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ABSTRACT

We consider I users sending elastic traffic into a Service
Provider’s (SP’s) network. Each user has a contract to
transmit data at a nominal rate. However, a user is free
to transmit at a higher rate if she wishes.

For each user, we assume a realistic traffic model. A user
alternates between two phases over time. In the limited data
phase, a user’s transmission rate is capped at some value
below her contracted rate. This happens because the user
does not have enough data to send. In the unlimited data
phase, a user has enough data to sustain any transmission
rate.

At time t1, a (possibly empty) set S1 of users is in the
limited data phase. This leaves unutilized resources in the
network that ought to be exploited by others. At time t2 >

t1, users in S1 are back in the unlimited data phase. Now it
should be possible for these users to reclaim their contracted
rates at the expense of “overusers.”

We show that under certain conditions, a very simple pric-
ing scheme can ensure fair and efficient operation in the
above sense. In our scheme, a SP needs to maintain just
one single price for all the users.

Categories and Subject Descriptors

C.2.5 [local and Wide-Area Networks]: Access Schemes

General Terms

Design, Performance, Theory
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1. INTRODUCTIONANDRELATEDWORK
Pricing has been suggested as a mechanism to control con-

gestion and ensure fair and efficient operation of networks.
In much of the published literature ([3] [4] [6] [12] [13], [1]
[5]), elastic traffic is considered and the context of operation
is as follows. Each user of the network has a utility function
that quantifies the benefit that she derives from the network.
The utility function is a concave increasing function of the
rate at which the user can send data through the network.
The system objective is maximization of the sum of all users’
utility functions. The problem is to find the vector of users’
rates such that the system objective is realized.

The resulting constrained optimization problem can be
solved in a centralized manner if all the utility functions

were known. In [3], Kelly proposed a decentralized method
to arrive at the system-optimal rates. In this method, the
network declares prices, and each user individually solves
the problem of maximizing her net benefit or net utility,
which is her utility minus the total cost paid to the network.
He shows that there exists a vector of prices such that the
vector of individually optimal rates arrived at by the users
is, indeed, the system-optimal rate vector.

Several authors have pointed out that it is enough to work
under the assumption of direct revelation, in which the users’
utility functions are revealed to a central controlling author-
ity ([7], [2]). Accordingly, we assume in this paper that
users’ utility functions are known to the central authority
(the SP) which can then use this knowledge to design ap-
propriate prices. It will turn out that the complete utility
function need not be known; actually, far less knowledge suf-
fices — only the derivative of the utility function at a single
point is enough. Further, [8] mentions that prices are used
in two kinds of problems: one in which the objective is to
promote fair and efficient resource sharing, and another in
which the objective is maximization of the revenue earned
by the central authority. As in [8], our objective in this pa-
per is the former, viz., fair and efficient sharing of a network;
we do not consider the problem of revenue maximization.

The published literature, however, tacitly assumes an infi-
nite data model. Every source is assumed to have an infinite
backlog of data. The implication is that a source can send
traffic at any rate (obtained from the solution to the indi-
vidual optimization problem) continuously — there is never
a dearth of data. In practice, of course, sources will occa-
sionally run out of data. We consider a finite data model,
in which, occasionally, a source does not have enough data
to send. Therefore, a source may not be able to sustain a
data rate that is suitable for a fair and efficient operation of
the system.

Further, in practice, users have contracts with the SP that
specify the rates at which they can send traffic into the net-
work. We are interested in devising a scheme of operation
such that any slack caused by a user who is sending traffic
at a rate lower than her contracted rate—referred to as an
“underuser” henceforth—can be utilized by others. Corre-
spondingly, a user with plenty of data available is referred to
as an “overuser” because she can send data at a rate higher
than her contracted rate.

We also believe that one must have congestion-dependent
and user-dependent pricing. If the network is not congested,
then the price should remain low, so that users with excess
data can utilize the network. But when the network becomes



congested, the price should not increase equally for all users;
rather, those users who have exceeded their contracted rates
and have caused congestion should be charged heavily, while
those who are compliant should be charged at no more than
their nominal rates. However, even though our framework
allows different prices for different users, our analysis shows
that under some conditions that are easily satisfied, a single
price for all users suffices. This is attractive, because the
management problem of maintaining prices for a possibly
large number of users is solved very simply.

We are interested in ensuring that network operation is
characterized by the following.

• When some users are underusers because of limited
available data, it should be possible for others to in-
crease their rates so as to utilize the slack. Does there
exist a pricing scheme such that users with plenty of
data available are encouraged to become overusers?
This means that in this situation, these users’ net util-
ities should be maximized at values higher than the
corresponding contracted rates.

• Later, when underusers wish to increase their rates be-
cause they have more data to send, they should have
the incentive to do so and overusers should be encour-
aged to back down. Does their exist a pricing scheme
such that this happens? Again, this means that the
users’ net utility values should be maximized at the
appropriate points.

Summarizing, our approach is different from that in the
literature in the following respects: (a) finite data model,
(b) congestion-dependent as well as user-dependent pricing
and (c) fair and efficient network operation in the above
sense.

