
CONMan: A Step Towards Network Manageability

Hitesh Ballani
Cornell University

Ithaca, NY
hitesh@cs.cornell.edu

Paul Francis
Cornell University

Ithaca, NY
francis@cs.cornell.edu

ABSTRACT
Networks are hard to manage and in spite of all the so called
holistic management packages, things are getting worse. We
argue that the difficulty of network management can partly
be attributed to a fundamental flaw in the existing architec-
ture: protocols expose all their internal details and hence,
the complexity of the ever-evolving data plane encumbers the
management plane. Guided by this observation, in this paper
we explore an alternative approach and propose Complexity
Oblivious Network Management (CONMan), a network ar-
chitecture in which the management interface of data-plane
protocols includes minimal protocol-specific information. This
restricts the operational complexity of protocols to their im-
plementation and allows the management plane to achieve
high level policies in a structured fashion. We built the CON-
Man interface of a few protocols and a management tool that
can achieve high-level configuration goals based on this in-
terface. Our preliminary experience with applying this tool
to real world VPN configuration indicates the architecture’s
potential to alleviate the difficulty of configuration manage-
ment.

Categories and Subject Descriptors: C.2.3 [Network
Operations]: Network Management.

General Terms: Management.

Keywords: Management, Abstraction, Configuration.

1. INTRODUCTION
IP networks are hard to manage. Network management

(installation, configuration, provisioning, monitoring, testing,
debugging) requires detailed knowledge of many different net-
work components, each with its own management interface.
To cope, network managers rely on a host of tools ranging
from sophisticated centralized network management packages
to home-brewed scripts and elementary tools such as ping and
traceroute. For instance, Cornell’s IT group uses half a dozen
different tools, commercial and public domain, and has over
100K lines of scripts for managing the switch and router in-
frastructure alone (not including email, servers, DNS, DHCP,
billing, etc.). In spite of their ever increasing sophistication,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
Copyright 2007 ACM 978-1-59593-713-1/07/0008 ...$5.00.

management tools seem to be waging a losing battle which
is shown by rising management costs and network downtime.
A recent survey [18] showed that 80% of the IT budget in
enterprises is devoted to maintain just the status quo - in
spite of this, configuration errors account for 62% of network
downtime.

We believe that the management troubles of the Internet
have been aggravated by the lack of research on fundamentals.
Instead, there is an increasing reliance on temporary “band-
aids”. While this has allowed a number of flaws to creep into
the way we manage networks, in this paper we focus on one
specific shortcoming:

Today, protocols and devices expose their internal de-
tails leading to a deluge of complexity that burdens
the management plane.

For instance, it is not uncommon for a network device to
have thousands of manageable objects. A review of SNMP
MIB modules found more than 13,000 MIB objects in IETF
MIBs alone [34]; MIBDepot [49] lists 6200 MIBs from 142
vendors for a total of nearly a million MIB objects. A single
router configuration file can consist of more than 10,000 com-
mand lines [39]. Encumbering the management plane with all
this complexity leads to these problems:
• Perception differs from reality. Management applications

need to effectively reverse engineer the capabilities and the
functionality of protocols and devices from their detailed
MIBs. The low-level and non-intuitive nature of these pa-
rameters makes this task difficult, if not impossible [28].

• Error-prone configuration. Network configuration involves
mapping high-level policies and goals to the values of proto-
col parameters. Since management applications don’t have
an understanding of the underlying network in the first
place, they often resort to a cycle of setting the parame-
ters and correlating events to see if the high level goal was
achieved or not. Apart from being haphazard, the noise
in measurements and correlations is often the root-cause
of misconfigurations and related errors. The inability to
understand the network’s operation also makes debugging
these errors very difficult [21].

• Fragmentation of tools. Since devices and their exposed
details keep evolving at a frantic pace, management ap-
plications tend to lag behind the power curve [26]. Ad-
ditionally, the inability of standard management interfaces
(IETF MIBs) to keep pace with data plane development
has led to a plethora of vendor specific MIBs and even ven-
dor specific management applications and has put us in a
situation where no one management approach suffices. For
example, SNMPLink [31] lists more than 1000 management

applications, many of them being vendor specific command
line or HTML-based tools. Hence, the Internet manage-
ment plane doesn’t have anything analogous to the IP “thin
waist” around which the Internet data-plane is built.

• Lack of dependency maintenance. Management state is
highly inter-dependent. These dependencies are not re-
flected in the existing set-up; thus, when a low-level value
changes, the appropriate dependent changes don’t always
happen [28]. Instances of improper filtering because the
address assigned to some machine changed, or the applica-
tion was started on some other port are very common. Re-
cent work details the challenges involved in tracking such
dependencies in the existing set-up [29] and gives exam-
ples of how failure to track them leads to problems in large
networks [20].

These shortcomings indicate that an (extreme) alternative
worth exploring is to confine the operational complexity of
protocols to their implementation. As a matter of fact, we
observe that almost all data-plane protocols share some very
basic characteristics that should, in theory, suffice for the
management of the network. Guided by this observation, we
adopt a more modest approach and argue that:

The management interface of data-plane protocols
should contain as little protocol-specific information as
possible.

This allows all data-plane protocols to have a generic yet
simple management interface. While such an approach can
be applied to all aspects of management, this paper restricts
itself to Configuration Management. Hence, in this paper we
present the design and implementation of a network archi-
tecture, Complexity Oblivious Network Management (CON-
Man), that incorporates this principle for network configu-
ration tasks. In CONMan, all protocols and devices express
their capability and their functionality using a generic ab-
straction. This allows the management plane to understand
the potential of the underlying network and to configure it in
line with the desired high-level policies without being encum-
bered by the details of the protocol/device implementation.
Having a fixed interface between the management plane and
the data plane also allows for independent evolution of the
two. To this effect, this paper makes the following contribu-
tions:
• We present the detailed design of a network architecture

that minimizes the protocol-specific information in the man-
agement interface of data-plane protocols. We also present
protocol-independent configuration primitives that can be
used to interact with this interface and hence, configure the
network.

• We describe the implementation of the management inter-
face of a few protocols in compliance with the proposed
architecture.

• We detail the implementation of a management application
that, given the abstraction of the protocols and devices in
the network, can achieve high-level configuration goals us-
ing the aforementioned primitives.

• The paper presents the use of CONMan in a real-world
configuration scenario (VPN configuration) to highlight its
advantages over the status quo. Further, we also use a naive
but hopefully informative metric to compare the protocol
agnosticity of CONMan configurations against today’s con-
figurations in three different scenarios (GRE tunnels, MPLS
LSPs and VLANs).

Note that CONMan doesn’t reduce the total system com-
plexity; it only attempts to correct the skewed division of
functionality between management done inside the managed
device and that done outside the managed device. While
the fact that management applications don’t have to deal
with myriad protocol details reduces their burden, proto-
cols still need various low-level details in order to operate.
With CONMan, it is the protocol implementation that uses
the high-level primitives invoked by the management appli-
cations and out-of-band communication with other protocols
to determine these. This, in effect, puts the responsibility for
detailed understanding of protocol operation on the protocol
implementor. Since the protocol implementer requires this
knowledge in any event, this seems to be a smarter place-
ment of functionality.

2. CONMan ARCHITECTURE
Our architecture consists of devices (routers, switches, hosts,

etc.) and one or more network managers (NMs). A NM is
a software entity that resides on one of the network devices
and manages some or all of them. Each device has a glob-
ally unique, topology independent identifier (device-id) that
can carry cryptographic meaning (for example, by hashing a
public key). Each device also has an internal management
agent (MA) that is responsible for the device’s participation
in the management plane. While the rest of the paper talks
about a device performing management tasks, in actuality it
is the device’s MA that is responsible for these. All protocols
and applications in devices are modeled as protocol modules.
Each protocol module has a name as well as an identifier that
is unique within the device. Examples of module names in-
clude “IPv4”, “RFC791”, or even a URI (which might be use-
ful for naming applications). Thus, modules can be uniquely
referred to using tuples of the form <module name, module-
id, device-id>.

2.1 Management Channel
As mentioned in section 1, a number of flaws afflict the way

we manage networks. One such flaw is that the existing man-
agement plane depends on the data plane [6,14]. For example,
SNMP operates on top of the data plane and hence, manage-
ment protocols rely on the correct operation of the very thing
they are supposed to manage. In recent work, Greenberg
et. al. [14] discuss the implications of this dependency loop
and propose a technique for achieving a self-bootstrapping,
operationally independent management plane. While such
management plane independence can be established using a
few other approaches (for instance, a more generalized and
self-bootstrapping version of the separate management net-
work that is used by some large ISPs), we agree with their
basic hypothesis and in this paper assume the presence of a
management channel. This management channel should be
independent of the data-plane, should not require any pre-
configuration and should allow devices in the network to com-
municate with the NM. However, we do not dictate whether
the management channel operates or does not operate over
the same physical links as used by the data-plane.

