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ABSTRACT
In this paper, we propose Layered TCP (LTCP for short), a set of
simple modifications to the congestion window response of TCP to
make it more scalable in highspeed networks. LTCP modifies the
TCP flow to behave as a collection of virtual flows to achieve more
efficient bandwidth probing. The number of virtual flows emulated
is determined based on the dynamic network conditions by using
the concept of virtual layers, such that the convergence properties
and RTT-unfairness behavior is maintained similar to that of TCP.
In this paper, we provide the intuition and the design for the LTCP
protocol modifications and evaluation results based on ns-2 simu-
lations and Linux implementation. Our results show that LTCP has
promising convergence properties, is about an order of magnitude
faster than TCP in utilizing high bandwidth links, employs few pa-
rameters and retains AIMD characteristics.

Categories and Subject Descriptors: C.2.2 [Computer Commu-
nication Networks]: Network Protocols - TCP Congestion Con-
trol.

General Terms: Design, Experimentation, Theory.

Keywords: AIMD, Congestion Control, Highspeed Networks, Pro-
tocol Design.

1. INTRODUCTION
Over the past few decades the traffic on the Internet has increased

by several orders of magnitude. However, the Internet still remains
a stable medium for communication. This stability has been at-
tributed primarily to the wide-spread use of TCP [1] which re-
sponds to congestion such that multiple flows can co-exist on a
bottleneck link and share the available bandwidth equitably (when
RTTs are similar). At the heart of the TCP congestion control al-
gorithms is the use of simple additive increase multiplicative de-
crease(AIMD) policy for moderating the sending rate, using a con-
gestion window. When there are no losses in the network the con-
gestion window is increased by one for each RTT, hence increasing
the sending rate. Upon a loss of packet, the window and in turn
the sending rate, is reduced by half. This simple policy has worked
remarkably well in the networks of the past and to a large extent
the present, because very high capacity links (greater than several
hundreds of Mbps or Gbps) were available only at the core of the
network where several thousands of flows got multiplexed. But in
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the recent past, there has been an increase in the use of high capac-
ity links for connecting research labs end-to-end for fast exchange
of large amounts of data. The availability of inexpensive gigabit
NICs and fast computers indicate that an average end user could
have access to high capacity networks, in the not-too-distant fu-
ture. In such an environment, where the density of flows is low
and the available per-flow capacity is high, the TCP mechanism of
increasing by just one packet per RTT tends to be too conservative,
while at the same time the window reduction by a factor of half
tends to be too drastic. This results in inefficient link utilization.

In this paper we propose a simple scheme for making the AIMD
algorithms used by TCP more efficient in probing for the available
link bandwidth. The proposed scheme, which we call LTCP, uses
the concept of virtual layers or flows to increase the pace at which
the protocol probes for available bandwidth and is responsive to dy-
namic changes in the network traffic. Several other schemes have
also been proposed in the recent past for modifying TCP to re-
solve this problem. What sets the LTCP scheme presented in this
paper apart is that, unlike the other schemes, it retains the time-
tested AIMD behavior of TCP while at the same time providing
performance benefits similar to, if not better than the other pro-
posed schemes.

The rest of the paper is organised as follows - In Section 2 we
present a detailed explanation of problem that has motivated this
research and a brief overview of the current research in this area.
This is followed by Section 3 where we provide the intuition, de-
sign and analyses pertaining to the proposed scheme. Results of
the evaluation using ns-2 simulations and the Linux implementa-
tion are presented in Section 4. We conclude the paper in Section
5 by summarising our experiences and taking a look at the future
work.