In [9], [11] and [10], the authors consider priority queu-
ing to provide differentiated services to a mix of elastic and
real-time traffic. Users choose the priority class to which
their traffic belongs. Higher priority traffic experiences bet-
ter service but its price is higher. Game-theoretic analysis is
used to investigate whether a system equilibrium exists. [9]
also considers how the network operator can set prices such
that revenue is maximized at equilibrium. In our work, we
do not have multiple classes and we do not consider prior-
ity queuing. There is only one traffic class, carrying elastic
traffic.

2. MODEL

2.1 Utility function
We consider a network which is shared among I users,

where I is a given and fixed integer. We use a fluid model
for traffic. User i injects fluid at rate λi into the network.
We emphasize that this is a variable, because the user may
not be able to generate traffic at a constant rate throughout.

User i has a contract to send traffic at rate γi, and the
price charged by the SP is πi; this is the total price, not the
price per unit flow. When λi > γi, we call (λi − γi) the
“excess rate.” The utility of user i is a concave strictly in-
creasing function of the rate of user i traffic actually carried
from the source to destination node. If λi is the flow i injects
at source node and some part of i’s traffic is dropped, then
µi ≤ λi is the amount carried to the destination node. The
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Figure 1: An example congestion-penalty function.

The domain is λi ∈ [γi,∞), i.e., the domain corre-

sponds to excess ≥ 0.

utility for user i is Ui(µi[λi]). Since carried traffic (µi) de-
pends upon the injected traffic (λi), we denote µi by µi[λi]
to emphasize this dependence.

2.2 Multiplicative congestionpenalty function
The pricing scheme is characterized by the following fea-

tures. Underusers are charged less than their contracted
price. This is motivated by the goal of usage-based pricing.
If a user is sending at a rate which is a fraction f of her con-
tracted value, the charge is correspondingly a fraction f of
her contracted charge. However, overusers are charged dif-
ferently, depending upon whether the network is congested
or not.

When the network is not congested, overusers are charged
their contracted prices. The rationale for this is that as long
as there is no congestion, users should be permitted to go
above their contracted rates at no extra cost.

However, when the network is congested, overusers are
charged heavily, because the overusers are themselves re-
sponsible for the congestion. If overuser i is sending at a
rate λi > γi, then the price charged is πiPi(λi − γi), where
Pi(.) is a multiplicative congestion-penalty function, and it
takes the excess rate (λi − γi) as its argument. Pi(λi − γi)
is a convex increasing function of excess rate. Because the
congestion-penalty function appears only when the network
is congested and user i is an overuser, we set Pi(0) = 1. An
example is shown in Figure 1.

In Figure 2, we give a schematic representation of the
pricing scheme. We plot the price paid by user i versus her
traffic rate λi. There are two curves: one for an uncongested
network and the other for a congested network. As long as
λi < γi, i is an underuser and is therefore charged less than
πi. When λi increases beyond γi, the price is maintained
at πi for the uncongested network; but for the congested
network, the multiplicative congestion-penalty function ap-
pears, the price is πiPi(λi − γi) and the price paid rises
steeply.

2.3 Disutility function
Further, when user i is not able to send traffic at her con-

tracted rate γi, i.e., the rate λi is less than γi, we consider a
“disutility” for user i. This measures the amount of dissatis-
faction that user i suffers from at not being able to generate
sufficient traffic. (γi − λi) is referred to as the “shortfall”
of user i, and the disutility function is a convex increasing
function of shortfall. Further, the disutility function is de-
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Figure 2: Schematic showing how the price charged

by the SP changes, depending on both the rate at

which a user sends traffic and the state of congestion

of the network.

fined to be zero when λi ≥ γi. See Figure 3 for an example.

As mentioned in earlier sections, one of our objectives is
to design a scheme in which underusers have the incentive
to increase their rates of transmission when they have suf-
ficient data to send. The disutility function is crucial in
making this possible. For example, consider a user i who
is below contracted rate and assume that the other users
are injecting traffic in such a manner that the network is
already full. Now when user i wants to go to her contracted
rate, the net utility for her is Ui(µi[λi]) −

`

λi

γi

´

πi. Utility is

a function of the carried traffic. In this case, utility of the
carried traffic is less than the utility of injected traffic. But,
the price charged is proportional to the injected traffic. To
let user i increase flow, utility function should be “strong”
enough to continuously give positive net utilities to the user
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Figure 3: An example disutility function. The func-

tion need not be continuous at λi = γi. Disutility is

zero for λi ≥ γi, and convex increasing in shortfall

when the shortfall is strictly positive.

till she reaches her contracted rate. A disutility function is
important at this stage.

Furthermore, it can be shown mathematically that if we
do not include a disutility function, the prices for all users
do not remain equal and they need to be continuously mod-
ified as the network evolves. Also, these new prices have
to conveyed back to the users as and when they get altered
failing which the network may not behave in the way we
want it to.

2.4 Net utility function
The “net utility” of user i is defined to be her utility minus

disutility (which may be zero) minus the price paid to the
SP.

2.5 Fair and Efficient Network Sharing
Our intention is to understand how the prices πi, 1 ≤ i ≤

I, can be set, so that the system behavior is “desirable” in
the following sense. Let L and H denote the set of under-
users and overusers, respectively.

When the resource is not congested because users in L
are below their contracted rates, other users in the comple-
ment Lc are not prevented from going above their contracted
rates. This is desirable so that the resource is fully utilized.