2.2 Overview
Our approach derives from two key observations: First, the

main purpose of a network is to provide paths between certain
applications on certain hosts while preventing certain other

applications and hosts from using those paths.1 Second, we
observe that most data-plane protocols have some basic char-
acteristics whose knowledge should suffice for configuring the
aforementioned paths. For instance, most protocols have the
ability to connect to certain other protocols, to switch pack-
ets, filter packets, queue packets and so on. We believe that it
is these basic characteristics that should serve as the narrow
waist for Internet’s management plane. Consequently, the
management plane only maps the high-level communication
goal into the path through the network (i.e. which proto-
cols should connected and how) and the protocols themselves
figure out the low-level parameters that they need to operate.

In our proposal, we try to capture these basic characteris-
tics using a generic abstraction called the Module Abstraction
– all protocol modules in CONMan self-describe themselves
using this abstraction. To this effect, we model every proto-
col module as a node with connections to other nodes, certain
generic switching capabilities, certain generic filtering capa-
bilities, certain performance and security characteristics, and
certain dependencies (figure 1). Thus, the abstraction de-
scribes what the protocol is capable of (potential) and what
it depends on (dependencies). Further, the module can be
configured to operate in a certain fashion (actual) by manip-
ulating its abstraction using the CONMan primitives. Such
modeling of protocols using a generic abstraction decouples
the data and the management plane so that they can evolve
independently of each other.

Each device in the network uses the management channel
to inform the NM of its physical connectivity, all modules
that it contains, and their respective module abstractions.
The module abstraction allows the NM to understand exactly
how packets may flow (or not flow) through a given module.
This provides the NM with the real picture of the network -
it does not need to reverse engineer numerous low-level and
non-intuitive parameters.

Given the network’s real picture and the high-level goals
and policies that need to be satisfied, the NM builds a graph
of modules in various devices that satisfy these. This graph
captures how each module should operate. The NM can then
use the management channel to invoke the appropriate CON-
Man primitives and configure the modules accordingly. Thus,
the NM can configure the entire network from the ground
up with (almost) no protocol-specific knowledge. We believe
that such as approach would ease network configuration and
in general, ameliorate a lot of the problems afflicting network
management today.

2.3 Module Abstraction
There are two kinds of modules: data plane modules and

control plane modules. Examples of data plane modules (or
data modules for short) include TCP, IP, Ethernet, while
examples of control plane modules (or control modules for
short) include routing algorithms and negotiation algorithms
like IPSec’s IKE or PPP’s LCP and NCPs.

Data modules connect to each other to carry data pack-
ets. These connections are called pipes. Control modules
also connect to data modules using pipes for delivery ser-
vices. Data modules may require the use of a control module;
we refer to this as a dependency. For instance, in Figure 1,
the IPsec module has a (data plane) pipe to IP, and has a

1Of course, this is a simplification since the paths must per-
form adequately, have certain security properties, etc. but
the basic argument still applies.

IP

ETH

IKE

UDPIP- Sec

Up-Pipe

Down-Pipe

Performance

Filtering Switching

Security

Module
Dependency

Figure 1: Modules, pipes, and dependencies form a
graph that describes the operation of a device (in
particular) and the network (in general). The figure
on the right denotes the major components of the
module abstraction.

dependency on IKE, which in turn has a pipe to UDP. Ulti-
mately, modules, pipes, and dependencies form a graph that
in some sense describes the operation of the network. The
data modules self-describe themselves using the abstraction
shown on the right in figure 1. Below we briefly comment on
the components of this abstraction:

2.3.1 Pipes
Up and Down pipes connect modules to other modules

above and below themselves in the same device. Such pipes
are point-to-point only. Point-to-point pipes are modeled as
unidirectional (and usually come in pairs), though for simplic-
ity we present them as bidirectional. The actual network links
are modeled as Physical pipes and can be point-to-point or
broadcast. Hence, the path between two modules in two dif-
ferent devices is the sequence of up-down and physical pipes
through which packets travel between the modules. Of these,
the NM can create up-down pipes. It cannot create physical
pipes, but can discover and enable them. Also, pipes have
identifiers which the NM can use to refer to them.

Modules are associated with a list of connectable-modules.
For example, the connectable-modules for the down pipe of a
particular TCP module might be restricted to {IPv4, IPv6}
implying that the TCP implementation in question can only
operate on top of (have a down pipe to) IPv4 or IPv6.

While modules pass packets between up and down pipes,
the end goal is to be able to communicate with modules in
other devices. To capture this, each pipe is associated with
one or more peers modules. For example, the peer module
for a down-pipe of a TCP module would be the remote TCP
module to which the down-pipe ultimately leads to. Also,
each module is associated with a set of peerable-modules. For
example, the peerable-modules for a TCP module are {TCP}
while the peerable-modules for a HTTP-server module are
{HTTP-client}.

In effect, the notion of pipes abstracts away the details that
protocols need for basic operation. Given a connectivity goal,
the NM simply builds the corresponding path by creating
pipes while the modules determine the low-level parameters.
For instance, creating a down pipe from an IP module to an
ETH module might be a part of establishing IP connectivity
between two hosts and may cause the IP module to communi-
cate with its peer IP module through the management chan-
nel to exchange the MAC address of the ETH module below
it.2 Apart from communication with peer modules, modules

2Note that ARP achieves this in the existing set-up and even

may need more help in determining the low-level parameters
– they express these as dependencies that need to be satisfied
before the pipe can be created.

2.3.2 Switch
Switches capture the ability of modules to pass packets be-

tween up, down and physical pipes. A switch can be unicast
or multicast and can have a small number of basic configu-
rations: packets pass between down and up pipes ([down ⇒
up] and [up ⇒ down] switching, e.g. TCP module), [down ⇒
down] switching (e.g. IP module with forwarding enabled),
[up ⇒ up] switching (e.g. IP module with loopback function-
ality), [up ⇒ phy], [phy ⇒ up] and [phy ⇒ phy] switching
(eg. Ethernet module). A module advertises its switching
capabilities. The NM uses this and the information about
the connectable-modules of each module to build a potential
connectivity graph for the network. As we show in section 3.3,
this allows the NM to determine what paths are and are not
possible. For instance, the ETH module in a Layer-2 switch-
ing device advertises that it can do [phy ⇒ phy] switching
and so, can be used by itself along a path between two de-
vices that the NM is trying to connect. As a contrast, the
ETH module in a router would not have [phy ⇒ phy] switch-
ing capability and so, the NM must use it in conjunction with
the IP module on the router.

When incorporating a module as part of a path, the NM
must direct the module as to how packets must be switched
between the pipes just created – this is the actual switch con-
figuration. Of course, it is not necessary that there be a one-
to-one mapping between the pipes. Instead, incoming packets
on a pipe may be switched to one of many other pipes and
hence, switches may have state which conditions how pack-
ets are switched. This switching state can be determined by
the module through interaction with its peer module. For in-
stance, the NM, as part of establishing an IP-IP tunnel, may
direct an IP module to switch packets between up-pipe P1
(to another IP module) and down-pipe P2 (to the underly-
ing ETH module). The creation of pipe P1 and P2 and the
actual switch rule causes the three modules to interact with
their peers and determine the parameters needed for a low-
level routing rule such as ip route to 204.9.169.1 dev eth1

nexthop 204.9.168.1. Alternatively, it also possible that the
switching state is generated by control protocols and this is
exposed as part of the module abstraction. Section 2.6 dis-
cusses these alternatives.

2.3.3 Filters
The filter abstraction allows modules to describe whether

and how they can filter packets. Filter rules are described in
terms of other abstracted components: pipes, devices, mod-
ules or even module types. Note that in configuring a filter,
the NM only needs to specify the component names or iden-
tifiers that need to be filtered - it is the protocol implementa-
tion that is responsible for determining the relevant protocol
fields (such as addresses and port numbers). This process
and other related issues are detailed in section 2.5.

2.3.4 Performance
Unlike the components above, which are quite specific in

nature, performance is harder to specify and manipulate. In
our current abstraction, performance is reported in terms of

with CONMan, the IP module could just as well rely on ARP
for the peer’s MAC address.

Name Caller Callee Description

showPotential NM MA of device Sec. 2.4
showActual NM MA of device Sec. 2.4

create, delete NM MA of device Sec. 2.4
conveyMessage Module Module Sec. 2.4

(Source) (Destination)
listFieldsAndValues Module Module Sec. 2.5

(Inspecting) (Target)

Table 1: Functions that are part of the CONMan
architecture

six generic performance metrics - delay, jitter, bandwidth,
loss-rate, error-rate, and ordering. These encompass most of
the IP performance metrics proposed by IETF [36]; though
in our architecture the metrics can be used by any module
that has the ability to describe its performance, not just the
IP module. Additional metrics, such as power, can be added
as needed.

