be some cases
in which the EtherFuse will not be able to eliminate the forward-
ing table pollution if the loop was not shutdown before pollution
occurs. For example, the pollution shown in Figure 2(b) at port P1
cannot be fixed by an EtherFuse sitting along the loop B2-B3-B4.
This is because B5 will receive the topology change messages at
P1, the port with polluted forwarding table entries. Consequently,
it will flush forwarding entries for port P2 and not P1. However,
even if B5 does not flush the entries at P1, the polluted entries
will be invalidated as soon as the end host H1 sends any packets
or when those polluted forwarding table entries expire by reaching
their timeout value.

4. ETHERFUSE IMPLEMENTATION
This section describes our prototype implementation of the Ether-

Fuse. Then, it discusses the EtherFuse’s memory and processing
requirements, arguing that the EtherFuse can scale to large, high-
speed Ethernets.

4.1 The EtherFuse Prototype
We implemented EtherFuse using the Click modular router [14].

Figure 6 shows how the different modules are put together to com-
pose the EtherFuse in the Click modular router. The FromDevice
module is responsible for receiving packets from a NIC into the
EtherFuse. The Classifier module is responsible for classi-
fying Ethernet packets based on their contents. In this configura-
tion, it classifies them into either RSTP control packets which are
sent to the CTIChecker module, or regular Ethernet data frames
which are sent to the LoopChecker module. The CTIChecker
module is responsible for handling count to infinity in the network,
while the LoopChecker module is responsible for handling Eth-
ernet forwarding loops. Ethernet frames are then pushed by the

CTIChecker and the LoopChecker modules to the other NIC
of the EtherFuse using the ToDevice module. The suppressors,
S1 and S2, allow the EtherFuse to block input and output ports,
respectively. They are used by the EtherFuse to block both input
and output traffic going through one NIC when a forwarding loop
is detected.

In our implementation we used a packet’s CRC as the hash of
the packet’s contents. We store the CRC in the duplicate detector
hash table to reduce the number of dropped packets because of false
positives. Timestamps in the duplicate detector have millisecond
granularity. Thus, a timestamp is stored in 4 bytes.

4.2 Memory Requirements
The primary memory requirement for the EtherFuse is that of the

duplicate detector which records the timestamps of frames it has re-
ceived recently. The duplicate detector may also store the hashes of
the packets. Every entry in the duplicate detector contains a hash
with size C bytes, where C is equal to zero if the hash is not stored
in the table, and a timestamp with size S bytes. The duplicate de-
tector should have at least as many entries as the number of frames
that make up the product of the maximum network bandwidth B
and the latency L. Thus the minimum memory requirement M can
be given by Equation 4, where F is the minimum Ethernet frame
size.

M =

„jL × B

F

k«
× (C + S) (4)

The minimum frame size F is 64 bytes. Assuming the CRC is
used as the packet’s hash and a timestamp is 4 bytes, then C and
S will be 4 bytes each. Using generous values of 100 milliseconds
for L, and 10 Gbps for B would lead to M equal to 16MB. Thus
the EtherFuse can easily scale to a large 10 Gbps Ethernet network.

4.3 Processing Overhead
The processing overhead of the EtherFuse is low. This is true

even if the packet’s hash is maintained in the duplicate detector
along with the packet’s timestamp, which would require more pro-
cessing due to storing, loading and comparing hashes. Assuming
the packet’s hash is precomputed like if the CRC is used, then in
the common case to handle a data packet one memory access is
required to check whether the packet’s hash exists in the duplicate
detector, another memory access is required to write the hash into
the duplicate detector, and another one to write the timestamp. This
is assuming that at least 4 bytes can be read in a single memory ac-
cess. In the unlikely event that the hash is matched, another mem-
ory access is needed to fetch the timestamp to check whether this
hash is fresh or not. However, in conventional processors with data
caches, fetching the hash from memory would lead to prefetching
the timestamp as well if both are within the same cache line. In
such cases, the access to the timestamp would have trivial cost. For
BPDUs, they arrive at a much lower frequency than data packets,
roughly on the order of 10 BPDUs per second even during a count
to infinity. To handle a BPDU, the EtherFuse compares it against
the 2 cached entries in the BCache. If a count to infinity is sus-
pected, the BPDU is written into the BCache. Since a BPDU is 36
bytes, this requires at most 9 memory accesses for the comparisons
and 9 memory accesses for the write. Since BPDUs arrive at a low
rate, these operations can be easily handled in practice.

5. EXPERIMENTAL SETUP
This section describes the experimental settings used for the eval-

uation of the EtherFuse.

FromDevice(eth0)

Classifier(...)
802.1d other

LoopChecker(S1,S2,...)

