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ABSTRACT 
In distributed information discovery, object information is 
discovered through a number of steps, looking up a routing 
table in each step, as in peer-to-peer (P2P) systems. This 
paper aims to establish a connection between information 
theory and distributed information discovery. Such a 
connection exists inherently and can be applied fruitfully, 
but has so far attracted not much attention in the research 
community. In the paper, we present some preliminary 
results in establishing this connection and hope to attract 
further investigation. We have made three contributions. 
First, using information theoretical arguments, we establish 
fundamental lower bounds on table sizes and step numbers. 
These bounds go beyond those derived previously and can 
deal with object popularity. Second, we provide some insight 
on the relationship between achieving lower bounds and a 
closely related issue, i.e., balancing load, and, in passing, 
point out the equivalence between tree-based and ring-based 
P2P systems. Third, we establish the analogy between search 
sequences and data compression and coding, and propose a 
distributed implementation of Shannon code that can reduce 
the expected length of search sequences to an arbitrarily 
small value (depending on the object popularity) at the cost 
of at most doubling the table sizes.    

 

1. INTRODUCTION 
An important function of a network is to discover 
information about an object such as a route, an address, a 
piece of distributed data, etc. There are a variety of ways to 
discover object information in a network. At one extreme, 
object information is distributed to every node in the 
network, as in link state routing in traditional networks. At 
the other extreme, object information is not distributed and 
needs to be searched, as in on-demand routing in mobile ad 
hoc networks. The two extremes have scalability limitations, 
because a complete distribution of information at one 
extreme or a blind search at the other incurs a cost on the 
order of that of a broadcast. More promising in scalability is 
the approach between the two extremes that relies in part on 
distribution of information and in part on search, as in 
information lookup schemes in peer-to-peer (P2P) networks 
[2][3][4][5]. We call such an approach distributed 
information discovery since objection information is 
distributed inside the network and is discovered through a 

search sequence. We focus on distributed information 
discovery in this paper.  

Given object information is distributed in the network, it is 
sensible to ask how to measure, quantify, and analyze such 
information, and how the distributed information is related to 
the uncertainty (entropy) of the object. Information theory 
provides a fitting and powerful framework to reason about 
such questions.  

The goal of this paper is to establish a connection between 
information theory and distributed information discovery in 
networks. Such a connection exists inherently and can be 
applied fruitfully, but has so far attracted not much attention 
in the research community. This paper presents some 
preliminary results in establishing this connection and hopes 
to attract further investigation. A related, but different, 
previous work is about using information theory to analyze 
routing protocol overhead [6]. 

We made three contributions in this paper, described in 
Sections 2, 3, 4, respectively. First, using information 
theoretical arguments, we establish fundamental lower 
bounds on table sizes and step numbers. These bounds go 
beyond those derived previously and can deal with object 
popularity. Second, we provide some insight on the 
relationship between achieving lower bounds and a closely 
related issue, i.e., balancing load, and, in passing, point out 
the equivalence between tree-based and ring-based P2P 
systems. Third, we establish the analogy between search 
sequences and data compression and coding, and propose a 
distributed implementation of Shannon code that can reduce 
the expected length of search sequences to an arbitrarily 
small value (depending on the object popularity) at the cost 
of at most doubling the table sizes.    

Some basic concepts and definitions in information theory 
are included in the Appendix, and a good reference book can 
be found in [1].   

2. AN INFORMATION THEORETICAL 
FORMULATION AND BOUNDS ON 
TABLE SIZES AND STEP NUMBERS 
We consider the problem of search for an object in a network 
of n nodes. The location of the object is represented by a 
random variable x taking values in the alphabet A = [1, 
2,…n]. Before the search, x can be in any of the n nodes, and 