2. BACKGROUND AND RELATED WORK
To illustrate the problem that motivated this work, consider the

following popular example - The throughput of a TCP connec-
tion is given by T � 1.2∗S

R
√

p
, where S is the packet size, R is

the round trip time for the connection and p is the packet loss
rate [2]. This means that for a standard TCP connection using a
packet size of 1500 bytes over a connection with round trip de-
lay of 200ms and packet loss rate of 1.0X10−5 , the maximum
throughput that can be achieved is 23.2Mbps. If the packet loss
rate were reduced to 1.0X10−7 the maximum throughput could be
increased to 232.4Mbps. Conversely, to achieve a throughput of
1Gbps, the packet loss rate required should be 5.4X10−9 or lower
and for 10Gbps it should be 5.4X10−11 . These loss rates are un-
reasonable - for the 10Gbps link, the loss rate translates to a loss
of at most one packet in 1.85X1010 packets or at most one loss
for every six hours ! Clearly, the standard TCP connections do not
scale in high capacity networks.
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Over the past few years, several solutions have been put forth
for solving the problem of performance degradation on highspeed
networks due to the use of TCP. These solutions can be classified
into four main categories - a) Tuning the network stack b) Opening
parallel TCP connections between the end hosts c) Modifications
to the network infrastructure or use of non-TCP transport protocol
d) Modifications to the TCP congestion control.

The traditional solution to improve the performance of TCP on
high-capacity networks has been to tune some of the TCP param-
eters. Several auto-tuning schemes have been proposed such as
[3], [4], [5] and [6]. [7] presents a comparison of some of these
auto-tuning schemes. Tuning the stack improves the performance
of TCP in high-speed networks significantly and could be used in
conjunction with other schemes to achieve the best possible perfor-
mance.

A number of other proposals have employed network striping,
where the application is network-aware and tries to optimize the
network performance by opening parallel TCP connections. Some
examples of this approach include XFTP [8], GridFTP [9], stor-
age resource broker [10] and [11]. In [12] the authors provide a
library called PSockets (Parallel Sockets) to make it easier to de-
velop applications that use network striping. While most of this
work has been at the application level, in the MulTCP scheme[13]
the authors present a mechanism where a single TCP flow behaves
as a collection of several virtual flows. In [14], the authors describe
a scheme for using virtual round trip time for choosing a tradeoff
between fairness and the effectiveness of network usage. In [15]
the authors describe a scheme for managing the striped TCP con-
nections that could take different network paths. However, all the
above mentioned schemes use a fixed number of parallel connec-
tions and choosing the optimal number of flows to maximise the
performance without effecting the fairness properties is a signifi-
cant challenge.

The third category of research has proposed modifications to the
network infrastructure or use of non-TCP protocols for addressing
the issue. In the XCP[22] scheme, the authors propose changes to
the TCP congestion response function as well as the network infras-
tructure. In schemes like Tsunami[23], RBUDP[24] and SABUL
/UDT [25] reliable data transfer is achieved by using UDP for data
and TCP for control information. GTP[26] is also a rate based pro-
tocol, but focuses on max-min fair rate allocation across multiple
flows to support multipoint-to-point data movement.

The final category of research focuses on modifications to the
congestion response function of TCP itself for improving its per-
formance in highspeed networks. Highspeed TCP [16] uses a con-
gestion window response function that has a higher slope than TCP.
Scalable TCP [17], uses multiplicative increase/multiplicative de-
crease response, to ensure that the congestion window can be dou-
bled in a fixed number of RTTs. FAST TCP [18] relies on the delay-
based bandwidth estimation of TCP Vegas [19] and is optimised
for Gbps links. Bic-TCP [20] focuses on the RTT fairness prop-
erties by modifying the congestion response function using binary
search with additive increase and multiplicative decrease. HTCP
[21] uses response function similar to Highspeed TCP but modifies
the increase parameter based on time since last drop. None of these
solutions retain the AIMD behavior of TCP.