S2::Suppressor

CTIChecker

FromDevice(eth1)

Classifier(...)
802.1d other

ToDevice(eth0) ToDevice(eth1)

S1::Suppressor

Figure 6: Block diagram of the EtherFuse implemented with the Click modu-

lar router

B2

B3 B4

H1 H2

B1

B5 B6

F

B1

B2

F1

B4

B6

B5

B8

F2

B3 B7

(a) Topology I. (b) Topology II.

Figure 7: Network topologies used used in the experiments.

5.1 Hardware Platform
For our experiments we used the Emulab testbed [1, 22]. Specif-

ically, we used machines with 3.0 GHz Xeon processors having
2GB of physical memory. Each machine had 6 Network Interface
Cards (NICs). However, one of these NICs is used for the Emulab
control network. In our experiments the machines were connected
by 100 Mbps links to Cisco 6500 series switches.

The network topologies shown in Figure 7 are used for all of our
experiments. In the figure, B’s are Ethernet switches, F’s are Ether-
Fuses and H’s are end hosts. For analysis, the EtherFuse collects
statistics about the number of duplicate packets in the network. In
the experiments where an EtherFuse is not used, a simplified device
is substituted for the EtherFuse to collect the same statistics.

5.2 Software Components
All nodes in our experiments were running Fedora Core 4 with

Linux kernel 2.6.12. Ethernet switches were implemented in soft-
ware using Click. We used a configuration similar to the one pre-
scribed in [14] for an Ethernet switch. However, when using RSTP
switches, our configuration has two differences from that in [14].
First, we replaced the EtherSpanTree module which imple-
ments the legacy STP protocol with our own EtherRSTP module
that implements the RSTP protocol. The RSTP module is respon-
sible for maintaining the spanning tree of bridges, enabling or dis-
abling switch ports based on their roles in the spanning tree. The
second difference is that we updated the EtherSwitch module
to support the functionality required for maintaining the switch’s
forwarding tables, including flushing and updating the tables in
response to topology change events reported by the EtherRSTP
module. We implemented the basic technique that flushes all for-
warding tables in response to topology change events, not the opti-
mized technique which does not flush the forwarding table for the
port where the topology change event is received.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

P
ac

ke
t L

os
s

(%
)

Time (s)

Packet Loss

Without EtherFuse

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

P
ac

ke
t L

os
s

(%
)

Time (s)

Packet Loss

With EtherFuse

(a) Without EtherFuse (b) With EtherFuse

Figure 8: Timeline of packets loss for a 90 Mb/s UDP stream during count to

infinity. Count to infinity starts at t=10 and no forwarding loop is formed.

6. EVALUATION
In this section we evaluate the effects of different Ethernet fail-

ures on software applications and show the effectiveness of the
EtherFuse at mitigating these effects. For every class of failures,
we study the fundamental effects using packet level measurements.
Then, we use HTTP and FTP workloads to study the overall effects
of the failures. The HTTP workload does not use persistent connec-
tions so the effects of the failures on TCP connection establishment
can be studied. The FTP workload is used to study the effects of
failures on TCP streams. We conduct multiple runs of each exper-
iment because there is non-negligible variance between runs. This
variance is due to non-deterministic interactions between the ap-
plications, the transport protocols, and the spanning tree protocols.
However, in the cases where we characterize the network’s behav-
ior by a detailed timeline, it is only practical to present the results
from one representative run. Results of the other runs are qualita-
tively similar.

The evaluation is organized as follows. Section 6.1 studies the
effects of the count to infinity problem. Section 6.2 studies the ef-
fects of a single forwarding loop. Section 6.3 studies the effects
of multiple, simultaneous forwarding loops. In both Sections 6.1,
and 6.2 we use the topology shown in Figure 7(a) for our exper-
iments, while in Section 6.3 we use the topology shown in Fig-
ure 7(b). Section 6.4 concludes with a discussion.

6.1 Effects of Count to Infinity
For the experiments in this section we modified the RSTP state

machines such that its races do not lead to a forwarding loop in the
event of a count to infinity. This is because we want to study the
effects of the count to infinity in isolation without the forwarding
loop.

6.1.1 Fundamental Effects
In this experiment, we characterize the packet loss in the network

during the count to infinity. We use iperf to generate a 90 Mb/s
UDP stream between the end hosts, which maintains high link uti-
lization. Then, we measure packet loss at the receiving side of the
UDP stream. iperf includes a datagram ID in every packet it sends
and we instrumented it to maintain a history of the IDs it received
to detect packet loss. Figure 8 presents a timeline of packet loss.
The periodic heavy packet loss is caused by the oscillations of the
network ports between blocking and forwarding during the count
to infinity. It shows that during the count to infinity the network
suffers from extended periods with near 100% loss rate. The Ether-
Fuse substantially reduces these periods by terminating the count
to infinity quickly.