Modules and pipes report on their performance with these
metrics. They can also advertise the ability to offer per-
formance trade-offs in terms of these metrics. For exam-
ple, many MAC layer protocols offer optional error correcting
checksums which represent a trade-off between error-rate on
one hand and bandwidth and delay on the other. Instead
of exposing the low-level options and associated parameters,
modules specify the trade-offs they can enforce. Just as with
filters, the module might allow these trade-offs to be applied
to specific traffic classes as specified by the names of mod-
ules or pipes and this too is advertised. However, more work
is needed towards the way these performance trade-offs can
be quantified and what they can capture. Further, protocols
modules may have other features such as performance en-
forcement and security capabilities. Due to space constraints,
this paper does not delve into these abstraction components
– we refer the interested reader to [4].

2.4 Network Manager (NM)
The management channel allows devices in the network to

communicate with the NM. Each device uses this to inform
the NM of its physical connectivity, thus allowing the NM to
determine the network topology. Beyond this, given the net-
work potential, the NM can achieve high level network config-
uration goals simply by creating and deleting pipes and mod-
ule components. The following primitives capture the NM’s
interaction with the devices in the network as part of net-
work configuration. Table 1 shows these and other CONMan
primitives offered by the NM and the modules themselves.3

(a). showPotential () allows the NM to determine a device’s
capabilities. The device returns a list of modules with their
abstractions. The type of information returned for each mod-
ule is shown in table 2.
(b). showActual () allows the NM to determine the state of
modules in a device. The state of each module includes state
for all the pipes, the switch, filters, performance and secu-
rity enforcement elements. Also returned is a report on the
performance parameters. In effect, the NM is presented with
the network reality - a module graph and associated infor-
mation which allows it to understand how the device (and
hence, the network) is or should be behaving. By contrast,
in the current set up, the NM is presented with all kinds of

3We do not give details of the CONMan API. However, we
do show the use of these primitives in section 3.

Parameter What is advertised?

Name <A,x,y>
Up and Information about up and down pipes such as
Down pipes connectable-modules, dependencies etc.
Physical Information about the physical pipes (if any)
pipes connected to the module
Peerable-Mod. Set of modules that can be peers of this module
Filter Classification based on which filtering can be done:

what can be filtered and where it can be filtered
Switch Possible switching between up, down and physical

pipes; Is the switch state generated locally
or needs to be provided externally

Performance Performance metrics that are reported for the
Reporting module’s pipes, filters, switch etc.
Performance Traffic classes to which performance trade-offs
Trade-Offs can be applied and the possible trade-offs
Others Performance Enforcement and Security

Capabilities (not explained)

Table 2: Module abstraction; showPotential () describes

each module using this abstraction

MIB objects from which it must deduce network behavior.
(c). create () and delete () allow the NM to create and delete
pipes, filter-rules, switch-rules and performance enforcement
state (queuing structures or service classes). The showPoten-
tial () function provides the NM with all the information it
needs to create and delete components.

The NM does not need protocol specific knowledge to use
these primitives. For instance, it can create up-down pipes
simply by satisfying their dependencies and invoking the cre-
ate function. For instance, consider a NM creating a pipe
between an IP module and an underlying GRE module. In
terms of today’s configuration, this amounts to creating a new
GRE tunnel which requires a number of low-level parameters
to be specified. With CONMan, it is the GRE module that
coordinates these parameters with its peer GRE module. For
instance, the modules may exchange the tunnel key values
to be used, so the NM does not need to know the notion of
keys. Since the management channel allows the modules to
communicate only with the NM, the NM provides:
(d). conveyMessage () allows modules to convey messages
to each other through the NM (see detailed example in sec-
tion 3.2).

2.5 Hiding Complexity
Much of the reduction in management plane complexity

comes from the fact that the NM operates in terms of the
abstract components, while the protocol modules themselves
translate these into concrete protocol objects.

For example, the NM can simply ask a module to filter
packets between two given modules - “drop packets from
module <IP,B,y> and going to <FOO,C,z>” (where FOO
is an application module with up-down pipes to TCP). The
protocol module itself is responsible for determining the ac-
tual protocol fields. For example, given the high-level specifi-
cation above, the inspecting module determines that it needs
to “drop packets from source address 128.19.2.3 and destined
to address 20.3.4.5, port 592”. This ensures that the NM,
while being opaque to protocol-specific fields, can trace the
paths between applications and hence, can reason about its
policies regarding a particular application-module.

In some cases, the inspecting module may know what fields
and field values to check for on its own. But in other cases, it
may not. To address this, CONMan modules provide a list-
FieldsAndValues () function. This allows other modules to
query the target module for the low-level fields and field val-

ues corresponding to the identifiers associated with its com-
ponents. Hence, in the example above, the inspecting mod-
ule can send queries to the target modules <IP,B,y> and
<FOO,C,z> (via the NM), as well as to the modules below
them, and ask those modules what field values it should be
checking for.

Such an approach also allows for maintenance of network
state dependencies – the need to update the dependent state
in different modules when some low-level value in a given
module changes. To ensure this, the NM tracks the dependen-
cies between component identifiers (that have been resolved)
and opaque low-level fields. Also, the NM installs triggers in
the target modules telling them to inform the NM when their
low-level values change.

However, not all detailed protocol values can be or should
be determined by the protocols themselves. For instance, it
appears difficult to expect IP modules to chat among them-
selves and assign IP addresses [12]. This is best done by
the NM having explicit knowledge of how to assign IP ad-
dresses (as DHCP servers do today). Similarly, tasks like
regular expression matching in HTML do not seem amenable
to abstraction and should be done by specialized NMs such
as Intrusion Detection Systems. Further, there are cases such
as P2P protocols where protocol designers don’t want to pro-
vide the protocol values since they don’t want to be filtered.
Thus, there are scenarios where the NM will have to deal with
protocol-specific details.

2.6 Control Modules
Many data-plane protocols rely on externally generated

state for their operation. Today, this may be provided man-
ually as part of the protocol configuration. Alternatively,
control-plane protocols can generate some of the state re-
quired for data plane operation. For example, routing proto-
cols generate the IP routing table. Similarly, LCP generates
PPP configuration state.

In CONMan, data modules can generate this state by in-
teracting with their peer modules based on the create/delete
primitives invoked by the NM. While this follows from the
general CONMan philosophy, there are cases where such an
approach poses challenges regarding the scalability, robust-
ness and responsiveness of the network.

Alternatively, even in CONMan, we may rely on control
protocols for the low-level state. However, control modules
do not fit into the generic module abstraction presented ear-
lier. Instead, they advertise their ability to provide the state
for certain data modules and the NM simply uses them. For
example, the PPP module could advertise that it has a de-
pendency on external state (say, X) and the LCP module
advertises that it can satisfy dependency X. While relying on
control modules suffices in some cases, there are also cases
when the control module itself requires quite a bit of config-
uration. Also, the fact that the NM does not generate this
state hinders its ability to understand related network oper-
ations and gets in the way of root-cause analysis. Finally, er-
rors in control module operation cannot always be debugged
by the NM. For example, the NM does not understand BGP
and hence, cannot be expected to debug route flaps and the
resulting prefix dampening.

One way to address some of these problems is to let the
NM perform the function of the control protocols whereby it
uses some high-level goal to generate the required state itself.
Of course, this implies that the state generation logic must
be embedded into the NM. For example, the 4D research [14]

Configure

connectivity ..

High-level
Human Manager

Configure

path ..

Low-level
NM

Protocol state
(ideal scenario)

Device-level

(current implementation)

(shown in

fig 7(b))

CONMan
NM scriptgoal goal

scripts

Protocol

Module

Figure 2: CONMan workflow: from high-level goals
to device configuration

argues for the replacement of routing protocols, with the NM
using its knowledge of the topology to set the switch state for
IP modules in devices across the network. A characterization
of the scenarios in which state should be generated by the
protocols themselves against the ones in which existing con-
trol protocols should be used against the ones in which the
control protocols should be replaced is an important question
in the context of CONMan. However, in order to explore the
limits of our proposal (i.e. what can be captured and what
cannot be captured), this paper (rather naively) ignores the
existence of control protocols. Hence, our implementation,
for the most part, involves the protocol modules generating
the low-level details.

3. IMPLEMENTATION
In CONMan, human managers don’t write device-level scri-

-pts; instead, they specify high-level configuration goals and
it is the NM and the protocol modules that map these to
the required low-level configuration. This process is shown in
figure 2 and is detailed in various parts of this section.