Similar to these other schemes, the solution we propose, ie, LTCP,
modifies the congestion response function of TCP at the sender-
side and requires no additional support from the network infras-
tructure or the receivers. LTCP can be thought of as an emulation
of multiple flows at the transport level, with the key contribution
that the number of virtual flows adapt to the dynamic network con-
ditions. It retains the AIMD behavior of TCP. Layering schemes

for probing the available bandwidth have been studied earlier in the
context of multicast and video transfer, for example [27, 28]. LTCP,
in contrast to this earlier body of work, uses layering within the
congestion control algorithm of TCP with per-ack window adap-
tation to provide efficient bandwidth probing in high bandwidth
links while maintaining fairness between multiple flows with simi-
lar RTTS.

3. LAYERED TCP
LTCP is based on the very simple concept of virtual layers or vir-

tual flows. To start out with, every LTCP flow has only one layer. If
the sending rate of the flow increases, without observing any losses,
then based on some criteria, it increases the number of layers and
continues to do so until a loss event is observed. When operating
at any given layer K, the flow behaves as if it were a collection of
K virtual flows, increasing the aggressiveness of probing for band-
width. Just like the standard implementations of TCP, the LTCP
protocol is ack-clocked and the congestion window of an LTCP
flow changes with each incoming ack. However, since the LTCP
flow operating at layer K emulates K virtual flows, it increases the
congestion window by K packets per RTT. This is similar to the
increase behaviour explored in [13].

For determining the number of layers that a flow should operate
at, the following scheme is used. Suppose, each layer K is asso-
ciated with a step-size δK . When the current congestion window
exceeds the window corresponding to the last addition of a layer
(WK) by the step-size δK , a new layer is added. Thus,

W1 = 0, W2 = W1 + δ1, ..... WK = WK−1 + δK−1 (1)

and the number of layers = K, when WK ≤ W < WK+1. Figure
1 shows this graphically.

Figure 1: Graphical Perspective of Layers in LTCP

The step size δK associated with the layer K should be cho-
sen such that convergence is possible when several flows share the
bandwidth. Consider the simple case when the link is to be shared
by two LTCP flows. Say, the flow that started earlier operates at
a higher layer K1 (with a larger window) compared to the later-
starting flow operating at a smaller layer K2 (with the smaller win-
dow). In the absence of network congestion, the first flow increases
the congestion window by K1 packets per RTT, whereas the sec-
ond flow increases by K2 packets per RTT. In order to ensure that
the first flow does not continue to increase at a rate faster than the
second flow, it is essential that the first flow adds layers at a rate
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slower than the second flow. Thus, if δK1 is the stepsize associated
with layer K1 and δK2 is the stepsize associated with layer K2,
then

δK1

K1
>

δK2

K2
(2)

when K1 > K2, for all values of K1,K2 ≥ 2.
The design of the decrease behavior is guided by a rather simi-

lar reasoning - in order for two flows starting at different times to
converge, the time taken by the larger flow to regain the bandwidth
it gave up after a congestion event should be larger than the time it
takes the smaller flow to regain the bandwidth it gave up. Suppose
the two flows are operating at layers K1 and K2 (K1 > K2), and
ω1 and ω2 is the window reduction of each flow upon a packet loss.
After the packet drop, suppose the flows operate at layers K

′
1 and

K
′
2 respectively. Then, the flows take ω1

K
′
1

and ω2
K

′
2

RTTs respec-

tively to regain the lost bandwidth. From the above reasoning, this
gives us -

ω1

K
′
1

>
ω2

K
′
2

(3)

The window reduction can be chosen proportional to the current
window size or be based on the layer at which the flow operates. If
the latter is chosen, then care must be taken to ensure convergence
when two flows operate at the same layer but at different window
sizes.

Equations 2 and 3 provide a simple framework for the conges-
tion response function of TCP for the congestion avoidance phase
in highspeed networks. The congestion window response in slow
start is not modified, allowing the protocol to evolve with experi-
mental slowstart algorithms such as [30]. At the end of slowstart
the number of layers to operate at can easily be determined based
on the window size.