6.1.2 Detection and Correction Time
In this section, we study the time it takes the EtherFuse to detect

and terminate a count to infinity using different network topolo-
gies. These experiments are based on simulations. This allows

us to have global knowledge about the network and thus we can
determine when the count to infinity has actually ended and the
network has converged. We define convergence time as the time it
takes all bridges in the network to agree on the same correct active
topology. We use the BridgeSim simulator [17] but we have mod-
ified it to implement the latest RSTP state machines as specified
in IEEE 802.1D (2004). In the simulator, bridges have desynchro-
nized clocks so not all bridges start together at time zero. Instead
each bridge starts with a random offset from time zero that is a
fraction of the HelloTime. We have also added an EtherFuse im-
plementation to the simulator. In our simulations, for each setting,
we repeat the experiment 100 times and report the maximum, aver-
age, and minimum time values measured. We use a MaxAge of 20,
a TxHoldCount of 3, and a HelloTime of 2 seconds.

In the experiment shown in Figure 9(a), we measure the conver-
gence time in complete graph topologies after the death of the root
bridge. For experiments with the EtherFuse, we used an EtherFuse
for every redundant link. Notice that using EtherFuses for complete
graph topologies cuts the average convergence time after a count to
infinity by more than half.

Figure 10(a) shows the time it takes for the count to infinity to be
detected by any EtherFuse in the network. We see that the Ether-
Fuses detect the count to infinity very quickly. This is because for a
count to infinity to be detected a bridge needs to transmit 2 consec-
utive BPDUs with increasing path cost that is higher than the cost
it was announcing before the count to infinity. In this topology, all
the bridges are directly connected to the root bridge and thus all
bridges can detect the root’s failure instantaneously. Hence, they
immediately start using stale cached BPDU information, and start
announcing different paths to the root which have higher cost. This
constitutes the first increase in the path cost to the root. These stale
BPDUs will trigger bridges to update their information and forward
it to their neighbors. This constitutes the second increase in the path
cost to the root, which is immediately detected by an EtherFuse.
Thus, it takes two BPDU transmissions for some EtherFuses in the
network to detect the beginning of the count to infinity. However
it takes a much longer period of time for the network to converge.
This is because bridges in the network have many redundant links
and thus many alternate ports caching many copies of the stale in-
formation. Thus it takes time to replace all those stale copies of
the information. Also ports in the Ethernet switches quickly reach
their TxHoldCount limit due to multiple transmissions of the stale
information. This further slows down the process of eliminating
the stale information and makes the convergence time longer.

In the experiment shown in Figure 9(b), we measure the conver-
gence time in “loop” topologies after the death of the root bridge. A
loop topology is a ring topology with the root bridge dangling out-
side the ring. For these topologies we use a single EtherFuse. The
EtherFuse connects the new root (the bridge that assumes root sta-
tus after the death of the original root) to one of its neighbors. We
note that for small loops, the EtherFuse is able to detect and stop the
count to infinity quickly. However for larger loops, the EtherFuse
becomes ineffective in dealing with the count to infinity. This is be-
cause the EtherFuse relies on observing two consecutive increases
in the announced cost to the root. For loop topologies, this means
the stale information must traverse around the loop twice. If the
loop is large, the stale information will have reached its MaxAge
before it gets detected by the EtherFuse.

Figure 10(b) also shows that the count to infinity is detected
fairly quickly in the “loop” topologies. However, the termination
of the count to infinity takes longer. This is because by the time
the count to infinity has been detected, most of the bridges’ ports
have reached their TxHoldCount limit. Thus they are allowed to

 0

 5

 10

 15

 20

 25

 30

 35

 3 4 5 6 7 8 9 10 11

T
im

e
(s

)

Nodes in the Complete Graph

Convergence Time

With EtherFuse
Without EtherFuse

-2

 0

 2

 4

 6

 8

 10

 3 4 5 6 7 8 9 10 11

T
im

e
(s

)

Nodes

Convergence Time

With EtherFuse
Without EtherFuse

(a) Complete graph topologies (b) “Loop” topologies

Figure 9: Convergence time with and without the EtherFuse after the death of

the root bridge.

-2

 0

 2

 4

 6

 8

 10

 3 4 5 6 7 8 9 10 11

T
im

e
(s

)

Nodes in the Complete Graph

Detection Time

With EtherFuse

-2

 0

 2

 4

 6

 8

 10

 3 4 5 6 7 8 9 10 11

T
im

e
(s

)

Nodes

Detection Time

With EtherFuse

(a) Complete graph topologies (b) “Loop” topologies

Figure 10: Detection time of count to infinity for EtherFuse.

transmit only one BPDU per second and the convergence process
is slowed down substantially.