Suppose that the resource is fully utilized and, further,
that there is no congestion. Now if users in L wish to in-
crease their rates and go up to their contracted values, they
should have the incentive to do that; at the same time, users
in H should have the incentive to reduce their rates. This
is desirable so that users in L can reclaim their share of the
network resources from users in H when they wish to do so.

3. ANALYSIS
In this section, we explore how the prices πi, 1 ≤ i ≤ I,

can be set so that desirable behavior is enforced. Intuitively,
if these prices are too low, users cannot be prevented from
transmitting above their contracted rates even if there is
congestion in the network. Also, prices cannot be too high
because then users will not have incentive to increase flows
even to their contracted rates. Clearly, there is an upper
and a lower bound on these prices. We would like to com-
pute these bounds. We focus on user i and assume that the
transmission rates λj of the other users j, 1 ≤ j ≤ I, j 6= i,
are given and fixed.

Let us consider a network which has N nodes and L links.
The network is characterized by the node link incidence ma-
trix A and a set of flow vectors, say y(i)’s, each associated
with a user i. An element y(i)(l), l = {1, 2, . . . , L} is the
amount of user i’s traffic carried on link l.

Suppose that there is a user i who injects λi amount of
traffic at source node si. Let us call the destination node
for this user as node zi. There is a vector d(i) of size N × 1
corresponding to each user i such that an element d(i)(n),
n = {1, 2, . . . , N}, gives amount of i’s traffic dropped at
node n. The flow conservation equation for user i is

Ay
(i) + d

(i) = v
(i) (1)

where v(i)(si) = λi, v(i)(zi) = −µi[λi] and all other elements

are 0, i.e., v(i) = (00 . . . λi0 . . . − µi[λi] 0 . . .)t. µi[.] denotes
the function which gives the traffic delivered to the destina-
tion node. Since some traffic may be dropped, µi[λi] ≤ λi.
Flow conservation (Equation 1) should hold for all users.



Also, the link capacity constraints are
X

i={1,2,...,I}

y
(i)(l) ≤ Cl, ∀ l = {1, 2, . . . , L} (2)

where Cl is the capacity of lth link.
One question which may arise at this point is; given the

injected traffic of all users (λi’s), how do we know their flow

vectors (y(i)’s), vector of drops (d(i)’s) and the carried traffic

(µi[λi]’s)? There can be multiple y(i)’s, d(i)’s and µi[λi]’s
which satisfy the flow conservation (Equation 1) and capac-
ity constraint equations (Equation 2 ). To get a unique value

of y(i)’s, d(i)’s and µi[λi]’s, the network can perform some
kind of an optimization subject to the flow conservation and
capacity constraints. The optimization can be maximization
of sum of utility functions of all users, maximization of the
sum of carried traffic of all users, maximization of the net
revenue earned by the SP to name a few.

Now suppose λj , j ∈ I \ {i}, are given and fixed. We
define a congestion threshold cti for user i as the maximum
injected traffic λi till which i’s traffic is not dropped in the
network. From user i’s perspective, three possibilities arise:
(a) the network gets congested after the user is above her
contracted rate, i.e., cti > γi, (b) there is congestion in
the network as soon as i tries to exceed contracted rate, i.e.,
cti = γi and (c) even before user reaches her contracted rate,
the network becomes congested, i.e., cti < γi. We consider
these three cases one by one in the following paragraphs.

The proof-outlines of the following results are provided
in the Appendix. In all cases, the proofs are based on the
definition of net utility for that case, elementary calculus
and simple algebra.

3.1 Congestion threshold above contracted rate
In this section, we consider a system where cti > γi. This

means that even if user i transmits at her contracted rate,
there will be some spare capacity left in the network. In
such a situation, it is desirable to let user i transmit at cti,
so that the network is fully utilized, but without causing
congestion. We wish to find out how to set the price πi such
that this goal is achieved. The net utility function for user
i is denoted as NUi. Following are the three different cases
which can arise depending upon the flow rate of user i.

• When λi < γi,

NUi = Ui(λi) − Di(γi − λi) −
“λi

γi

”

πi

• When γi ≤ λi ≤ cti,

NUi = Ui(λi) − πi

• When λi > cti,

NUi = Ui(µi[λi]) − πiPi(λi − γi)

If dNUi

dλi
> 0, then i has incentive to increase her rate beyond

λi. Corresponding conclusions apply when the derivative at
λi is negative or zero.

Lemma 3.1. When the total traffic from users j ∈ {1, 2, ..

., I}, j 6= i, is such that even if user i transmits at γi, there
is some spare capacity left in the network, NUi is maximized

at the point λ∗
i = cti if and only if the price πi satisfies

U ′
i(µi[cti + δ∗])µ′

i[cti + δ∗]

P ′
i (cti + δ∗ − γi)

≤ πi ≤ γi(U
′
i(γi) + lim

x→0+
D

′
i(x))

(3)

where δ∗ = arg maxδ>0

` U′

i
(µi[cti+δ])µ′

i
[cti+δ]

P ′

i
(cti+δ−γi)

´

. µi[cti + δ∗] is

user i’s flow received at the destination node when (cti + δ∗)
is the flow injected at the source node. Further, NUi is an
increasing function of λi to the left of λ∗

i and a decreasing
function of λi to the right of λ∗

i .