this uncertainty is measured by the entropy H(x), called 
object entropy. The search is successful when this entropy is 
removed. H(x) assumes the maximum value of logn (base 2 
is implied if not explicitly stated), when the object assumes 
uniform distribution (so-called maximum entropy 
distribution) [1].   
Information about the object is stored in tables in a 
distributed manner inside the network. The outcome of 
looking up table i is represented as a random variable yi. The 
entropy of yi, H(yi), called lookup entropy, is removed after 
the look-up. For a table with mi possible outcomes, i.e., a 
table with mi rows, the maximum value of H(yi) is logmi, 
which occurs when the outcome assumes uniform 
distribution.  
We model a search as a sequence of table lookups. 
Specifically, the search is carried out by a k-step sequence, 
represented by the corresponding outcomes of table lookups 
[y1, y2,… yk]. The search is successful when the cumulative 
entropy reduction by the table lookups equals H(x), the 
object entropy.  
Because of redundancy of information among tables, the 
entropy reduction at the ith step, ΔHi, is not equal to the 
lookup entropy H(yi), but needs to be computed from 
definition, taking into account information acquired in the 
previous history up to (i-1)th step. Thus, using the notation yi 
= [y1, y2,… yi], we have, 
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In the above, H(x|yi) is the conditional entropy of x, given yi; 
and I(x,yi|yi-1) is the mutual information between x and yi, 
given yi-1, which provides another definition of ΔHi.   

Adding entropy reductions along the search sequence, 
making use of (1), we have, 
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The last equality holds because the search succeeds at the kth 
step and x is determined, i.e., H(x|yk) = 0. Equation (2) 
essentially provides the condition for a search to succeed in 
terms of sum of entropy reductions at steps. We provide a 
bound on ΔHi in the following. 

Lemma 2.1  Upper bound on ΔHi: 

( ) logi iH H y mΔ ≤ ≤                                 (3) 

Proof: We expand H(x, yi|yi-1) in two different ways, 
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Rearranging terms around the second equality, we obtain,  

1 1( | ) ( | , )i i
i i iH H y y H y x y− −Δ = −  
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The first inequality in the above comes from the fact that 
entropy is nonnegative; the second inequality from the fact 
that conditioning can not increase entropy; and the last 
inequality from the fact that entropy is maximized by a 
uniform distribution (thus the value of logmi).  Q.E.D. 

Lemma 2.1 implies that the entropy reduction capacity of a 
table is maximized when the lookup outcomes are equally 
likely and there is no mutual information between the 
outcome of the current lookup and those of previous ones. 
Combing equations (2) and (3), we obtain the fundamental 
lower bounds on table sizes and number of steps as below. 

Proposition 2.2 The lookup table sizes and step numbers of a 
search sequence are lower-bounded by the following 
expression,  
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Corollary 2.3 If the lookup tables have a uniform size, m, 
then the number of steps, k, is lower-bounded by the 
following expression,  

( )
log
H xk

m
≥                                          (5) 

When the object distribution is uniform, which is the 
maximum entropy distribution, we have H(x) = logn, and we 
rewrite (5) as,    

log logk m n≥                                    (6) 

Then we can immediately draw the following conclusion: 

Corollary 2.4 If object distribution is uniformly random, then 
(a) to have constant table size, k must be O(logn); (b) to have 
constant step number, m must be O(n1/k); (c) it is impossible 
to have both constant table size and step number. 

The conclusions similar to the above are already known to 
researchers in areas of hierarchical routing, compact routing, 
P2P networks, etc. Let us look at a few examples. 
Information look-up schemes in P2P networks roughly 
correspond to case (a) in Corollary 2.4 (O(logn) steps, table 
size of O(logn)) [2][3][4]. Compact routing corresponds to 
case (b) (2 steps, table sizes of O(n1/2) and O(n1/2logn)) [9]. 
So is flat routing (1 step, table size of n). 

Corollary 2.4 recovers lower bounds established previously 
by combinatorial and graph theoretical arguments [7][8]. 
However, our results are derived from simple information 
theoretical arguments, with minimum assumption about 
particular routing/lookup models, thus are more universal. 
More importantly, our result in Proposition 2.2 is expressed 
in terms of object entropy, which goes beyond the bounds 
established by previous work and can deal with object 
popularity. We will comeback to the last point in Section 4. 
The lower bounds in Corollary 2.4 can be achieved simply 
by a tree-based hierarchical scheme if load balance is not 
required, which is of course not adequate for a practical 
system. In the next section we analyze the relationship 
between balancing the load and achieving the lower bounds. 