6.1.3 Impact on HTTP
In this experiment we study the effects of count to infinity on

web requests. We run the apache web server 2.2.0 on one of the end
hosts and a program simulating web clients at the other end host.
The client program generates HTTP requests to the web server with
a constant rate of one request every 100 ms. The HTTP requests are
HTTP GETs that ask for the index file which is 44 bytes. We kill
the root bridge, B1, at time 10 to start the count to infinity. We
repeat this experiment twice, once with the EtherFuse and another
time without it and measure the response times of the web requests.
Figures 11(a) and 11(b) show timelines of the measured response
times of each web request before, during, and after the count to
infinity with and without the EtherFuse. Note that before and af-
ter the count to infinity the response time is on the order of one
millisecond. During the count to infinity, many requests have re-
sponse times of 3 seconds and some even have response times of 9
seconds. This is due to TCP back-offs triggered by the packet loss
during the count to infinity. TCP back-offs are especially bad dur-
ing connection establishment, as TCP does not have an estimate for
the round trip time (RTT) to set its retransmission timeout (RTO).
Thus it uses a conservative default RTO value of three seconds.
So if the initial SYN packet or the acknowledgment for this SYN
gets dropped, TCP waits for three seconds until it retransmits. This
explains the three second response times. If the retransmission is
lost again TCP exponentially backs off its RTO to 6 seconds and so
on. Thus we are able to observe requests having 9 second response
times that are caused by 2 consecutive packet losses during con-
nection establishment. In Figure 11(b), we note that the EtherFuse
substantially reduces the period with long response times. This is
because the EtherFuse is able to quickly detect and stop the count
to infinity and thus reduce the period for which the network suf-
fers from extensive packet loss. No connection in this experiment
suffers consecutive packet losses during connection establishment.

6.1.4 Impact on FTP
In this experiment we study the effects of count to infinity on a

FTP download of a 400MB file from a FTP server. The root bridge

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30 35 40

R
es

po
ns

e
T

im
e

(s
)

Time (s)

Response Time

Without EtherFuse

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30 35 40

R
es

po
ns

e
T

im
e

(s
)

Time (s)

Response Time

With EtherFuse

(a) Without EtherFuse (b) With EtherFuse

Figure 11: Timeline of response times of HTTP requests generated every tenth

of a second under count to infinity. Count to infinity starts at t=10 and no for-

warding loop is formed.

Transfer time

No failure 35.9s
Failure with EtherFuse 36.1s
Failure without EtherFuse 42.1s

Table 1: Transfer times for the FTP transfer of a 400MB file.

is killed during the file transmission and the total file transmission
time is recorded. Table 1 shows the measured transmission times
under count to infinity with and without the EtherFuse. We again
note that transmission time in the presence of the EtherFuse is bet-
ter as it ends the count to infinity early.

6.2 Effects of a Single Forwarding Loop
In this section, we study the effects of a single forwarding loop

on applications and the performance of EtherFuse in mitigating
those effects. We only focus on temporary forwarding loops be-
cause of two reasons. First, since the loops are temporary, they
lead to transient interactions with the applications, which are often
not obvious. Conversely, permanent loops render the network un-
usable leading to the unsurprising result of preventing applications
from being able to make forward progress. Second, EtherFuse han-
dles permanent loops the same way it handles temporary loops, so
presenting the temporary loops case suffices.

We use count to infinity induced forwarding loops as an example
of temporary forwarding loops. We modified the RSTP state ma-
chines such that its races always lead to a forwarding loop in the
event of a count to infinity.

6.2.1 Fundamental Effects
Figure 12 shows a timeline of packet loss during the count to in-

finity induced forwarding loop. In this experiment a stream of UDP
traffic flows from one host into another. Since the count to infin-
ity reconfigures the network leading to the flushing of the bridges’
forwarding tables and since the receiving end does not send any
packets, bridges do not re-learn the location of the receiving end
host. Thus, bridges fallback to flooding packets destined to the re-
ceiving end host. Thus, those packets end up trapped in the loop
leading to network congestion and packet loss. This can be seen
in Table 2. This massive packet loss leads to BPDU loss, extend-
ing the lifetime of the count to infinity. Consequently, this extends
the duration of the forwarding loop leading to a longer period of
network instability. When the EtherFuse is used the problem is
corrected quickly.

To study the effects of having a temporary forwarding loop on
a simple request/response workload we used ping between the two
end hosts with a frequency of 10 pings per second. We ran this test
for 50 seconds and introduced the count to infinity at time 10. With-
out the EtherFuse, we observed a 81% packet loss rate reported by
ping. Note that there is no congestion in this test as the data rate

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40 45

P
ac

ke
t L

os
s

(%
)

Time (s)

Packet Loss

Without EtherFuse

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

P
ac

ke
t L

os
s

(%
)

Time (s)

Packet Loss

With EtherFuse

(a) Without EtherFuse (b) With EtherFuse

Figure 12: Timeline of packets loss using a 90 Mb/s UDP stream under a count

to infinity induced temporary forwarding loop. Count to infinity starts at t=10.