Here, limx→0+ D′
i(x) indicates the right-hand limit of D′

i(x)
as x goes to zero, i.e., as x goes to zero while remaining
positive always. This is necessitated by the definition of the
disutility function D(x) with x denoting the shortfall; as
Figure 3 showed, D(x) need not be continuous at x = 0.

3.2 Congestion threshold equal to contracted
rate

Here we have cti = γi. This means, as soon as user i tries
to go above contracted rate, the network is over-full. Our
objective here is to set the price such that user has incentive
only to go up to her contracted rate. The net utility function
for different situations in this case are defined as follows.

• When λi < γi,

NUi = Ui(λi) − Di(γi − λi) −
“λi

γi

”

πi

• When λi ≥ γi,

NUi = Ui(µi[λi]) − πiPi(λi − γi)

Lemma 3.2. When the total traffic from users j ∈ {1, 2, ..

., I}, j 6= i, is such that, when user i transmits at γi the
network is full, NUi is maximized at the point λ∗

i = γi if
and only if price πi satisfies

U ′
i(µi[γi + δ∗])µ′

i[γi + δ∗]

P ′
i (δ

∗)
≤ πi ≤ γi(U

′
i(γi) + lim

x→0+
D

′
i(x))

(4)

where δ∗ = arg maxδ>0

` U′

i
(µi[γi+δ])µ′

i
[γi+δ]

P ′

i
(δ)

´

. µi[γi + δ∗] is

the amount of user i’s flow received at the destination node
when (γi + δ∗) is the flow injected at the source node. Fur-
ther, NUi is an increasing function of λi to the left of λ∗

i

and a decreasing function of λi to the right of λ∗
i .

3.3 Congestion thresholdbelowcontracted rate
Because the congestion threshold is below the contracted

rate, i does not even have enough room to go up to her
contracted rate without causing congestion in the network.
Nevertheless, it is desirable that the user increase her rate
to the “rightful” share γi while other users back down. We
can write the expressions for net utility in different cases as

• When λi ≤ cti,

NUi = Ui(λi) − Di(γi − λi) −
“λi

γi

”

πi

• When cti < λi < γi,

NUi = Ui(µi[λi]) − Di(γi − λi) −
“λi

γi

”

πi



• When λi ≥ γi,

NUi = Ui(µi[λi]) − πiPi(λi − γi)

Lemma 3.3. When the total traffic from users j ∈ {1, 2, ..

., I}, j 6= i, is such that even if user i transmits at a rate
less than γi, the network is congested, NUi is maximized at
the point λ∗

i = γi if and only if price πi satisfies

U ′
i(µi[γi + δ∗])µ′

i[γi + δ∗]

P ′
i (δ

∗)
≤ πi ≤ min(γiηi, γiζi) (5)

where ηi = U ′
i(cti) + D′

i(γi − cti) and ζi = U ′
i(µi[cti +

δ+])µ′
i[cti + δ+] + D′

i(γi − cti − δ+). µi[γi + δ∗] is amount
of user i’s flow received at the destination node when (γi +
δ∗) is the flow injected at source node. δ+ is defined as
arg min0≤δ≤(γi−cti) γi

`

U ′
i(µi[cti + δ])µ′

i[cti + δ] + D′
i(γi −

cti − δ)
´

and δ∗ = arg maxδ>0

` U′

i
(µi[γi+δ])µ′

i
[γi+δ]

P ′

i
(δ)

´

. Fur-

ther, NUi is an increasing function of λi to the left of λ∗
i

and a decreasing funct in of λi to the right of λ∗
i .

Remark: The lower bounds in Equations 3, 4 and 5 are
the ratio of user i’s marginal utility and marginal penalty
incurred at the carried traffic (just above λ∗

i ) multiplied by
the marginal carried traffic. If marginal utility or marginal
carried traffic in going above λ∗

i is high and marginal penalty
is low, then the user is already inclined to increase her rate.
To prevent this from happening, a high price must be set.
Hence, in this situation, the lower bound on πi is large. On
the other hand, if marginal penalty is high and marginal
utility and marginal carried traffic are low, the user is al-
ready disinclined to increase her rate. Even a small price is
sufficient in this case, and the lower bound on πi is small.

Now let us focus our attention on the upper bounds. Treat-
ing

`

πi

γi

´

as the effective “price per unit bandwidth”, we see

that the upper bound says that: Price per unit bandwidth
should be less than the sum of user i’s marginal utility when
transmitting at the contracted rate and the marginal disu-
tility at a positive shortfall. If the unit price exceeds the
sum above, there is no motivation for the user to increase
the flow up to even the contracted value.

Having obtained the three ranges of πi, we would like to
know what the intersection of the three ranges looks like.
The significance of this is that it may be possible to choose
a value of πi that will work (i.e., lead to desirable behavior)
irrespective of whether the congestion threshold is above,
below or equal to contracted rate.