3. ACHIEVING LOWER BOUNDS AND 
BALANCING LOADS  
We can consider a search sequence in a network of n nodes 
as a process that narrows down the cardinality of the 
candidate set (defined as the subset of nodes that the object 
belongs) from n to 1. So the search sequence can be 
represented as a candidate set sequence [n1, n2,… nk], where 
ni is the cardinality of candidate set at step i and n0 = n, nk = 
1. Assuming maximum entropy (uniform) distribution, the 
entropy reduction at step i can be written as: ΔHi=logni-1–
logni. Therefore the bounds in Proposition 2.2 is achieved if 
and only if ΔHi=logmi , i.e.,  mi=ni-1/ni. This can be easily 
identified as a hierarchical scheme that partition the 
candidate set mi ways at level i, with number of nodes at 
level i being ni=n/m1 m2... mi-1. 

The problem with a traditional hierarchical scheme is, of 
course, imbalance of load. Here we provide some analysis. 
In the following we assume the table sizes are the same (m) 
for clarity, but the results can be easily extended to the case 
of uneven table sizes. Let vi be the number of varieties of 
tables at the ith level, each variety corresponding a particular 
prefix of the table or the outcomes of previous i-1 lookups. 
At the first/root level, there is no prefix, so v1=1. At the ith 
level, there are mi-1 varieties of tables, each corresponding to 
a particular i-1 prefix. So we have vi=mi-1. Since a query 
visits exactly one variety of tables at each level, we have a 
geometric load distribution across varieties: the load per 
variety at the ith level is: ri=r/mi-1, where r is the total query 
rate in the network. Note that the load-imbalance problem 
pertains to low-level tables, not to particular nodes unless 
they coincide with each other.  

The method to achieve load-balance, not surprisingly, is 
replication, which is used in P2P lookup schemes. The idea 
is to replicate low-level tables with high load. In tree-based 
P2P schemes such as Pastry [4], a lookup table can be 
considered as a k×m matrix. The ith row of the matrix 
corresponds to a table at the ith level in a hierarchy. A table 
at each level is available at every node. The ith level tables, 
which have mi-1 varieties, are replicated ci times, where 
ci=n/mi-1=mk-i+1. Thus the number of tables at each level, ti, 
is the same, since ti= vi×ci=n (given vi=mi-1). Now the load at 
a table of a certain variety at the ith level becomes: 
ri=r/ti=r/n. In this way, perfect load balance1, defined as 
load uniformly spread across all nodes, is achieved at the 
cost of inflating the table sizes at each node by a factor of m. 
A by-product of replication of tables is the flexibility to 
select neighbors and routes.  

Another popular lookup scheme, Chord [2], which is called 
ring-based, can in fact be shown to be equivalent to a tree-
based scheme with m=2. This is because the lookup table of 
a ring-based scheme can be obtained by a transformation of 
that of tree-based scheme, which is described in the 
following. Let us start with a tree-based scheme with its k×m 
lookup matrix. We first normalize the key to be looked up by 
subtracting it by the key representing the local node, which 
                                                                 
1 It is in the average sense and does not include fluctuations in node 

ownership of ID space [11]. 

makes all the lookups descend along the last column of the 
matrix to an appropriate row (assuming the last column 
corresponds to all zeros, which is the key of the local node). 
This normalization can be easily undone after the lookup. 
Now we have a normalized lookup table as shown below, 
where the number inside a bracket at level i indicates ni, the 
cardinality of the candidate set at that level: 
                          

[n/m][ n/m]…..........[ n/m] 
     /\ 

[n/m2] [n/m2]… ……[n/m2] 
                                       : 
                                       /\ 

[n/mk] [n/mk]… …….[n/mk] 

The above matrix can be considered as a candidate set 
representation of a lookup process, with the cardinality of 
each level m times smaller than that of the previous level, 
and that of last level being 1, indicating the search succeeds. 
Let us consider a tree-based scheme with m=2, k=logn, with 
a k×2 matrix normalized lookup table. We can stretch the 
matrix to a linear arrangement by embedding the row at level 
i into one of two partitions it belongs at level i-1, as shown 
below:  

[n/2[ n/22[n/24[..........[ n/2logn]]…]  

The above linear arrangement is nothing but the candidate 
set representation of Chord. Such embedding can be easily 
extended to arbitrary m values. To lookup a key, a tree-based 
scheme can use longest prefix match just like the greedy 
interval match in a ring-based scheme. Thus we have shown 
that there is a linear embedding of a matrix that transforms 
lookup tables from a tree-based scheme to a ring-based 
scheme, i.e., lookup tables of the two schemes provide the 
same information. In that sense the tree-based and ring 
based schemes are equivalent.    