EtherFuse 2
No EtherFuse 40815

Table 2: Number of duplicate frames detected in the network for the UDP

stream workload in event of having a forwarding loop.

is very low, and both end hosts are transmitting data so packets do
not get trapped in the loop as in the experiment above. The main
reason for the packet loss in this test is forwarding table pollution
explained in Section 2.2.4. Specifically, in Figure 2 if a ping re-
sponse from H1 causes the pollution, packets from H2 will not be
able to reach H1 anymore. The pollution is fixed when the affected
end host, H1, transmits a packet fixing the polluted forwarding ta-
ble entry in B5. Thus, the pollution problem can last for a much
longer period of time than that of the temporary forwarding loop.
When the EtherFuse was used for the same experiment above, less
than a 1% packet loss rate was reported by ping. This is because
the EtherFuse quickly detects the forwarding loop, shutting it down
and fixing any potential pollution by sending the topology change
message that flushes the forwarding tables.

6.2.2 Impact on HTTP
In this section, we repeat the experiments in Section 6.1.3, ex-

cept that a forwarding loop is formed. Figure 13 shows a timeline
of measured response times of web requests before, during and af-
ter the count to infinity induced forwarding loop. In the case of
not having the EtherFuse, although the traffic in the network is
minimal we note that having a forwarding loop hurts the response
times of web requests. This is because although the connectivity
is still available between the server and the client, packets com-
ing from the client and the server into the forwarding loop pollute
the bridges’ forwarding tables. This leads to packet drops due to
packet misforwarding and blackholing. Packet drops compounded
with the TCP backoffs, especially during TCP connection estab-
lishment, lead to very high response times. In the case of Ether-
Fuse, it detects and shuts down the forwarding loop very quickly
so the disruption to the network operation is minimal. Note that for
this workload pollution does not last for very long. This is because
if a packet of an end host H causes pollution, the acknowledgment
for this packet will not arrive, causing H to retransmit the packet
fixing the pollution. If an acknowledgment packet from the server
to the HTTP request causes the pollution, the server will send the
response which will fix the pollution. Also, if the acknowledgment
packet from the client to the HTTP response causes the pollution,
either the next request or the connection tear down packet will fix
the pollution.

Figure 14 shows the effects of having background broadcast traf-
fic. We introduce a low rate broadcast stream of 100 Kb/s. Notice
that in the no EtherFuse case, response times suffer substantially
due to packet loss because of network saturation. This is because
the broadcast packets get trapped in the loop leading to conges-

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30 35 40

R
es

po
ns

e
T

im
e

(s
)

Time (s)

Response Time

Without EtherFuse

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 5 10 15 20 25 30 35 40

R
es

po
ns

e
T

im
e

(s
)

Time (s)

Response Time

With EtherFuse

(a) Without EtherFuse (b) With EtherFuse

Figure 13: Timeline of response times of HTTP requests generated every tenth

of a second under a count to infinity induced temporary forwarding loop. Count

to infinity starts at t=10.

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

R
es

po
ns

e
T

im
e

(s
)

Time (s)

Response Time

Without EtherFuse

 0

 5

 10

 15

 20

 0 5 10 15 20 25 30 35 40

R
es

po
ns

e
T

im
e

(s
)

Time (s)

Response Time

With EtherFuse

(a) Without EtherFuse (b) With EtherFuse

Figure 14: Timeline of response times of HTTP requests generated every tenth

of a second under a count to infinity induced temporary forwarding loop. Count

to infinity starts at t=10. A background broadcast traffic of 100 Kb/s is injected

into the network.

tion. Also note that some web requests suffer from a 21 second
response time. This is due to three consecutive packet drops in the
connection phase leading to 3 exponential backoffs. When using
the EtherFuse, it quickly detects both the count to infinity and the
forwarding loop and cuts the loop to recover from this failure.

To further understand the scenario, Table 3 shows the number
of duplicate packets detected in the network. Note that a massive
amount of duplicate packets are detected when there is background
broadcast traffic and in the absence of the EtherFuse.

6.2.3 Impact on FTP
Table 4 shows the transfer times for a 400MB file over FTP when

having a count to infinity induced forwarding loop. We note that
when background broadcast traffic exists and in the absence of an
EtherFuse many duplicate packets persist in the network as quanti-
fied in Table 5.