We implemented four protocols (GRE, MPLS, IP, ETH)
as CONMan modules through user-level wrappers around
the corresponding existing protocol implementation in Linux
(kernel 2.6.14). We also implemented a NM that under-
stands the CONMan abstraction and implements the CON-
Man NM primitives. In section 3.2, we use the establishment
of GRE tunnels as an example to detail our GRE module
implementation. This, in effect, describes the mapping of a
low-level goal to device-level scripts (see figure 2). In sec-
tion 3.3, we detail how our NM implementation can map a
human-specified high-level goal to low-level goals by describ-
ing the configuration of provider-provisioned Virtual Private
Networks (VPNs) with CONMan.

3.1 Management Channel
The testbed used for the examples described below com-

prised of Linux-based PCs operating as end-hosts and routers
with Ethernet as the connecting medium. All the PCs were
equipped with a separate management NIC and connected to
a separate network that served as the management channel
for our experiments. Communication between the protocol
modules and the NM was done through UDP-IP over this
management channel. Note that this is not ideal since the
management channel had to be pre-configured; however, this
can avoided by using techniques proposed in [14].

3.2 GRE tunneling
GRE is an encapsulation protocol that can be used to en-

capsulate a network protocol (payload protocol) in another
network protocol (delivery protocol). We focus on GRE with
IPv4 as the underlying delivery protocol - GRE-IP . Conse-
quently, each tunnel is characterized by a source and a des-
tination IP address. Besides this, GRE also involves key’ing
of tunnels - the source and the destination must agree on
the key for the tunnel to operate correctly. Configuring such
a GRE-IP tunnel today requires the management plane to

Parameter Value

i Name <GRE,device-id,module-id>
ii Up.Con-Modules IPv4

(Connectable-Modules)
iii Up.Dependencies Performance Trade-offs to be spec-

ified
iv Down.Con-Modules IPv4
v Down.Dependencies None
vi Physical pipes None
vii Peerable-Mod. GRE
viii Filter Nil
ix Switch [Up ⇒ Down],[Down ⇒ Up]
x Perf Reporting Number of recieved and transmit-

ted bytes on each up pipe
xi Perf Trade-Offs {[Jitter, Delay] Vs [In-order

delivery] | Up-pipe}
{[Loss-Rate] Vs [Error-Rate] | Up-
pipe}

xii Perf Enforcement Nil
xiii Security Nil

Table 3: Abstraction exposed by our GRE implementa-

tion

provide the IP addresses of the tunnel end-points, the key
values, whether to use sequence numbers or not (sequence
numbers help with in-order delivery of tunneled packets) and
other protocol specific details such as tunnel TTL, the TOS
field for tunneled packets, whether to use checksums or not,
and whether to use path-mtu-discovery or not.

We have implemented a GRE module conforming to the
CONMan architecture. As mentioned earlier, our implemen-
tation is based on the Linux GRE kernel module with a user-
level wrapper that confines the protocol-specific details to the
implementation and exposes a generic abstraction to the NM.
This abstraction is shown in table 3 and some of the entries
are explained below:
ii). Ideally, GRE can carry any payload protocol and hence,
there should not be any restriction on the modules that the
GRE module can connect to using an up pipe. However,
most implementations restrict the payload protocol to a well
defined list of protocols - with our underlying Linux imple-
mentation, the only payload protocol possible is IPv4.
iii). To create an up pipe, the NM needs to specify the per-
formance trade-offs (see k below) that apply to pipe.
iv,v). The module is restricted to having IPv4 as the tunnel-
ing protocol with no explicit dependencies.
ix). The module can switch packets between an up-pipe and
a down-pipe. The switching state is generated by the module
on its own.
x). The underlying Linux implementation provides limited
performance reporting: the number of bytes transmitted and
received on each up pipe.
xi). The module offers the following trade-offs: For a given
up-pipe, it can trade-off delay and jitter for in-order delivery.
The fact that this is attained by enabling sequence numbers
whose use needs to be coordinated with the peer GRE module
is not exposed. Similarly, the module can trade-off loss-rate
for error-rate for a specified up-pipe through the use of check-
sums.

We now describe how a NM, based on this abstraction, can
use CONMan primitives to achieve the following low-level
goal:

Configure the path between the IP modules <IP,A,a>
and <IP,B,a’> labeled as (1) through (12) in figure 3.

Note that this is equivalent to creating a GRE-IP tunnel
between devices A and B in the existing set-up. Also, as men-

Device
A

Device
B

Device C
(Layer-2 Switch)

Device D
(Router)

Peers denoted by

GRE (b)

IP (c)

ETH (d)

(1)

(2)

(3)

(4)

IP (a)

GRE

IP (c’)

ETH (d’)

(10)

(11)

(12)

(b’)

IP (a’)

ETH (e)

IP (g)

(5)

ETH (f) ETH (h)

(6) (7)

(8) (9)

Figure 3: GRE-IP tunnel between devices A and B -
the NM needs to build the path labeled from (1) to
(12).

tioned earlier, the human manager in CONMan is not
aware of such low-level goals or the notion of pipes
and switches or the CONMan script shown below. In-
stead, he/she specifies a high-level goal and the next section
describes how our NM implementation maps this high-level
goal to the aforementioned low-level goal. This mapping pro-
cess informs the NM which modules along the path are peers
of each other – in figure 3, the dashed line between pipes la-
belled (1) and (12) indicates that modules a and a’ are peer
modules for these pipes (as are modules b and b’).

We also assume that the NM has, as part of the mapping
process, invoked the showPotential primitive at these devices
and hence, is aware of the CONMan abstraction for all the
modules involved; for instance, table 3 shows the abstraction
exposed by the module <GRE-IP,A,b> (or b for short). The
other modules have similar abstractions that are not shown
here. This equips the NM with all the information it needs to
create the appropriate pipes and switch state. As a contrast,
some manual must be read (either by the implementor of the
management application or the system administrator) to gain
the equivalent knowledge while configuring GRE-IP tunnels
today. With this information at hand, the NM can build the
segment of the path in device A (i.e. a ⇒ b ⇒ c ⇒ d) using
the following script. A similar script needs to be invoked to
build the rest of the path.
(1). P1 = create (pipe, <IP,A,a>, <GRE,A,b>,

<IP,B,a’>, <GRE,B,b’>,
trade-off: order delivery,
trade-off: error-rate)

(2). P2 = create (pipe, <GRE,A,b>, <IP,A,c>,
<GRE,B,b’>, <IP,B,c’>, None)

(3). create (switch, <GRE,A,b>, P1, P2)
(4). P3 = create (pipe, <IP,A,c>, <ETH,A,d>,

<IP,D,g>, <ETH,D,f>, None)
(5). create (switch, <IP,A,c>, P2, P3)
(6). create (switch, <ETH,A,d>, P3, P4)

In the script, command (1) creates pipe P1 between the
IP module a and the underlying GRE module b. The fourth
and fifth arguments in the command specify the peer IP (a’)
and GRE (b’) modules for the pipe being created. Further,
the NM satisfies the dependency for creating an up pipe for
a GRE module by specifying that it desires in-order deliv-
ery of packets and low error-rate. These choices would be
based on high-level performance goals specified by the hu-
man manager. Similarly, commands (2) and (4) create pipes
P2 and P3. Through command (3) the NM specifies that
GRE module b should switch between pipes P1 and P2. Sim-
ilarly, commands (5) and (6) configure the switch in modules
c and d respectively.

The simple and structured process described above is all
the configuration that the NM needs to do. It is the protocols

NM

conveyMessage (<GRE,B,b’>, GRE-specific parameters)

MA
Device A

MA
Device B

listFieldsAndValues(<IP, B, c’>)

Caller Callee
functionName (parameters)

listFieldsAndValues(<IP, A, c>)

Packets over data plane paths

conveyMessage (<GRE,A,b>, GRE-specific parameters)

Key Values,

 and other parameters
 Seq No. usage

Associated
Command

Command
 (1)

IP-address
of tunnel
end-points

Command
(2)

listFieldsAndValues(<IP, D, g>)

listFieldsAndValues(<IP, A, c>)

MA
Device D

MA
Device A

IP-address
of next-hop

Command
(4)

Figure 4: GRE-IP Tunnel establishment between de-
vices A and B - the management plane is simplified
by ensuring that protocol complexity is restricted to
protocol implementation.

that incorporate the complexity of determining the low-level
parameters. Each module, based on the commands invoked
by the NM, interacts with its peer module through the man-
agement channel to determine the required protocol specific
parameters – this process is briefly described below and illus-
trated in figure 4.