Lemma 3.4. We can set πi =
U′

i
(0)

limx→0+ P ′

i
(x)

irrespective of

the congestion state of the network, if we choose congestion
penalty function such that

lim
x→0+

P
′
i (x) ≥

U ′
i(0)

γi limx→0+ D′
i(x)

(6)

Proof. Let us consider Equation 3 first. Owing to the con-
cave increasing nature of utility function and convex increas-
ing nature of congestion penalty function,

U
′
i(µi[cti + δ

∗]) ≤ U
′
i(0)

P
′
i (cti + δ

∗ − γi) ≥ lim
x→0+

P
′
i (x)

Since δ∗ is a positive quantity,

µi[cti + δ
∗] ≤ cti + δ

∗

µ
′
i[cti + δ

∗] ≤ 1

From these observations, we can infer that

U ′
i(µi[cti + δ∗])µ′

i[cti + δ∗]

P ′
i (cti + δ∗ − γi)

≤
U ′

i(0)

limx→0+ P ′
i (x)

Following exactly similar arguments, we can show that the
lower bounds of Equations 4 and 5 are also never more than

U′

i
(0)

limx→0+ P ′

i
(x)

.

Now, if we choose congestion penalty function according
to Equation 6,

γi lim
x→0+

D
′
i(x) ≥

U ′
i(0)

limx→0+ P ′
i (x)

γi

“

U
′
i(γi) + lim

x→0+
D

′
i(x)

”

≥
U ′

i(0)

limx→0+ P ′
i (x)

The consequence is, upper bounds in Equations 3 and 4 are

always to the right of
U′

i
(0)

limx→0+ P ′

i
(x)

. Now consider Equa-

tion 5. In the context of this equation, δ+ ≥ 0. So,

D
′
i(γi − cti) ≥ D

′
i(γi − cti − δ

+) ≥ lim
x→0+

D
′
i(x)

If congestion penalty is in accord with Equation 6,

γiD
′
i(γi − cti − δ

+) ≥
U ′

i(0)

limx→0+ P ′
i (x)

and γiD
′
i(γi − cti) ≥

U ′
i(0)

limx→0+ P ′
i (x)

So, even the upper bound of Equation 5 is never less than
U′

i
(0)

limx→0+ P ′

i
(x)

. Thus, the intersection interval for each user i

is non-empty, and πi =
U′

i
(0)

limx→0+ P ′

i
(x)

lies within this inter-

section interval.
2

Thus, if limx→0+ P ′
i (x) satisfies (6), it is possible to set πi

appropriately without knowing cti. This is clearly advanta-
geous.

Thus, the SP can pick one price which lies within the
intersection of the three ranges. Next we explore whether
there is one price which lies within the intersection of the
three ranges of all users sharing the network.

Lemma 3.5. If we choose congestion penalty functions such
that

lim
x→0+

P
′
i (x) ≥

maxk U ′
k(0)

mink γk mink limx→0+ D′
k(x)

, ∀i ∈ {1, 2, . . . , I}

(7)
where the maximization and minimization are done over
k = {1, 2, ..., I}, one single value of price for all users, ir-
respective of the network behavior, is sufficient to enforce
desirable system operation. That value of price is

πi =
maxk U ′

k(0)

mink limx→0+ P ′
k(x)

, ∀ i ∈ {1, 2, . . . , I} (8)

Proof. We have already shown that for all users i = {1, 2, ..., I},

the lower bound on πi can attain a maximum of
U′

i
(0)

limx→0+ P ′

i
(x)

only. And,

U ′
i(0)

limx→0+ P ′
i (x)

≤
maxk U ′

k(0)

mink limx→0+ P ′
k(x)

So if πi’s are chosen according to Equation 8, for all users,
πi’s will exceed their respective lower limits.
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Figure 4: Network considered for the experiment.

Table 1: Source Node, Destination Node, Con-

tracted rate, Utility, Disutility and Penalty func-

tions of the four users

si zi γi U(x) D(x) P (x)
User 1 1 3 1.0 x ex 1 + x2 + 2x

User 2 1 4 1.5 log(1 + x) x ex

User 3 3 2 2.0 x x2 + 2x 1 + x

User 4 3 4 1.8 1 − e−x (1 + x)3 ex

If congestion penalty satisfies Equation 7, then

min
k

γk min
k

lim
x→0+

D
′
k(x) ≥

maxk U ′
k(0)

mink limx→0+ P ′
k(x)

γi lim
x→0+

D
′
i(x) ≥

maxk U ′
k(0)

mink limx→0+ P ′
k(x)

Therefore, the upper bound of πi for all i = {1, 2, ..., I} is

bigger than
maxk U′

k
(0)

mink limx→0+ P ′

k
(x)

thereby letting us choose πi

according to Equation 8.
2

The conclusion is that although all users are only inter-
ested in maximizing their net benefits, one price — the same
for all users — compels them to behave in the system opti-
mal manner also.

4. SIMULATION
In this section we present the results of a MATLAB simu-

lation. In this experiment, 4 users share the network shown
in Figure 4. We study how the rates of these users evolve
when they alternate between limited and unlimited data
phases.

Each user is associated with one flow. We use the words
flow and user interchangeably. The source/destination nodes,
contracted rates and utility, disutility and congestion penalty
functions for these users are as tabulated in Table 1. The
first observation is that all congestion penalty functions obey
Equation 7. So, a contracted price of 1 unit (Equation 8) is
applicable to all users.