The main reason for the very long transfer time when the Ether-
Fuse is not used is forwarding table pollution. Forwarding table
pollution causes the FTP client to be cut off from the network for
an extended period of time. In this case the pollution is very long
lasting because it is caused by an acknowledgment by the client to
a data packet sent by the server. The client then waits for the rest
of the data packets to arrive for the rest of the file, but the server’s
packets cannot get through because of the forwarding table pollu-
tion. This causes TCP at the server to keep backing off. The prob-
lem only gets fixed later when the ARP cache entry for the FTP
client expires at the FTP server forcing the server to send an ARP
request for the client. Since ARP request packets are broadcast
packets, they get flooded through the network and are not affected
by forwarding tables. When the ARP request reaches the client, it
makes the client send back an ARP reply which fixes the pollution
and restores the connectivity to the client. When using the Ether-
Fuse, this problem does not take place because after the EtherFuse
detects and cuts the loop, it send the topology change message forc-
ing bridges to flush their forwarding tables, including the polluted
entries.

Broadcast No Broadcast

EtherFuse 9 1
No EtherFuse 57481 2

Table 3: Number of duplicate frames detected in the network for the HTTP

workload in the event of having a forwarding loop.

Broadcast No Broadcast

No failure 35.9s
Failure with EtherFuse 37.2s 36s
Failure without EtherFuse 141s 140s

Table 4: Transfer times or a 400MB file over FTP.

6.3 Effects of Multiple Forwarding Loops
Multiple forwarding loops can occur due to the MaxAge induced

forwarding loops as presented Section 2.2.2, or having two or more
simultaneous failures of the failure types discussed in Section 2.2.
In this section we choose the MaxAge induced forwarding loops
as an example of multiple forwarding loops. To demonstrate the
seriousness of having multiple forwarding loops, we construct an
experiment using the network topology shown in Figure 7(b) that
uses the STP protocol. We use a value of 2 for the MaxAge of the
bridges in the network. This value is outside the prescribed range
stated in the IEEE specification, but we use it so that we can gener-
ate the forwarding loops using only a few Emulab nodes. We con-
nect an end host to B3 that sends a single broadcast packet. Then
we measured the number of duplicate packets observed in the net-
work every millisecond. We repeated this experiment twice, once
with the EtherFuse, and another without. In the later case we see in
Figure 15 that the packets exponentially proliferate until they sat-
urate the network. This is because the CPUs of the Emulab nodes
running network elements are saturated due to the processing of all
the duplicate packets. When the EtherFuse is used we notice that
the duplicates are eliminated from the network in 3 milliseconds.
Roughly, one millisecond is spent on detecting duplicate packets,
another millisecond for sending and receiving a probe, then another
millisecond for the in transit duplicates to drain after the loop has
been cut.

In summary, multiple forwarding loops can quickly render the
network unusable due to exponential proliferation of duplicates.
The EtherFuse is highly effective at detecting and correcting the
problems.

6.4 Discussion
The EtherFuse is very effective at reducing the effects of a for-

warding loop. Between the onset of a forwarding loop and its de-
tection, the network may suffer from a very brief period of packet
duplication. However, the EtherFuse is able to quickly stop packet
duplication before it escalates into network congestion and packet
loss. These benefits are achieved without changing the spanning
tree protocols.

In contrast, while the EtherFuse is able to mitigate the effects
of the count to infinity by reducing the spanning tree convergence
time, the effects of the EtherFuse on count to infinity are not as im-
mediate as for forwarding loops. The EtherFuse’s ability to quickly
end the count to infinity is constrained by the rate limit on BPDU
transmission in the spanning tree protocols. Solutions that change
the spanning tree protocols can eliminate the count to infinity and
achieve much faster convergence. For example, in all of the sce-
narios discussed in Section 6.1.2, RSTP with Epochs [11] is able to
converge in one round-trip time across the network.

Loop/Broadcast Loop/No Broadcast

EtherFuse 3 1
No EtherFuse 65578 19

Table 5: Number of duplicate frames detected in the network for the FTP

workload in event of having a forwarding loop.

 0

 10

 20

 30

 40

 50

 60

 0 10 20 30 40 50 60 70 80

D
up

lic
at

e
P

ac
ke

ts

Time (ms)

Packet Prolifertion Timeline

Without EtherFuse
With EtherFuse

Figure 15: Timeline of number of duplicate packets observed by a network

monitor after the formation of two forwarding loops and injecting an ARP re-

quest into the network.

7. RELATED WORK
The focus of this work is on mitigating the effects of Ethernet

failures without changing the existing Ethernet infrastructure, in-
cluding software, hardware, and protocols. In contrast, most previ-
ous work has focused on changing Ethernet’s protocols to improve
its scalability and performance. However, some hardware vendors
employ techniques that try to enhance Ethernet’s reliability.