On invocation of command (1) and the corresponding com-
mand on device B, modules b and b’ use the conveyMessage
primitive to exchange the GRE-specific parameters needed
for connectivity between them. These include the GRE key
values in each direction, the use of sequence numbers, etc.
Some of these parameters are based on the trade-off deci-
sions specified by the NM. For example, the NM, as part of
command (1), opts for in-order delivery. This causes mod-
ules b and b’ to negotiate the use of sequence numbers for the
GRE tunnel between them. Similarly, on invocation of com-
mand (2), IP modules c and c’ figure out the IP addresses of
the tunnel end-points by determining each other’s IP address
through the use of listFieldsAndValues. Command (3) causes
the GRE module b to generate the actual Linux command to
configure the GRE tunnel, the parameters for this command
already having been determined:
ip tunnel add name gre-P1-P2 mode gre remote 204.9.

169.1 local 204.9.168.1 ikey 1001 okey 2001 icsum

ocsum iseq oseq

Similarly, command (4) causes IP modules c and g to ex-
change their IP addresses while command (5) causes IP mod-
ule c to generate the low-level routing rule in device A such
that packets to device B are routed through D:
ip route add to 204.9.169.1 via 204.9.168.2 dev eth2

3.3 Virtual Private Networks (VPNs)
VPNs are commonly used to connect geographically dis-

tributed enterprise sites across the Internet while offering se-
curity and performance comparable to connecting the sites
across a dedicated network. As the name suggests, a “provider-
provisioned VPN” involves the ISP that provides connectiv-
ity to the enterprise sites configuring and maintaining the
VPN [3]. We implemented a NM that can be used for such
VPN configuration. In the interest of brevity, the discussion
below focusses on the configuration sub-task of an ISP try-
ing to ensure that traffic between two sites S1 and S2 of a
customer C1 is isolated from other traffic. A complete VPN
configuration involves doing the same for all pairs of sites of

Router A

Router B

Router C

ISP

Customer 1
Site 1

Router D

Customer 1
Site 2

Router E

(a)

Router A Router B Router C

Eth (a) Eth (b)

IP (h)

Eth (c) Eth (d)

IP (i)

Eth (e) Eth (f)

IP (j)

IP (k) IP (g) GRE (l) GRE (n)

GRE (m)
MPLS (o) MPLS(q)

MPLS(p)

Customer 1
Site 1

Router D

Customer 1
Site 2

Router E

(b)

Figure 5: Experimental set-up emulating an ISP
and customer sites for the VPN configuration. Fig-
ure 5(b) shows the network map and the modules
seen by the NM prior to configuration.

each customer needing VPN support. Figure 5(a) shows the
relevant part of the set-up in our lab with five Linux hosts (la-
beled A-E) serving as two of the ISP’s edge routers in different
POPs (A and C), the ISP’s core router (B) and customer C1’s
routers at site S1 (D) and site S2 (E). Specifically, the NM
aims to achieve the following high-level goal specified by
the human network manager:

Configure connectivity between sites S1 and S2 of cus-
tomer C1.

This is equivalent to the following high-level goal in CON-
Man terminology:

Configure connectivity between the customer-facing in-
terfaces <ETH,A,a> and <ETH,C,f> (see figure 5(b))
for traffic between C1-S1 and C1-S2.

Ideally, C1-S1 and C1-S2 should be high-level identifiers
that get mapped to the IP prefixes for the two sites through
communication between the NM of the ISP and the NM of
customer C1. However, this paper is restricted to manage-
ment in a single domain and hence, we provide the NM with
this information. Second, we assume that the NM has al-
ready assigned IP addresses to the IP modules. Finally, the
high-level goal above is imprecise since it does not specify
whether traffic between C1-S1 and C1-S2 ought to be iso-
lated or not. Today, this choice is dictated by whether C1-S1
and C1-S2 are public or private IP prefixes and this applies
to our implementation too. Consequently, the NM is aware
of the notion of public and private addresses. As explained
later in the section, this knowledge is used by the NM in the
way it finds paths through the network. We admit that this is
case of the NM using protocol-specific information. As men-
tioned earlier, while it is possible to abstract IP addresses,
their ubiquity and scarcity combined with the impact of ad-
dress assignment on routing scalability suggests that it makes
engineering sense to let the NM be aware of them and this is
what we chose for our implementation.

3.3.1 NM Implementation
All devices in the ISP’s network (routers A, B, C) inform

the NM of their physical connectivity through the manage-
ment channel. Given the aforementioned goal, our NM im-

Module Connectivity and Switching

<ETH,A,a> Up: {IP, MPLS}, Down: None, Phy: to C1-S1,
Switching: [Phy ⇒ Up],[Up ⇒ Phy]

<ETH,A,b> Up: {IP, MPLS}, Down: None, Phy: to
<ETH,B,c>, Switching: [Phy ⇒ Up],[Up ⇒ Phy]

<MPLS,A,o> Up: {IP}, Down: {ETH}, Phy: None, Switching:
[Down ⇒ Up],[Up ⇒ Down],[Down ⇒ Down]

<IP,A,g> Up: {IP, GRE}, Down: {IP, GRE, MPLS,
ETH}, Phy: None, Switching:[Down ⇒ Up],[Up
⇒ Down],[Down ⇒ Down],[Up ⇒ Up]

<IP,A,h> Up: {IP, GRE}, Down: {IP, GRE, MPLS,
ETH}, Phy: None, Switching:[Down ⇒ Up],[Up
⇒ Down],[Down ⇒ Down],[Up ⇒ Up]

<GRE,A,l> Up: {IP}, Down: {IP}, Phy: None, Switching:
[Down ⇒ Up],[Up ⇒ Down]

Table 4: Connectivity and switching capabilities of the mod-

ules in device A.

IP (h)

ETH (a)

IP (g)

MPLS (o)

ETH (b)

GRE (l)

LEGEND

A

B

B

A

is an
up-pipe for B &
down-pipe for A

A
Module A has

[down down]
switching

A
Module A has
[up up]
switching

Physical pipe

Figure 6: Potential Connectivity sub-graph for device
A.

plementation invokes showPotential at these devices to deter-
mine the abstraction for the modules in these devices. Thus,
the NM has a network map akin to the one shown in fig-
ure 5(b). This also provides the NM with information about
how the modules can be connected to each other and how they
can switch packets (shown in table 4). Based on this, the NM
constructs a graph of potential connectivity with modules as
“nodes” and up-down and physical pipes as “edges”. Figure 6
shows the device A part of this graph.

The NM also includes a path-finder component that can
find all paths between any two modules in such a graph. To
do so, the component traverses the graph in a depth-first
fashion while avoiding cycles. Further, we made two modifi-
cations to the traversal: First, the NM knows that a module
encapsulates packets in a protocol header when using [up ⇒
down] and [up ⇒ phy] switching; for example an ETH mod-
ule adds an Ethernet header to packets that it sends out onto
a physical pipe. Similarly, a module decapsulates packets
when using [down ⇒ up] and [phy ⇒ up] switching. A mod-
ule processes the packet header but doesn’t remove or add
headers when using [phy ⇒ phy], [down ⇒ down] and [up ⇒
up] switching. The traversal keeps track of such encapsula-
tion and decapsulation by the modules along the path and
hence, restricts itself to paths that are “sane” in the protocol
sense. For instance, assuming that the path shown in fig-
ure 7(a) is the path already traversed, this rule implies that
the next module should be able to decapsulate or process an
IP header and hence, the only possible next module is the IP
module in device B, <IP,B,i>. This also allows the NM to
determine modules that are peers of each other; in the path
above, <ETH,B,c> decapsulates the encapsulation put in by
<ETH,A,b> and hence, they are peers.

Second, the NM is aware of the notion of public and private
addresses and the traversal uses this information to rule out
invalid paths. For instance, the path shown in figure 7(b) is
an invalid path as it makes IP modules g and i peers even

ETH (a) ETH (c)ETH (b)

IP (g) ?

ETH (a) ETH (c) ETH (b)

IP (g) IP (i)

(a) (b)

Router A Router B Router A Router B

Peers denoted by

Figure 7: Options explored by the NM’s path finder.

though g is assigned a private address while i is assigned a
public address.

For the given goal, the NM directs the path-finder to find
paths between modules <ETH,A,a> and <ETH,C,f>. We
were expecting the NM to generate the following three paths
(we only show the module-id for each module along the path):
1). Using IP-IP tunnel: a, g, h, b, c, i, d, e, j, k, f.
2). Using GRE-IP tunnel: a, g, l, h, b, c, i, d, e, j, n, k, f.
3). Using MPLS: a, g, o, b, c, p, d, e, q, k, f.
However, the NM generated six more paths: IP-IP over MPLS,
GRE-IP over MPLS, IP-IP over MPLS only between A and
B, IP-IP over MPLS only between B and C, GRE-IP over
MPLS only between A and B, and GRE-IP over MPLS only
between B and C.4 While this suggests that we should use
more aggressive pruning rules for our traversal, it also shows
that the NM can determine the various ways of achieving
a high-level goal given the capabilities of the devices in the
network. As a contrast, today it is the human managing the
network that relies on RFCs and device manuals to determine
the options available.