The SP conveys the contracted price and penalty function
to the users. Also, whether the network is congested or not

Table 2: Initial operating point of the network

Link 1 Link 2 Link 3 Link 4 Link 5
User 1 1.2 1.2 0.8 0.8 0.0
User 2 0.0 0.0 1.0 0.0 0.0
User 3 1.8 0.0 0.0 0.0 1.8
User 4 0.0 0.0 1.5 0.0 1.5

comes as a feedback from the SP to the users.1 Once the
SP knows the set of underusers and users with unlimited
data, he computes the operating point of the network in
terms of the flow vectors y(i)’s, the vector of drops d(i)’s and
the carried traffics µi[λi]’s of all users. For this experiment
we assume the optimization problem for the SP to be the
following.

max
y(i),d(i),µi[λi],∀i∈I

X

i∈I

wiµi[λi] (9)

subject to Ay
(i) + d

(i) = v
(i)

, ∀ i ∈ I
X

i∈I

y
(i)(l) ≤ Cl, ∀ l ∈ L

µi[λi] ≤ λi, ∀ i ∈ I

y
(i)

, d
(i)

, µi[λi] ≥ 0, ∀ i ∈ I

where wi is a weight/preference associated with user i. In
our example all users have equal preference. The SP can
find out y(i)’s, d(i)’s and µi[λi]’s by solving this problem.

Now if at a later point of time, the set of underusers
changes — because some underusers now have enough data
or a new group of users are now data-limited — the SP re-
routes the flows by re-solving the maximization problem in
order to maximally utilize the network.

At the start of the simulation, we assume that the initial
data rates are λ = [2.0 1.0 1.8 1.5], i.e., user 1’s data rate is
2.0, user 2’s data rate is 1.0 and likewise. So, to begin with
user 1 is an overuser and users 2, 3 and 4 are underusers.
The SP routes the initial flows as shown in Table 2. There
are no drops in the network at this point.

Now suppose that all users have unlimited data to sus-
tain any rate. At each time instant, they try to maximize
their respective net utilities. At each iteration of the sim-
ulation, all users perturb their present data rates and com-
pute new net utilities at these perturbed rates. If the net
utility increases on increasing rate, users increase their flow
rates in the next iteration; similarly, if the net utility in-
creases on decreasing rate, users decrease rates in the next
iteration. For this MATLAB experiment, we assume the
step-size to be 0.01, equal for all, i.e., at each iteration λi’s
increase/decrease by 0.01 units or stay put.

On running the simulation, we find that within 100 it-
erations, all users converge to their respective contracted
rates in the process of maximizing their net utilities. This
is because the links are provisioned such that the network
has just enough capacity to accommodate all users at their
respective contracted rates. Figure 5 shows the simulation
results and routes taken by the flows are tabulated in Ta-
ble 3.

1In this paper, we make the simplifying assumption that all
feedback from the network to the users is available instan-
taneously. In practice, signalling is necessary.
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Figure 5: Schematic showing the convergence of

data rates of all flows to their respective contracted

rates.

Table 3: Routes of the flows after 100 iterations
Link 1 Link 2 Link 3 Link 4 Link 5

User 1 1.00 1.00 0.00 0.00 0.00
User 2 0.00 0.00 1.49 0.00 0.00
User 3 1.99 0.00 0.00 0.00 1.99
User 4 0.00 0.00 1.79 0.00 1.79

Next, suppose that after 250 iterations, user 1 is data lim-
ited to a flow of 0.1 units and user 4 is data limited to 0.2
units. Now we want users 2 and 3 to go above their con-
tracted rates and use the spare capacity left by underusers.
From the routes used till now, we can say that user 2 can
potentially increase up to C3 − λ4 = 3.1 and user 3 can in-
crease up to min(C5 − λ4, C1 − λ1) = min(3.6, 2.9) = 2.9
units. In the simulation, we cap the flow rates of users 1
and 4 to 0.1 and 0.2 respectively and let users 2 and 3 vary
rates to increase their net utilities as described earlier. Fig-
ure 6 shows that by the 400th iteration, both users 2 and 3
increase flow to 3 units.

When we investigate the routes after 400 iterations (Ta-
ble 4), we see that SP re-routes flow 1 through links 3 and
4. This allows user 2 to go up to C3 −λ1 −λ4 = 3 units and
user 3 to go up to C1 = 3 units.

At the 500th iteration, suppose that users 1 and 4 are
back in the unlimited data phase. From this time onwards,
we again let all users vary their rates. The pricing scheme
compels overusers to back down, so that users 1 and 4 regain
their shares. Figure 7 shows the simulation results. By the
end of the 650th iteration, all users converge back to their
individual contracted rates.

This experiment illustrates that it is possible to assign
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Figure 6: Schematic showing how users with enough

data are encouraged to become overusers to utilize

the spare network capacity.

Table 4: Routes of the flows after 400 iterations
Link 1 Link 2 Link 3 Link 4 Link 5

User 1 0.0 0.0 0.1 0.1 0.0
User 2 0.0 0.0 3.0 0.0 0.0
User 3 3.0 0.0 0.0 0.0 3.0
User 4 0.0 0.0 0.2 0.0 0.2

prices once and for all at the beginning, such that this price
vector ensures fair and efficient network sharing no matter
what the sets of underusers and overusers may be. Also, the
SP need not store I different prices for the I users.