Cisco employs two techniques to guard against forwarding loops,
Loop Guard and the Unidirectional Link Detection (UDLD) proto-
col. None of these techniques is a part of the standard spanning
tree protocols. Thus, not all vendors have these techniques imple-
mented in their switches. Even Cisco does not have them imple-
mented in all of their switches [6, 9]. Also, all those techniques
require manual configuration which is error prone. For example
both techniques are disabled by default on Cisco switches, so they
need to be enabled first. Hence, having a single switch in the net-
work that does not have or does not enable those features can leave
the whole network vulnerable. This is because a single blocked
port, erroneously transitioning to the forwarding state can make
a forwarding loop that can render the whole network unavailable.
Moreover, each of those techniques is limited in scope to a spe-
cific problem, so having one technique does not eliminate the need
for the other. Finally, some kinds of forwarding loops can not be
handled by any of those techniques, like the MaxAge induced for-
warding loops and count to infinity induced forwarding loops.

The Loop Guard technique protects a network from BPDU loss
induced forwarding loops. It prevents a blocked port from erro-
neously transitioning to the forwarding state when the port stops
receiving BPDUs. Other than the shortcomings of this technique
listed above, Loop Guard only works on point-to-point links. Thus,
networks with shared links can be vulnerable to having forwarding
loops even if the Loop Guard is used.

To guard against broadcast storms, broadcast filters are used in
some Ethernet switches to suppress broadcast traffic to a certain
level [4]. However, broadcast suppression suppresses broadcast
packets indiscriminately once it reaches its maximum allowable
level of broadcast traffic during a particular interval. Hence, du-
plicate broadcast packets may be allowed to get through before this
cap is reached, saturating the filter, and then after the cap is reached
legitimate broadcast traffic may get dropped.

UDLD is used to detect failures in which bidirectional links be-
come unidirectional. The UDLD protocol disables the link to ap-

pear as if it is disconnected as the spanning tree protocol does not
handle unidirectional links. UDLD relies on ports on both ends of
a link exchanging keep-alive messages periodically. Missing keep-
alive messages from one direction signal a failure in that direction.
The inter-keep-alive message interval is manually configured by
the network administrator. Again, other than the general shortcom-
ings listed above this technique has a set of its own shortcomings.
First, it needs ports on both ends of a link to support the UDLD
protocol. Second, the keep-alive messages can get dropped in case
of network congestion which can mislead the protocol to think that
the link has failed.

Myers et al. [18] argued that the scalability of Ethernet is severely
limited because of its broadcast service model. In order to scale
Ethernet to a much larger size, they proposed the elimination of
the broadcast service from Ethernet and its replacement with a new
control plane that does not perform packet forwarding based on
a spanning tree and provides a separate directory service for ser-
vice discovery. Perlman [19] also argued that Ethernet has poor
scalability and performance and proposed Rbridges to replace the
current Ethernet protocols. Routing in Rbridges is based on a link
state protocol to achieve efficient routing. Rbridges also encapsu-
late layer 2 traffic in an additional header that includes a TTL field
to guard against problems from forwarding loops.

Several other previous works have addressed the inefficiency of
spanning tree routing in Ethernet. SmartBridges [20] offers optimal
routing using source specific spanning trees. LSOM [13] proposes
using link state routing for Ethernet as well. Viking [21] delivers
data over multiple spanning trees to improve network reliability and
throughput.

RSTP with Epochs [11] modifies RSTP to eliminate the count
to infinity problem and consequently eliminates count to infinity
induced forwarding loops. That work studies the cause of count to
infinity and the convergence time of RSTP and RSTP with Epochs
in simulations. However, it does not consider the impact of the
count to infinity problem on end-to-end application performance,
nor does it consider other protocol vulnerabilities presented in this
paper.

8. CONCLUSIONS
Although Ethernet is a pervasive technology, we have shown that

it can suffer from serious problems due to simple local failures.
These problems include extended periods of network-wide heavy
packet loss, and in some cases complete network meltdowns. To
address these problems, we introduced the EtherFuse, a new device
that is backward compatible and requires no change to the existing
hardware, software, or protocols. We implemented a prototype of
the EtherFuse and used this prototype to demonstrate the effective-
ness of the EtherFuse.

We have shown that the EtherFuse is very effective at reduc-
ing the effects of a forwarding loop. Between the onset of a for-
warding loop and its detection, the network may suffer from a very
brief period of packet duplication. However, the EtherFuse is able
to quickly stop packet duplication before it escalates into network
congestion and packet loss. The EtherFuse is also able to mitigate
the effects of the count to infinity by reducing the spanning tree
convergence time. However, the impact of the EtherFuse on count
to infinity is limited by the design of the spanning tree protocols.
Nevertheless, EtherFuse is able to provide its benefits in a way that
is fully backward compatible.

9. REFERENCES
[1] Emulab - network emulation testbed. At

http://www.emulab.net.

[2] A. Barnard. Got paper? Beth Israel Deaconess copes with a
massive computer crash. Boston Globe, November 26, 2002.