The NM now needs to be able to choose amongst the paths
based on high-level directives and/or other metrics. We im-
plemented a very simple algorithm that minimizes the total
number of pipes instantiated in the routers. This is, in some
sense, akin to minimizing the amount of state on the routers
and the communication overhead on the NM. For the scenario
in question, the MPLS-based path and the IP-IP tunnel are
the best options (our NM implementation prefers the MPLS-
based path because the MPLS abstraction mentions that it
offers good forwarding bandwidth). We can also think of more
sophisticated metrics such as the performance capabilities of
the modules along the path or satisfying security constraints.
Moreover, while the ability to choose amongst possible config-
urations without protocol-specific knowledge is critical to the
CONMan argument, this is an area that we haven’t explored
in any detail and is an avenue for future work.

As described in the previous section, once a path is cho-
sen, the NM automatically generates the script of CONMan
primitives needed to create the path.

3.3.2 Comparing to the status quo
For each path in the example above, we directed the NM to

generate the CONMan primitives needed to create the path.
These primitives were invoked at the modules in the devices
(routers A, B and C) to configure them. Since the modules
are implemented as wrappers around existing protocol im-
plementations, they in turn generate the device-level scripts
from the CONMan primitives. It is the management plane
that needs to generate these device-level scripts with today’s

4Typically, ISPs use MPLS-over-MPLS [33] or MPLS-over-
GRE [40] for VPN support. Both these configurations are
not supported by the Linux hosts used for our experiments
and hence, the NM cannot propose these paths.

setup. Below we compare the configurations for two of these
paths: the GRE-IP and the MPLS path.

Figure 8(a) shows a Linux configuration snippet at router
A that establishes a GRE tunnel to router C and carries traf-
fic between sites S1 and S2 of customer C1. As a contrast,
the desired module connectivity and the CONMan commands
invoked by the NM at router A to achieve this are shown in
figure 8(b). These commands were explained in section 3.2.
Similarly, figures 9 shows the Linux and CONMan configura-
tion snippet needed to establish the MPLS path.

Note that while our testbed capabilities constrained us
to Layer-3 VPNs, some ISPs establish VPN connectivity at
Layer-2. This is typically achieved using Ethernet-over-MPLS
or PPP-over-L2TP. Recently, VLAN tunneling has been pro-
posed as another means of doing so [41] and as the use of
Ethernet in wide-area networks increases, this could be a
future VPN technology. Consequently, we also present the
Cisco CatOS and CONMan configuration snippet to estab-
lish a VLAN tunnel in figure 10.

The figures show that configuration today requires the man-
agement plane to specify a lot of low-level details. As a result,
it is difficult to build management applications that
automatically generate these configurations. Instead,
many management applications provide a better user inter-
face and/or some syntactic sugar to the human manager (this
is useful in itself). Even with these applications, the human
manager still needs to provide the specifics and this leaves the
door open for many kinds of errors; for instance, some error
possibilities in figure 8(a) include not configuring device A as
a router (command 4), misconfiguring the underlying routing
so that traffic from the wrong customer goes into a tunnel
or the tunneled traffic is delivered to the wrong customer at
the other end (commands 5-9), configuring the tunnel end
points with the wrong key values (command 2), using tun-
nel end point IP addresses that are wrong or do not have IP
connectivity between them (command 2), etc.

The CONMan scripts do not appear any-less-fragile. How-
ever, the human manager doesn’t need to see, much
less write, these scripts. All the identifiers in the script,
such as the module and device identifiers, are exposed by
the devices themselves and learnt by the NM through show-
Potential. Further, there is very little protocol-specific in-
formation in CONMan scripts and hence, an automated
NM can generate the commands and other details al-
gorithmically without incorporating protocol-specific
knowledge. Also, the similarity in the CONMan scripts
for three completely different protocols can be seen as retro-
spective (yet relevant) evidence of CONMan decoupling the
management plane from data-plane evolution.

To quantify the protocol-agnosticity of CONMan, we coun-
-ted the number of protocol-specific commands and state vari-
ables in the scripts. Table 5 shows that today’s scripts have
far more protocol-specific commands and state-variables. As
mentioned earlier, the instances of protocol-specific state vari-
ables in CONMan scripts (such as C1-S2 representing the IP
prefix for customer1-site2 on line (3) of figure 8(b)) result
from the fact that our current effort is restricted to man-
agement in a single domain. On the other hand, CONMan
scripts have more generic state-variables. This is an outcome
of both the verbose nature of the existing CONMan primi-
tives and the fact that CONMan requires the NM to specify
a lot of well-structured and systematically learnt generic in-
formation which the protocol modules then use to determine

#!/bin/bash
Insert the GRE-IP kernel module
(1) insmod /lib/modules/2.6.14-2/ip gre.ko
Create the GRE tunnel with the appropriate key
(2) ip tunnel add name greA mode gre remote 204.9.169.1 local
204.9.168.1 ikey 1001 okey 2001 icsum ocsum iseq oseq

(3) ifconfig greA 192.168.3.1
Enable Routing
(4) echo 1 > /proc/sys/net/ipv4/ip forward
Create IP routing from customer to tunnel
(5) echo 202 tun-1-2 >> /etc/iproute2/rt tables
(6) ip rule add to 10.0.2.0/24 table tun-1-2

(7) ip route add default dev greA table tun-1-2
Create IP routing from tunnel to customer
(8) echo 203 tun-2-1 >> /etc/iproute2/rt tables
(9) ip rule add iff greA table tun-2-1
(10) ip route add default dev eth1 table tun-2-1

(11) ip route add to 204.9.169.1 via 204.9.168.2 dev eth2

(a) Configuration “Today”

Router A Router B Router C

Eth (a) Eth (b)

IP (h)

Eth (c) Eth (d)

IP (i)

Eth (e) Eth (f)

IP (j)

IP (k) IP (g)

Customer 1
Site 1

Router D

Customer 1
Site 2

Router E

GRE (l) GRE (n)

Phy Pipe (P4) (1).

P0 = create (pipe, <IP,A,g>, <ETH,A,a>, None, None, None)
(2). P1 = create (pipe, <IP,A,g>, <GRE,A,l>, <IP,C,k>, <GRE,C,n>,
trade-off: in-order delivery, trade-off: error-rate)
(3) create (switch, <IP,A,g>, [P0, dst:C1-S2 ⇒ P1])
(4) create (switch, <IP,A,g>, [P1 ⇒ P0, S2-gateway])

(5). P2 = create (pipe, <GRE,A,l>, <IP,A,h>, <GRE,C,n>, <IP,C,j>, None)
(6). create (switch, <GRE,A,l>, P1, P2)
(7). P3 = create (pipe, <IP,A,h>, <ETH,A,b>, <IP,B,i>, <ETH,B,c>, None)
(8). create (switch, <IP,A,h>, P2, P3)

(9). create (switch, <ETH,A,b>, P3,P4)

(b) CONMan configuration

Figure 8: VPN connectivity between sites S1 and S2 of customer C1 through a GRE-IP tunnel between A and C.

#!/bin/bash
Instantiating MPLS kernel modules
modprobe mpls
modprobe mpls4
MPLS LSP for traffic from S2->S1
mpls labelspace set dev eth2 labelspace 0
mpls ilm add label gen 10001 labelspace 0
KEY-S2-S1=‘mpls nhlfe add key 0 mtu 1500 instructions nexthop
eth1 ipv4 192.168.0.1 | grep key | cut -c 17-26‘
mpls xc add ilm label gen 10001 ilm labelspace 0 nhlfe key
$KEY-S2-S1
MPLS LSP for traffic from S1->S2
KEY-S1-S2=‘mpls nhlfe add key 0 mtu 1500 instructions push gen
2001 nexthop eth2 ipv4 204.9.168.2 | grep key | cut -c 17-26‘
echo 1> /proc/sys/net/ipv4/ip forward
ip route add 10.0.2.0/24 via 204.9.168.2 mpls $KEY-S1-S2

(a) Configuration “Today”

Router A Router B Router C

Eth (a) Eth (b)

IP (h)

Eth (c) Eth (d)

IP (i)

Eth (e) Eth (f)

IP (j)

IP (k) IP (g)

Customer 1
Site 1

Router D

Customer 1
Site 2

Router E

MPLS (o) MPLS(q)

MPLS(p)

Phy Pipe (P4)

P0 = create (pipe, <IP,A,g>, <ETH,A,a>, None, None, None)
P1 = create (pipe, <IP,A,g>, <MPLS,A,o>, <IP,C,k>, <MPLS,C,q>,

None)
create (switch, <IP,A,g>, [P0, dst:C1-S2 ⇒ P1])
create (switch, <IP,A,g>, [P1 ⇒ P0, S2-gateway])

P2 = create (pipe, <MPLS,A,o>, <ETH,A,b>, <MPLS,B,p>, <ETH,B,c>,
None)

create (switch, <MPLS,A,o>, P1, P2)

create (switch, <ETH,A,b>, P2, P4)

(b) CONMan configuration

Figure 9: VPN connectivity between sites S1 and S2 of customer C1 using a MPLS LSP through router A, B and C.