5. STABILITY
When no user is constrained by limited amounts of avail-

able data, what is the rate vector that the collection of users
converges to? If the increase in rate of any user causes a non-
zero drop in the network, i.e., due to increase in λi for any
i, there is a k = {1, 2, . . . , N} and a j = {1, 2, . . . , I}, such

that d(j)(k) > 0, we say that the network has no spare
capacity. When prices are set according to Equation 8,
λ∗ = (λ∗

1, λ
∗
2, . . . , λ

∗
I)

t is a Nash equilibrium if, λ∗
i ≥ γi

for all i = {1, 2, . . . , I} and there is no spare capacity in
the network. This can be seen as follows. Considering any
i ∈ {1, 2, . . . , I}, we find that the user is either at contracted
rate or already an overuser and the network is fully utilized.
Therefore, Lemma 3.1 or 3.2 applies. This means that user
i has no incentive to change her rate from λ∗

i , and this con-
clusion applies to all the users.

Hence, when prices are set in accordance with the condi-
tions, system stability is assured. Now to calculate this λ∗,
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Figure 7: Schematic showing how the overusers

come down to their contracted rates once under-

users are back with data.

the set of equations which characterizes this system of users
has to be solved. This system is as follows:

dλi

dt
= ǫisgn

“∂NUi(~λ)

∂λi

”

, ∀ i = {1, 2, . . . , I} (10)

where ǫi denotes the step size of user i and sgn(x) is the
function which is +1 if x > 0, −1 if x < 0 and 0 otherwise.
After solving the maximization problem (9), if the SP finds

that d(i)(k) > 0 for some k = {1, 2, . . . , N}, he infers that i

is above her congestion threshold cti.
We have

NUi(~λ) = Ui

`

λiI{λi≤cti} + µi[λi]I{λi>cti}

´

− Di(γi − λi)I{λi<γi} −
“λi

γi

”

πiI{λi≤γi}

− πiPi(λi − γi)I{λi>γi}I{λi>cti} (11)

where I{a≥b} is the indicator function which takes a value of
+1 if a ≥ b and 0 otherwise. I{λi>cti} can be evaluated de-
pending upon the feedback from the SP. λ∗ is an equilibrium
point iff

∂

∂λi

NUi(~λ)

˛

˛

˛

˛

λ=λ∗

= 0, ∀ i = {1, 2, . . . , I} (12)

Given an initial flow vector and the step sizes ǫi’s, we numer-
ically solve this system of coupled partial differential equa-
tions and find out the equilibrium point.

6. CONCLUSION
We considered sources that could occasionally be con-

strained by limited amounts of available data. Further, each
user has a contract with the SP, specifying the rate at which
she can send traffic into the network. We were interested in

a pricing scheme that would ensure fair and efficient sharing
of the network resources.

We introduced the idea of disutility for underusers and
noted that the disutility term encourages underusers to in-
crease their rates whenever they have sufficient data. We
presented simple necessary and sufficient conditions for set-
ting prices such that fair and efficient operation is possible
and observed that, under conditions that can be easily en-
sured, one price for all users can achieve this. The SP is not
required to store different prices for different users and keep
changing them dynamically depending upon the congestion
state of the network. A simple experiment in MATLAB
demonstrated the utility of our approach.

We recognize the following limitation of our work. We
have not explicitly considered the problem of revenue max-
imization for the SP. While our goals of fair and efficient
sharing of the network are natural, we would like to con-
sider the problem of explicit revenue maximization as well.
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APPENDIX

Proof of Lemma 3.1
Since congestion threshold is higher than the contracted

rate, there cannot be any congestion in the network as long
as λi < γi. So, the total flow injected by user i is completely
carried by the network thereby making µi = λi. The net
utility function for user i is:

NUi = Ui(λi) − Di(γi − λi) −
“λi

γi

”

πi

User i has incentive to increase her rate if and only if her
net utility increases with increase in λi. That is,

dNUi

dλi

≥ 0

U
′
i(λi) + D

′
i(γi − λi) −

“πi

γi

”

≥ 0

For NUi to keep increasing till user i reaches γi, it is suffi-
cient to have

πi ≤ γi(U
′
i(γi) + lim

x→0+
D

′
i(x))

This condition is also necessary because if πi > γi(U
′
i(γi) +

limx→0+ D′
i(x)), then there exists a λi < γi such that dNUi

dλi
<

0. This can be seen as follows. If πi = γi(U
′
i(γi)+limx→0+ D′

i(x))+
ǫ, where ǫ > 0, then πi

γi
= U ′

i(γi)+limx→0+ D′
i(x)+ ǫ

γi
. Now,

dNUi

dλi

˛

˛

˛

˛

λi↑γi

= −
ǫ

γi

When λi is sufficiently close to γi,
dNUi

dλi
becomes negative.

Thus, user i looses incentive to increase rate even before
reaching her contracted rate.

Since congestion threshold is above contracted rate, user
i should have incentive to increase her rate further till the
network is fully utilized, i.e., till λi is equal to cti. When
λi ∈ [γi, cti], NUi is simply Ui(λi)−πi which is an increasing
function of λi. So, user i will have no problem in increasing
λi further.