[3] Beth Israel Deaconess Medical Center. Network Outage
Information. At
http://home.caregroup.org/templatesnew/
departments/BID/network_outage/.

[4] Cisco Systems, Inc. Configuring Broadcast Suppression. At
http://www.cisco.com/univercd/cc/td/doc/
product/lan/cat6000/sw_8_5/confg_gd/
bcastsup.htm.

[5] Cisco Systems, Inc. Internet Protocol Multicast. At
http://www.cisco.com/univercd/cc/td/doc/
cisintwk/ito_doc/ipmulti.htm.

[6] Cisco Systems, Inc. Spanning-Tree Protocol Enhancements
using Loop Guard and BPDU Skew Detection Features. At
www.cisco.com/warp/public/473/84.html.

[7] Cisco Systems, Inc. Spanning Tree Protocol Problems and
Related Design Considerations. At
http://www.cisco.com/warp/public/473/16.html.

[8] Cisco Systems, Inc. Troubleshooting Transparent Bridging
Environments. At
www.cisco.com/warp/public/112/chapter20.pdf.

[9] Cisco Systems, Inc. Understanding and Configuring the
Unidirectional Link Detection Protocol Feature. At
www.cisco.com/warp/public/473/77.html.

[10] Cisco Systems, Inc. Understanding Rapid Spanning Tree
Protocol (802.1w). At
http://www.cisco.com/warp/public/473/146.html.

[11] K. Elmeleegy, A. L. Cox, and T. S. E. Ng. On
Count-to-Infinity Induced Forwarding Loops in Ethernet
Networks. In IEEE Infocom 2006, Apr. 2006.

[12] K. Elmeleegy, A. L. Cox, and T. S. E. Ng. Supplemental
Note on Count-to-Infinity Induced Forwarding Loops in
Ethernet Networks. Technical Report TR06-878, Department
of Computer Science, Rice University, 2006.

[13] R. Garcia, J. Duato, and F. Silla. LSOM: A link state
protocol over mac addresses for metropolitan backbones
using optical ethernet switches. In Second IEEE
International Symposium on Network Computing and
Apllications (NCA ’03), Apr. 2003.

[14] E. Kohler, R. Morris, B. Chen, J. Jannotti, , and M. F.
Kaashoek. The Click modular router. ACM Transactions on
Computer Systems, 18(3):263–297, August 2000.

[15] LAN/MAN Standards Committee of the IEEE Computer
Society. IEEE Standard for Local and metropolitan area
networks: Virtual Bridged Local Area Networks, 2003.

[16] LAN/MAN Standards Committee of the IEEE Computer
Society. IEEE Standard for Local and metropolitan area
networks: Media Access Control (MAC) Bridges - 802.1D,
2004.

[17] A. Myers and T. S. E. Ng. Bridgesim - bridge simulator.
Version 0.03 is available from the author’s web site,
http://www.cs.cmu.edu/˜acm/bridgesim/, May 2005.

[18] A. Myers, T. S. E. Ng, and H. Zhang. Rethinking the Service
Model: Scaling Ethernet to a Million Nodes. In Third
Workshop on Hot Topics in networks (HotNets-III), Mar.
2004.

[19] R. Perlman. Rbridges: Transparent routing. In IEEE Infocom
2004, Mar. 2004.

[20] T. L. Rodeheffer, C. A. Thekkath, and D. C. Anderson.
SmartBridge:A scalable bridge architecture. In ACM
SIGCOMM 2000, Aug. 2000.

[21] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh. Viking: A
multi-spanning-tree Ethernet architecture for metropolitan
area and cluster networks. In IEEE Infocom 2004, Mar. 2004.

[22] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An
Integrated Experimental Environment for Distributed
Systems and Networks. In Proceedings of the Fifth
Symposium on Operating Systems Design and
Implementation (OSDI’02), Dec. 2002.

	Introduction
	Ethernet Failures
	Count to Infinity
	Forwarding Loops
	BPDU Loss Induced Forwarding Loops
	MaxAge Induced Forwarding Loops
	Count to Infinity Induced Forwarding Loops
	Pollution of Forwarding Tables

	The Design of the EtherFuse
	Detecting Count to Infinity
	Detecting Forwarding Loops
	Building the Duplicate Detector

	Mitigating Count to Infinity and Forwarding Loops

	EtherFuse Implementation
	The EtherFuse Prototype
	Memory Requirements
	Processing Overhead

	Experimental Setup
	Hardware Platform
	Software Components

	Evaluation
	Effects of Count to Infinity
	Fundamental Effects
	Detection and Correction Time
	Impact on HTTP
	Impact on FTP

	Effects of a Single Forwarding Loop
	Fundamental Effects
	Impact on HTTP
	Impact on FTP

	Effects of Multiple Forwarding Loops
	Discussion

	Related Work
	Conclusions
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