Asymptotic convergence to fairness among flows of similar RTT
can be assured for competing flows if they satisfy the constraints in
Equations 2 and 3. It must be noted however, that when the flows
have different RTTs, the above scheme could make the RTT unfair-
ness worse than that of TCP. Since LTCP is ack-clocked similar to
TCP, the window of an LTCP flow with shorter RTT grows faster
than that of an LTCP flow with larger RTT. In addition, since each
layer K is associated with a step size δK , it takes exactly δK/K
RTTs for a flow to increase the number of layers to (K+1). When
two flows with different RTTs share a bottleneck link, the flow with
the short RTT will be able to add layers faster than the flow with the
larger RTT making the RTT unfairness worse. In order to compen-
sate for this dependence of aggressiveness on RTT, we introduce
the RTT compensation factor KR and modify the per-ack behavior
such that, an LTCP flow at layer K will increase the congestion
window at the rate of KR ∗ K for the successful receipt of one
window of acknowledgements. The RTT compensation factor is
made proportional to the RTT. In order to ensure that the flows do
not become aggressive as queues build up, we make KR dependent
only on the propagation delay of the link. In our experiments we
use the lowest measured RTT sample for choosing the value of KR.
This uniformly scales up the rate at which a flow increase its win-
dow, with respect to RTT. Since the RTT compensation factor KR

is constant for a given RTT and multiplicative in nature, it does not
alter the Equations 2 and 3 for the flows operating at same RTT.

The key then is to determine appropriate values for the step size
δ (or equivalently, the window size Wk at which the layer transi-
tions occur) and the window reduction that satisfy the conditions
in Equation 2 and Equation 3. Based on this choice, the RTT com-

pensation factor KR can be determined to provide RTT fairness to
satisfy a given requirement (eg. similar to TCP or similar to rate
based flow etc.).

For determining the parameters, we start with the decrease be-
havior and analyse behavior for flows with similar RTTs. Since, the
key requirement we have is to retain the AIMD properties of TCP,
the decrease behavior is chosen to be multiplicative. The window
reduction is based on a factor of β such that -

ω = β ∗W (4)

Based on this choice for the decrease behavior we determine the
appropriate increase behavior such that the conditions in Equation
2 and Equation 3 are satisfied. To provide an intuition for choice of
the increase behavior, consider Eq. 3

ω1

K
′
1

>
ω2

K
′
2

(5)

In order to allow smooth layer transitions, we stipulate that af-
ter a window reduction due to a packet loss, at most one layer can
be dropped i.e., a flow operating at layer K before the packet loss
should operate at either layer K or (K − 1) after the window re-
duction. Based on this stipulation, there are four possible cases -
(a) K

′
1 = K1,K

′
2 = K2 (b) K

′
1 = (K1 − 1),K

′
2 = K2 (c) K

′
1 =

K1,K
′
2 = (K2 − 1) and (d) K

′
1 = (K1 − 1), K

′
2 = (K2 − 1). It

is most difficult to maintain the convergence properties, when the
larger flow does not reduce a layer but the smaller flow does, ie,
K

′
1 = K1,K

′
2 = (K2 − 1).

With this worst case situation, Eq. 3 can be written as -

ω1

K1
>

ω2

(K2 − 1)
(6)

If this inequality is maintained for adjacent layers, we can show
by simple extension, that it can be maintained for all other layers.
So consider K1 = K,K2 = (K − 1). Then, the above inequality
is

ω1

K
>

ω2

K − 2
(7)

Suppose, the window for flow 1 is W
′

when the packet loss oc-
curs and the window of flow 2 is W

′′
then, substituting Eq. 4 in

the above equation, we have,

W
′

K
>

W
′′

K − 2

⇒ W
′
>

K

K − 2
W

′′
(8)

In order for the worst case behavior (K
′
1 = K,K

′
2 = (K−2)) to

occur, the window W
′

could be close to the transition to the layer
(K + 1) and the window W

′′
could have recently transitioned into

layer (K − 1). In order to get the estimate of the worst case we
substitute these values in the above equation to get -

WK+1 >
K

K − 2
WK−1 (9)

Based on this, we conservatively choose the increase behavior to
be

WK =
K + 1

K − 2
WK−1 (10)

Note that alternate choices are possible. This is essentially a
tradeoff between efficiently utilizing the bandwidth and ensuring
convergence between multiple flows sharing the same link. While
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it is essential to choose the relationship between WK and WK−1

such that the condition in equation 9 is satisfied to ensure conver-
gence, a very conservative choice would make the protocol slow in
increasing the layers and hence less efficient in utilizing the band-
width.