Once i shoots above cti, the network gets congested and
there is extra penalty. Therefore,

NUi = Ui(µi[λi]) − πiPi(λi − γi)

µi[λi] can be obtained numerically by solving the linear sys-
tem of flow conservation and capacity constraint equations,
given the injected traffic of all users. One observation to
make here is that µi[cti] = cti because, at λi = cti there
is no congestion. We can prove that as long as we choose
πi ≥ 0 and Pi(cti − γi) ≥ 1, the net utility for user i at a
rate just above cti is less than the net utility at cti. Since
Pi(x) is an convex increasing function of x, and Pi(0) = 1,
Pi(cti − γi) > 1. Apart from this, we want to ensure that
NUi decreases with λi when λi is greater than cti. For this
to happen,

dNUi

dλi

≤ 0

when λi > cti. Let λi = cti + δ, for some δ > 0. Then, by
definition

NUi = Ui(µi[cti + δ]) − πiPi(cti + δ − γi)

and we want dNUi

dδ
≤ 0. On simplification we get,

πi ≥
U ′

i(µi[cti + δ])µ′
i[cti + δ]

P ′
i (cti + δ − γi)

Because we want the lower bound to hold for every δ > 0, we
now take the supremum of the lower bound over all δ > 0.
Let us call value of δ which maximizes the RHS as δ∗ This
yields

πi ≥
U ′

i(µi[cti + δ∗])µ′
i[cti + δ∗]

P ′
i (cti + δ∗ − γi)

We have proved that the lower bound on πi is sufficient.
Necessity is shown as follows. Let ǫ > 0 be a given small

number. If we take
` U′

i
(µi[cti+δ∗])µ′

i
[cti+δ∗]

P ′

i
(cti+δ∗−γi)

− ǫ
´

as the lower

bound, then simple algebra shows that there exists a δ > 0
such that dNUi

dλi
> 0. This contradicts our requirement and

concludes the proof. 2

Proof of Lemma 3.2
There is no congestion in the network and no packets are

dropped unless user i overshoots her contracted rate. The
expression for net utility is,

NUi = Ui(λi) − Di(γi − λi) −
“λi

γi

”

πi

Following similar algebra as done in the proof of Lemma 3.1,
we can show that the necessary and sufficient condition for
user i to increase her rate up to γi is

πi ≤ γi(U
′
i(γi) + lim

x→0+
D

′
i(x))

Since congestion threshold is equal to the contracted rate,
once user i reaches her contracted rate, the network is full.
So, she should have no more incentive to increase rate any
further. From the definition of net utility function it is clear
that when πi ≥ 0 and Pi(0) ≥ 1, NUi at λi = γi is greater
than NUi at λi > γi. Since NUi should be decreasing with
λi once λi > γi,

d

dδ

“

Ui(µi[γi + δ]) − πiPi(δ)
”

≤ 0

This can be reduced to

πi ≥ max
δ≥0

“U ′
i(µi[γi + δ])µ′

i[γi + δ]

P ′
i (δ)

”

Let δ∗ be the value of δ that maximizes the RHS. Then

πi ≥
U ′

i(µi[γi + δ∗])µ′
i[γi + δ∗]

P ′
i (δ

∗)

This proves that the lower bound on πi is sufficient. The
necessity of the lower bound can be seen in exactly the same
way as done in the case of previous Lemma. 2

Proof of Lemma 3.3
Since congestion threshold is below contracted rate, user i

has room to increase her rate only up to cti without causing
congestion in the network. This is possible if,

d

dλi

„

Ui(λi) − Di(γi − λi) −
“λi

γi

”

πi

«

≥ 0

This NUi should not cease to increase till λi reaches cti. We
can simplify the above to get following sufficient condition
on πi.

πi ≤ γi

`

U
′
i(cti) + D

′
i(γi − cti)

´

(13)



Since cti < γi, we want i to increase her rate further up to
her rightful share of γi. So, for 0 ≤ δ ≤ (cti − γi) = ηi,

d

dδ

„

Ui(µi[cti + δ]) − Di(ηi − δ) −
“ cti + δ

γi

”

πi

«

≥ 0

which reduces to

πi ≤ min
0≤δ≤ηi

γi

“

U
′
i(µi[cti + δ])µ′

i[cti + δ] + D
′
i(ηi − δ)

”

Let RHS be minimized at δ = δ+. Then,

πi ≤ γi

“

U
′
i(µi[cti+δ

+])µ′
i[cti+δ

+]+D
′
i(γi−cti−δ

+)
”

(14)

To prove that both the upper bounds (Equation 13 and 14)
are also necessary, we can proceed on similar lines as done
in Lemma 3.1.

Now, NUi at λi = γi should exceed NUi at λi > γi and
NUi should keep reducing with λi when λi ∈ (γi,∞). Math-
ematically, for a small δ > 0,

Ui(γi) − πi ≥ Ui(µi[γi + δ]) − πiPi(δ)

which can be ensured if πi ≥ 0 and Pi(0) ≥ 1. Also,

d

dδ

“

Ui(µi[γi + δ]) − πiPi(δ)
”

≤ 0

which implies

πi ≥
U ′

i(µi[γi + δ∗])µ′
i[γi + δ∗]

P ′
i (δ

∗)

where δ∗ = arg maxδ≥0

“

U′

i
(µi[γi+δ])µ′

i
[γi+δ]

P ′

i
(δ)

”

. The necessity

of this bound can be proved by contradiction following sim-
ilar steps as done in previous cases.

2