An optimization on the above schemes is a P2P lookup 
scheme based on de Bruijn graphs [8], which has the benefit 
of achieving load balance without inflating table sizes. The 
idea is to reuse the table at a single level for different levels 
at different steps. In such a scheme, each node maintains a 
table of size m. The table serves as level 1 table for a local 
query, and simultaneously serves as level i table for a query 
that visits it at the ith step. Such table has vi=mk-1 varieties at 
all levels, each corresponding to a particular k-1 character 
prefix of the node. Since there are m nodes with the same k-1 
character prefix, we have ci=m, ti= vi×ci=n, and ri=r/ti=r/n, 
again obtaining perfect load balance and simultaneously 
achieving the bound in Corollary 2.4 (because equation (6) is 
satisfied here).     

4. INFORMATION LOOKUP AND 
DATA COMPRSESSION/CODING  
In this section, we describe the connection between data 
compression and coding in information theory and 
information lookup and replication based on popularity. The 
motivation is to place information in such way that less 
number of steps is required for more popular objects. 
Basically we are faced with an optimization problem: how to 



distribute information so that the expected number of steps to 
find an object is minimized.  

We can view the outcomes of a successful search sequence 
Yj = [y1, y2,… ykj] of length kj as a code for the location xj  of 
object j, since Yj uniquely determines xj. Let pj be the 
probability (popularity) that a random request is for the 
object j, m be size of lookup table (assuming uniform table 
size), then the optimization problem can be stated as,   

min [ ] j j
j

E k p=∑ k     subject to 1jk

j

m ≤∑         (7) 

In the above, the constraint is the Kraft’s inequality, which 
applies to any uniquely decodable code [1]. The optimization 
problem is the classical minimum description length (MDL) 
problem in source coding theory [1]. The solution to the 
optimization problem is the famous Shannon code, with code 
length of object j given by, 

1logj m
j

k
p

⎡ ⎤
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⎥
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                                    (8) 

In the above, a round-off operation is taken because the step 
number is an integer. Writing Hm(x) as the entropy of x with 
log base m, the expected code length satisfies,  

[ ] ( ) 1mE k H x<                                    (9)    

A simple, approximate method to implement such a Shannon 
code in a distributed manner in a network is to replicate 
information about an object at the step or code length 
prescribed by equation (8), i.e., as a log function of object 
popularity. The question is how to obtain object popularity. 
Methods have been proposed to estimate popularity of 
objects in a distributed manner, for example, by aggregating 
and disseminating object access frequencies or inter-arrival 
times [10]. Here we provide a simple protocol whose 
advantages will be shown later.  

Our protocol is based on P2P lookup schemes that have a 
matrix presentation of lookup tables, which covers tree-
based, ring-based, de-Bruijn-graph-based schemes as shown 
in the previous section. Recall that in such a P2P lookup 
scheme, a routing table at a node is arranged in a k×m 
matrix, whose ith row responds to a lookup at the ith step (in 
the case of de-Bruijn-graph-based scheme, the same row is 
reused). Our protocol to approximately implement a Shannon 
code in a network is summarized below.  

Protocol 4.1  Access frequency fj,i of object j at the ith step  
of the search is maintained during a time window. If i is the 
smallest step number such that  fj,i ≥ 1/m holds, then, the 
information about object j is replicated (if it is not already 
present) at this node at the ith row of the matrix.        