Now suppose we choose to add the second layer at threshold
W2 = WT . Then, by recursively substituting, we have

WK =
K(K + 1)(K − 1)

6
WT (11)

By definition, δK = WK+1 −WK and hence we have,

δK =
K(K + 1)

2
WT (12)

By simple substitution, we can show that the inequality in Eq. 2
is satisfied. Also, since this scheme was designed with the worst
case for the inequality in Eq. 3, that condition is satisfied as well,
when two competing flows are at adjacent layers. The result for ad-
jacent layers can then be easily extrapolated for non-adjacent lay-
ers. It can also be shown that when two flows operate at the same
layer, the inequality in Eq. 3 is satisfied.

3.1 Choice of WT and β

The choice of the threshold WT , the window size at which the
LTCP flows starts to increase the number of layers, determines the
region where the increase of LTCP has similar increase behavior
as TCP. We choose a value of 50 packets for WT . This value is
motivated by the fact that when the window scale option [29] is not
turned on, the maximum window size allowed is 64Kb which is
about 44 packets (of size 1500 bytes). The window scale option is
used in highspeed networks, to allow the receiver to advertise large
window size. In slower networks, when the window scale option
is not turned on, the actual sending rate is capped by this window
value. We choose to begin the aggressive bandwidth probing of
LTCP beyond this threshold.

The relationship between WK and K has been derived based on
the stipulation that after a window reduction due to packet drop,
at most one layer is dropped. In order to ensure this, we have to
choose the parameter β carefully. The worst case for this situation
occurs when the flow has just added the layer K and the window
W = WK + ∆, when the packet drop occurs. In order to ensure
that the flow does not go from layer K to (K − 2) after the packet
drop, we need to ensure that

βWK < δK−1

(13)

(Ignoring the reduction due to ∆ since we are computing the worst
case behavior.) On simple substitution, this yields,

β <
3

K + 1
(14)

Thus, β should be chosen such that the above equation is satisfied.
The first two columns in the Table in Fig. 2 shows the number of
layers corresponding to the windowsize at layer transitions (WK)
with WT = 50. For a 2.4Gbps link with an RTT of 150ms and
packet size of 1500 bytes, the window size can grow to 30,000.
The number of layers required to maintain full link utilization is
therefore K = 15. Based on this, we conservatively choose β =
0.15 (corresponding to K = 19).

With this design choice, LTCP retains AIMD behavior. At each
layer K, LTCP increases the window additively by K, and when a
packet drop occurs, the congestion window is reduced multiplica-
tively by a factor of β.

3.2 Time to claim bandwidth and Packet Re-
covery time

The primary goal for designing the LTCP protocol is to be able
to utilize available link bandwidth aggressively in highspeed net-
works. Here, we provide quantitative analysis for time taken by
an LTCP flow (in terms of RTTs) for claiming available bandwidth
and the packet loss recovery time. For this analysis, we consider
the case where the RTT compensation factor KR = 1.