GRE MPLS VLAN
T C T C T C

Generic Commands 1 2 1 2 3 2
Specific Commands 6 0 6 0 4 0

Generic State Var. 9 21 6 18 3 14
Specific State Var. 11 2 8 2 5 1

Table 5: Commands and state variables in Today’s (T) and

CONMan (C) scripts. The table and the scripts are color/font

coded; for instance, the first occurrence of a “Generic Com-

mand” in each script appears in Red/Italics and so on.

the protocol parameters. While we admit that these repre-
sent very coarse metrics, we see this as a naive yet important
step towards quantifying the advantages of having manage-
ment applications generate CONMan primitives instead of
device-level configuration.

4. RELATED WORK
There is a tremendous amount of past work in network

management, the most relevant of which we briefly cite here.
On the commercial side, SNMPLink [31] lists many existing
management tools, from low-end tools like packet analyzers
(eg, Wireshark [47]), traffic monitors (eg, MRTG [35]), and
SNMP agents (eg, ITM [7]) to high-end managers like Open-
View [43].

Zeroconf [51] (and similar efforts like UPnP [46], DLNA [50],
etc.) enable “local communication in networks of limited
scale” without any configuration [15]. CONMan is more gen-
eral but there are networks, such as ad-hoc networks, that we
don’t deal with. Further, with CONMan, the human manager

does need to specify a configuration goal, albeit at a high-
level. However, there are a number of Zeroconf features, such
as address auto-configuration using link-local addresses, that
CONMan could gain from. Policy-based management [16]
tries to reduce the amount of intricate knowledge required by
human managers by allowing management of QoS [2,32] and
security [37] based on high-level policies. There are efforts
in both research [48] and industry [42–45] with the similar
goals. While steps in the right direction, some entity still has
to map these policies to the individual device configurations.
The complexity of this translation was the major impediment
in the adoption of policy-based networking [17].

CONMan does not dictate how data-plane protocols should
be implemented. However, there is the vast body of literature
that does deal with protocol implementation, i.e. through ab-
stractions [1], specification languages (Estelle, LOTOS,
SDL [38]), implementation languages [10,24,25], and modu-
larization (Click [19], [5]). The 4D proposal [14] recognizes
the complexity of the Internet’s control and management
plane and hence, argues for restructuring them. We were
motivated by, among other things, 4D’s discovery plane. Re-
cently, there has been a spurt of research detailing the reasons
for outages and anomalies in IP backbones [22,27], Internet
services [28] and BGP routing [11,26]. These studies point
to configuration errors as a major culprit. CONMan can re-
duce these errors, particularly the ones impacting data plane
operation. Finally, we believe that CONMan can simplify
the cross-layer database and interface proposed in [20], and
indeed may provide the basis for the Knowledge Plane objec-
tives laid out by Clark et. al. [9].

put module0 port 9 into VLAN22
ensure MTU is set properly
set vlan 22 name C1 mtu 1504

set vlan 22 gigabitethernet0/9
ensure module 0 port 7 is access port
interface gigabitethernet0/7
switchport access vlan 22
switchport mode dot1q-tunnel

exit
vlan dot1q tag native

end

(a) Configuration “Today” on Cisco CatOS

Switch A Switch B Switch C

Eth (a)

VLAN (d)

Eth (b)

VLAN (e)

Eth (c)

VLAN (f)

Phy Pipe (P4)
Phy Pipe (P0)

Customer 1
Site 1

Router D

Customer 1
Site 2

Router E

P1 = create (pipe, <ETH,A,a>, <VLAN,A,d>, <ETH,C,c>,
<VLAN,C,f>)

P2 = create (pipe, <VLAN,A,d>, <ETH,A,a>, <VLAN,B,e>, <ETH,B,b>)
create (switch, <ETH,A,a>, [P0, Tagged ⇒ P1])

create (switch, <ETH,A,a>, [P1 ⇒ P0])
create (switch, <VLAN,A,d>, P1, P2)

create (switch, <ETH,A,a>, P2, P4)

(b) CONMan configuration

Figure 10: VPN connectivity between sites S1 and S2 of customer C1 through VLAN tunneling between A and C.

5. DISCUSSION AND FUTURE WORK
In this paper we have presented a network architecture that

is amenable to management. Implementation of a few proto-
cols according to the CONMan model and their use in VPN
configuration scenarios shows that the approach is worth con-
sidering. Though it is too early for us to claim that the ab-
straction presented here suffices for all data plane protocols
and for tasks beyond basic configuration, we do not envi-
sion the module abstraction expanding much beyond its cur-
rent state. As with OSs where we rely on ioctls and special-
purpose interfaces for things that cannot be accomplished
with the file system interface, in cases where protocol features
are not captured by the abstraction (some were mentioned in
the paper but we hope they will be few and far between), the
low-level parameters will have to explicitly be set. Hence, we
allow for the possibility of management applications accessing
low-level details and provide the relevant hooks. However, we
necessitate that any direct changes to the low-level details be
appropriately reflected in the protocol’s CONMan abstrac-
tion. There are many other avenues for future work, some of
which we mention below:
– Scalability: This paper tests the extent to which manage-
ment interfaces can be made protocol agnostic. However, it
does not address concerns regarding the scalability and the
robustness of the proposed approach. For instance, an im-
portant concern is the amount of traffic and processing load
imposed on the NM, especially as a result of changes in high-
level goals or even the network itself. Also, while our cur-
rent implementation is restricted to lower layer modules and
mostly static configuration tasks, scaling would be much more
challenging if CONMan were to account for applications too.
An extreme resulting scenario would be one where the NM
configures modules across the network whenever an applica-
tion initiates a connection. Note that in such a set-up, the
message overhead imposed on the NM(s) would be similar to
that imposed on domain controllers in the SANE project [8]
and one could use their results to claim that even this can
scale.

However, for a lot of tasks, the NM can use existing con-
trol protocols. For instance, our current path-finder could
easily be modified to use a hierarchical two-step traversal
wherein the first step finds paths between devices that have
been pre-established using a routing algorithm while the next
step finds the complete module-level path given the device-
level path. Apart from this, CONMan would certainly benefit
from many of the proposals to improve the scalability of au-
tomated agents within today’s SNMP framework [13,23,30].

Further, as discussed below, the NMs themselves may do spe-
cialized jobs and hence, scale by divide-and-conquer.
– Multiple NMs: Our current attempt has focussed on a single
NM managing a given network. However, multiple NMs may
exist. Primary and secondary NMs will be needed for robust-
ness. We can also imagine multiple simultaneously operating
NMs. One reason for this might be that NMs do special-
ized jobs. For example, one is responsible for tunnel creation
while another monitors for security violations. Another rea-
son might be that NMs are administratively nested. For ex-
ample, a high-level NM creates VLANs, but each VLAN has
its own NM. Different domains will have their own NM and
these may need to communicate.
– Management Channel: The aforementioned possibilities pr-
-esent a number of challenges such as the need for scoped
management channels, extending the management channel
beyond a single domain, the possibility of conflicting config-
urations and so on. Consequently, the notion of a manage-
ment channel needs more thought. However, we would still
like to keep the management channel as simple as possible so
we don’t run into the problem of managing the management
channel. Further, the robustness and scalability questions re-
garding this channel suggest that it should only be used as the
basis for low-level configuration. Higher-level management
tasks should then rely on the data-plane for communication.

Beyond this, the NM design requires more work. On the
user-side, we illustrated a simple high-level goal involving
connectivity between two devices. However, we would like
to evaluate other high-level goals and their impact on the al-
gorithmic complexity of the NM. An exercise worth pursuing
would be to come up with a simple yet precise language for
such goals. Challenges for the NM on the the network-side
include being able compare the quality of multiple low-level
goals that satisfy a given high-level goal, ensuring that the
translation process can scale to large networks, etc. Another
important question is how to deploy CONMan. It is likely to
share IPv6’s conundrum: namely that complexity has to be
increased over the short-term in order to arrive at reduced
complexity over the long-term. However, there is still a lot of
work to be done before we can worry about the widespread
adoption of CONMan and hence, the path of least resistance
towards a manageable, much less a self-managing network.

Acknowledgements
We would like to thank our shepherd, David Maltz, and the
anonymous reviewers for their useful feedback. This work was
partially supported by NSF Grants 0338750 and 0626978.