Justification: We first estimate the popularity p’j,i of object j 
with respect to a node that it visits at the ith step, then 
estimate the corresponding step number k’j,i at which the 
object is to be replicated. Here we refer the popularity to 
both the object and the step (table), because there is an issue 
of correctly estimating popularity, which we will discuss 

later. Now, according to the principle of conditional 
probability we have,  

1
, ,' '( i

j i j ip f p y −=  

In the above, fj,i is an estimate of the probability of querying 
object j conditioned on the fact the object has a prefix of yi-1. 
The probability of object having a prefix of yi-1, p’(yi-1), can 
be estimated as, assuming equally likely prefixes, p’(yi-1)= 
1/mi-1. Given fj,i ≥ 1/m, so we have,  
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According to the protocol, the information about object j is 
replicated at the smallest i at which the condition fj,i ≥ 1/m is 
satisfied. So Protocol 4.1 guarantees that the number of steps 
to locate the object is no larger than that prescribed by 
equation (8). Also, the fact that replication occurs at the 
smallest i that satisfies the replication condition prevents the 
query continuing downstream to visit nodes with larger i 
values (number of steps). Therefore there is no double 
counting of visit frequencies.  

Protocol 4.1 has three advantages   First, the protocol is very 
simple, and requires minimal change to the existing P2P 
lookup schemes. Second, object popularity is estimated 
strictly locally with no requirement for message exchange, 
saving a great deal of communications bandwidth. Third, 
perhaps most importantly, the protocol provides the correct 
way to estimate popularity of objects with respect to tables. 
There are two kinds of popularity: global (perceived by the 
network) and local (perceived by the individual nodes); and 
they are obviously not equivalent. Some objects are popular 
to certain nodes but not to others. The correct way to 
estimate the popularity of an object, which is used by 
Protocol 4.1, should be based on the local perception. As an 
example, an object can be globally unpopular, but is queried 
more than 1/m percentage of time at a particular node with 
esoteric taste. According to Protocol 4.1, the information of 
this object is replicated at the local level, but would not be 
replicated if global popularity is the criterion.  

The cost of Protocol 4.1 is at most doubling the table sizes. 
The reason is that at most m objects with visit frequency of 
at least 1/m can be replicated at each row of size m.  

The benefit of Protocol 4.1 is a significant reduction in 
expected number of steps to locate an object. In addition, the 
number of steps in the worst case is the same as that of the 
base P2P scheme. This is different from a standard Shannon 
code where the worst case code length (for unpopular 
objects) can be very large. Quantitatively, suppose we have 
m0 objects with popularity of at least 1/m, m1 objects with 
popularity of at least 1/m2, etc. The expected number of steps 
E[k] can be computed as, 
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In the trivial case of m objects, each having a popularity of 
1/m, the expected number of steps is zero, since they are 
replicated at the local level. In other words, depending on the 
popularity distribution of objects, Protocol 4.1 can reduce the 
expected number of steps to an arbitrarily small value.   

5. CONCLUSION AND FUTURE WORK 
In this paper, we have shown the connection between 
information theory and distributed information discovery, 
and demonstrated some preliminary results profited from 
such a connection. We believe much more can be 
accomplished by further exploiting the connection. Our 
future work will be on the following line of questioning. 
Protocol 4.1 corresponds to a source code in information 
theory. One naturally would ask: In the context of distributed 
information discovery, what corresponds to a channel code? 
Do we have a separation theorem of source and channel 
codes? How about rate distortion theory? What is the 
connection with network coding? etc. 
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APPENDIX 

BASIC CONCEPTS IN INFORMATION 
THEORY 
In information theory, the uncertainty about a discrete 
random variable x with alphabet X is measured by its entropy 
H(x), defined as,  

( ) ( ) log ( )
x X

H x p x p x
∈

= −∑                 

The uncertainty about x given another random variable y 
with alphabet Y is measured by the conditional entropy 
H(x|y), defined as (p(x,y) and p(x|y) are joint and conditional 
probabilities, respectively), 

,

( | ) ( , ) log ( | )
x X y Y

H x y p x y p x y
∈ ∈

= − ∑  

The uncertainty about two random variables x and y is 
measured by the joint entropy H(x,y), defined as, 

,

( | ) ( , ) log ( , )
x X y Y

H x y p x y p x y
∈ ∈

= − ∑  

The reduction in uncertainty of x due to the knowledge of y 
is measured by the mutual information I(x;y), defined as 
(with multiple equivalent definitions),  

( ; ) ( ) ( | ) ( ) ( | )I x y H x H x y H y H y x= − = −  

( ) ( ) ( , )H x H y H x y= + −
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