Suppose the maximum window size corresponding to the avail-
able throughput is WK . Then, time to increase the window to WK

can be obtained as the sum of the time to transition from layer 1
to 2, 2 to 3 and so on until layer K. In other words, the time to
increase the window to WK is -

T (δ1) + T (δ2) + .... + T (δK−2) + T (δK−1)

where T (δK) is the time (in RTTs) for increasing the window from
layer K to (K+1). When the flow operates at layer K, to reach to
the next layer, it has to increase the window by δK and the rate of
increase is K per RTT. Thus T (δK) is given by δK

K
. Substituting

this in the above equation and doing the summation we find that the
time to reach a window size of WK is

T (δ1) +
(K − 2)(K + 3)

4
WT (15)

Note that the above analysis assumes that slowstart is terminated
before layering starts. The third column in the Table in Fig. 2
shows the speedup in claiming bandwidth compared to TCP, for an
LTCP flow with WT = 50, with the assumption that slowstart is
terminated when window = WT .

Figure 2: Comparison of LTCP (with WT = 50 and β = 0.15) to
TCP

An LTCP flow with window size W will reduce the congestion
window by βW . It then starts to increase the congestion window at
the rate of at least (K−1) packets per RTT (since we stipulate that
a packet drop results in the reduction of at most one layer). The
packet loss recovery time then, for LTCP is βW

(K−1)
. In case of TCP,

upon a packet drop, the window is reduced by half, and after the
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drop the rate of increase is 1 per RTT. Thus, the packet recovery
time is W/2. The last column of Table in Fig.2 shows the speed
up in packet recovery time for LTCP with β = 0.15 compared
to TCP. Based on the conservative estimate that a layer reduction
occurs after a packet drop, the speed up in the packet recovery time
of LTCP compared to TCP is a factor of 3.33 ∗ (K − 1).

3.3 Response Function
In order to understand the relationship between throughput of an

LTCP flow and the drop probability p of the link, and provide the
basis for determining the value of KR, we present the following
analysis. Fig. 3 shows the steady state behavior of the congestion
window of an LTCP flow with a uniform loss probability model.
Suppose the number of layers at steady state is K and the link drop
probability is p. Let W

′′
and W

′
represent the congestion window

just before and just after a packet drop respectively. On a packet
loss the congestion window is reduced by βW

′′
. Suppose the flow

operates at layer K
′

after the packet drop. Then, for each RTT
after the loss, the congestion window is increased at the rate of K

′

until the window reaches the value W ′′, when the next packet drop
occurs. Since we stipulate that at most one layer can be dropped
after the window reduction due to packet loss, the window behavior
of the LTCP flow, in general, will look like Fig. 3 at steady state.

With this model, the time between two successive losses, say

TD , will be βW
′′

KRK
′ RTTs or βW

′′

KRK
′ ∗ RTT seconds. The number

of packets sent between two successive losses, say ND , is given by
the area of the shaded region in Fig. 3. This can be shown to be -

ND � β(W
′′
)2

KRK
′ (1 − β

2
) (16)

Figure 3: Analysis of Steady State Behavior

The throughput of such an LTCP flow can be computed as ND
TD

.
That is,

BW =
W ′′

RTT
(1 − β

2
) (17)

The expected number of packets sent between two losses ND is
1
p

. By substituting this in Eq. 16, and solving for W
′′

we have,

W
′′

=
√ KRK

′

β(1 − β
2
)p

(18)

K
′

is a discrete integer value, based on the Equation 11. Hence it

can be approximated by 
(6W
′′

WT
)

1
3 �. Substituting this in Equation

18, we have,

W
′′

= (
KR( 6

WT
)

1
3

β(1 − β
2
)p

)
3
5 (19)

Substituting in Eq. 17 we have

BW =
C.K

3
5
R

RTT.p
3
5

(20)

where C =
( 6

WT
)

1
5 (1 − β

2
)

[β(1 − β)]
3
5

Figure 4 shows the response function of LTCP when KR is equal
to 1. Response function of other highspeed proposals as well as that
of unmodified TCP are shown for comparison. [21] states that the
response function of H-TCP is similar to that of HS-TCP. From the
figure, it can been seen that the slope of the response function of
only LTCP is similar to that of regular TCP indicating that LTCP
behaves in the AIMD fashion similar to TCP. At the same time,
the curve is shifted along the Y-axis, indicating better scalability in
highspeed networks, compared to TCP.