6. REFERENCES
[1] M. B. Abbott and L. L. Peterson, “A language-based

approach to protocol implementation,” in Proc. of ACM
SIGCOMM, 1992, pp. 27–38.

[2] K. Amiri, S. Calo, and D. Verma, “Policy based management
of content distribution networks,” IEEE Network Magazine,
March 2002.

[3] L. Andersson and T. Madsen, “RFC 4026 - Provider
Provisioned Virtual Private Network (VPN) Terminology,”
March 2005.

[4] H. Ballani and P. Francis, “Complexity Oblivious Network
Management: A step towards network manageability,”
Cornell University, Ithaca, NY, US, Tech. Rep.
cul.cis/TR2006-2026, 2006.

[5] E. Biagioni, “A structured TCP in standard ML,” in Proc.
of ACM SIGCOMM, 1994.

[6] M. Caesar, D. Caldwell, N. Feamster, J. Rexford, A. Shaikh,
and J. van der Merwe, “Design and Implementation of a
Routing Control Platform ,” in Proc. of Symp. on Networked
Systems Design and Implementation (NSDI), 2005.

[7] Carsten Schmidt, “Interface Traffic Monitor Pro,”
http://software.ccschmidt.de/.

[8] M. Casado, T. Garfinkel, A. Akella, M. Freedman, D. Boneh,
N. McKeown, and S. Shenker, “SANE: A Protection
Architecture for Enterprise Networks,” in Proc. of Usenix
Security, 2006.

[9] D. D. Clark, C. Partridge, J. C. Ramming, and J. T.
Wroclawski, “A knowledge plane for the internet,” in Proc.
of ACM SIGCOMM, 2003.

[10] T. Condie, J. M. Hellerstein, P. Maniatis, S. Rhea, and
T. Roscoe, “Finally, a Use for Componentized Transport
Protocols,” in Proc. of the Fourth Workshop on Hot Topics
in Networking, 2005.

[11] N. Feamster and H. Balakrishnan, “Detecting BGP
Configuration Faults with Static Analysis,” in Proc. of
Symp. on Networked Systems Design and Implementation
(NSDI), 2005.

[12] B. Ford, “Unmanaged Internet Protocol: taming the edge
network management crisis,” SIGCOMM Comput. Commun.
Rev., vol. 34, no. 1, 2004.

[13] G. Goldszmidt, Y. Yemini, and S. Yemini, “Network
management by delegation: the MAD approach,” in Proc. of
the conference of the Centre for Advanced Studies on
Collaborative research (CASCON), 1991.

[14] A. Greenberg, G. Hjalmtysson, D. A. Maltz, A. Meyers,
J. Rexford, G. Xie, H. Yan, J. Zhan, and H. Zhang, “A clean
slate 4D approach to network control and management,”
ACM SIGCOMM Computer Communications Review,
October 2005.

[15] E. Guttman, “Autoconfiguration for ip networking: Enabling
local communication,” IEEE Internet Computing, vol. 5,
no. 3, 2001.

[16] J. Halpern and E. Ellesson, “The IETF Policy Framework
Working Group,” Online Charter,
http://www.ietf.org/html.charters/OLD/policy-charter.html.

[17] M. Jude, “Policy-based Management: Beyond The Hype,”
Business Communication Review, pp. 52–56, 2001,
http://www.bcr.com/bcrmag/2001/03/p52.php.

[18] Z. Kerravala, “Enterprise Networking and Computing : the
Need for Configuration Management,” Yankee Group report,
January 2004.

[19] E. Kohler, R. Morris, B. Chen, J. Jannotti, and M. F.
Kaashoek, “The Click modular router,” ACM Transactions
on Computer Systems, vol. 18, no. 3, pp. 263–297, August
2000.

[20] R. R. Kompella, A. Greenberg, J. Rexford, A. C. Snoeren,
and J. Yates, “Cross-layer Visibility as a Service,” in Proc. of
workshop on Hot Topics in Networks, 2005.

[21] R. R. Kompella, J. Yates, A. Greenberg, and A. C. Snoeren,
“ IP Fault Localization Via Risk Modeling ,” in Proc. of 2nd
Symp. on Networked Systems Design and Implementation
(NSDI), 2005.

[22] C. Labovitz, A. Ahuja, and F. Jahanian, “Experimental
Study of Internet Stability and Backbone Failures,” in Proc.
of Symposium on Fault-Tolerant Computing (FTCS), 1999.

[23] K.-S. Lim and R. Stadler, “Developing Pattern-Based
Management Programs,” in Proc. of Conference on

Management of Multimedia Networks and Services
(MMNS), 2001.

[24] B. T. Loo, T. Condie, J. M. Hellerstein, P. Maniatis,
T. Roscoe, and I. Stoica, “Implementing Declarative
Overlays,” in Proc. of ACM SOSP, 2005.

[25] B. T. Loo, J. M. Hellerstein, I. Stoica, and R. Ramakrishnan,
“Declarative Routing: Extensible Routing with Declarative
Queries,” in Proc. of ACM SIGCOMM, 2005.

[26] R. Mahajan, D. Wetherall, and T. Anderson,
“Understanding BGP misconfiguration,” in Proc. of ACM
SIGCOMM, 2002, pp. 3–16.

[27] A. Markopoulou, G. Iannaccone, S. Bhattacharyya,
C. Chuah, and C. Diot, “Characterization of Failures in an
IP Backbone,” in Proc. of IEEE INFOCOMM, 2004.

[28] D. Oppenheimer, A. Ganapathi, and D. Patterson, “Why do
Internet services fail, and what can be done about it,” in
Proc. of USENIX Symposium on Internet Technologies and
Systems, 2003.

[29] P. Bahl et. al., “Discovering Dependencies for Network
Management,” in Proc. of workshop on Hot Topics in
Networks, 2006.

[30] V. A. Pham and A. Karmouch, “Mobile Software Agents: An
Overview,” IEEE/ACM Trans. Netw., vol. 36, no. 7, 1998.

[31] Pierrick Simier, “SNMPLink,”
www.snmplink.org/Tools.html.

[32] R. Rajan, D. Verma, S. Kamat, E. Felstaine, , and
S. Herzog, “A policy framework for integrated and
differentiated services in the internet,” IEEE Network
Magazine, vol. 13, no. 5, September 1999.

[33] E. Rosen and Y. Rekhter, “RFC 4364 - BGP/MPLS IP
Virtual Private Networks (VPNs),” February 2006.

[34] J. Schonwalder, “Characterization of SNMP MIB Modules,”
in Proc. of International Symposium on Integrated Network
Management, 2005.

[35] Tobias Oetiker and Dave Rand, “MRTG : Multi Router
Traffic Grapher,” http://mrtg.hdl.com.

[36] H. Uijterwaal and M. Zekauskas, “IP Performance Metrics
(ippm),” Online Charter, Jan 2006,
http://www.ietf.org/html.charters/ippm-charter.html.

[37] D. Verma, “Simplifying Network Administration using Policy
based Management,” IEEE Network Magazine, March 2002.

[38] G. von Bochmann, “Usage of Protocol Development Tools:
The Results of a Survey,” in Proc. of Conference on Protocol
Specification, Testing and Verification, 1987.

[39] G. Xie, J. Zhan, D. A. Maltz, H. Zhang, A. Greenberg, and
G. Hjalmtysson, “Routing design in operational networks: a
look from the inside,” in Proc. of ACM SIGCOMM, 2004,
pp. 27–40.

[40] E. R. Y. Rekhter, R. Bonica, “Use of PE-PE GRE or IP in
BGP/MPLS IP Virtual Private Networks,”
draft-ietf-l3vpn-gre-ip-2547-05, February 2006.

[41] “CISCO 802.1Q Tunneling,”
http://www.cisco.com/univercd/cc/td/doc/product/lan/
c3550/1219ea1/3550scg/swtunnel.htm.

[42] “CISCO Network Management Products,” http://www.
cisco.com/en/US/products/sw/netmgtsw/index.html.

[43] “HP OpenView,” www.openview.hp.com/.
[44] “IBM’s Autonomic Computing,”

http://www-03.ibm.com/autonomic/.
[45] “Microsoft Dynamic Systems Initiative,” http://www.

microsoft.com/windowsserversystem/dsi/default.mspx.
[46] “UPnP Forum,” http://www.upnp.org/.

[47] “Wireshark: A Network Protocol Analyzer,”
http://www.wireshark.org/.

[48] “IBM Research: Policy-based Networking,” , Dec 2006,
http://www.research.ibm.com/policy/.

[49] “SNMP MIB Search Engine,” , January 2006,
www.mibdepot.com.

[50] “Digital Living Network Alliance,” Jan 2007,
http://www.dlna.org/.

[51] “Zeroconf Working Group,” Jan 2007,
http://www.zeroconf.org/.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.33333
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