Figure 4: Response Function of Different Highspeed Protocols

3.4 RTT Unfairness and Choice of KR

In this section we assess the RTT unfairness of LTCP under the
assumptions of random loss model as well as synchronized loss
models. Based on the discussion for the synchronized loss model,
we derive the relationship between KR and RTT to achieve RTT
unfairness similar to that of TCP.

In [33], for a random loss model the probability of the packet
loss λ is shown to be -

λ ∝ A(w,RTT )

A(w,RTT ) + B(w,RTT )
(21)

where A(w,RTT ) and B(w,RTT ) are the window increase and
decrease functions respectively.

For LTCP A(w,RTT ) = K/w and B(w,RTT ) = βW , when
RTT compensation is not used. Substituting these values in the
above equation and approximating K ∝ W1/3, we can calculate
the loss rate λ as -

λ ∝ 1

(1 + βW
5/3
s )

(22)

where Ws is the statistical equilibrium window.
It is clear from the above equation that the two LTCP flows expe-

riencing the same loss probability, will have the same equilibrium
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window size, regardless of the round trip time. However, through-
put at the equilibrium point becomes inversely proportional to its
round trip time since the average transmission rate rs and is given
by Ws/RTT .

The loss probability for TCP with similar assumptions is given
by:

λ ∝ 1

(1 + 0.5Ws)
(23)

The equilibrium window size of the TCP flow does not depend
on the RTT either. Therefore, for random losses the RTT depen-
dence of window of an LTCP flow is same as TCP. Thus LTCP
has window-oriented fairness similar to TCP and will not perform
worse than TCP in case of random losses.

Because of the nature of current deployment of high bandwidth
networks, it is likely that the degree of multiplexing will be small
and as such, an assumption of synchronized loss model may be
more appropriate. So we present here the details of the analysis
with the synchronised loss model as well.

Following a similar analysis in [20], for synchronized losses,
suppose the time between two drops is t. For a flow i with round
trip time RTTi and probability of loss pi, the average window size
is

Wi =

1
pi

t
RTTi

=
RTTi

tpi
(24)

since the flow will send 1
pi

packets between two consecutive drop
events and the number of RTTs between the two consecutive loss
events t

RTTi
.

From Eq. 20, we have the bandwidth of an LTCP flow to be

BW =
Wi

RTTi
=

C.K
3
5
Ri

RTTi.p
3
5

⇒ pi =
C

5
3KRi

W
5
3

i

(25)

where C is a constant.
By substituting the above in Eq. 24 and simplifying we get,

Wi = (
tKRi

RTTi
)

3
2 .C

5
2 (26)

When the RTT unfairness is defined as the throughput ratio of
two flows in terms of their RTT ratios, the RTT unfairness for LTCP
is -

( W1
RTT1

)(1 − p1)

( W2
RTT2

)(1 − p2)
�

W1
RTT1

W2
RTT2

= (
RTT2

RTT1
)

5
2 (

KR1

KR2

)
3
2 (27)

(since p << 1).
The above equation shows that by choosing KR appropriately,

the RTT unfairness of LTCP flows can be controlled. For instance,
choosing KR ∝ RTT

1
3 , the RTT unfairness of the LTCP protocol

will be similar to the AIMD scheme used in TCP. By choosing
KR ∝ RTT , the effect of RTT on the scheme can be entirely
eliminated and the LTCP protocol behaves like a rate controlled
scheme independent of the RTT. By choosing an intermediate value
such as, KR ∝ RTT

1
2 , we can reduce the RTT unfairness of LTCP

in comparison to TCP.
In general, suppose we choose, KR proportional toRTTα, where

α is a constant. After a window reduction ω, suppose a flow oper-
ates at layer K

′
. When RTT compensation is used it takes ω

KR∗K
′

RTTs or ω∗RTT

KR∗K
′ secs to regain the lost bandwidth. Suppose two

flows with different RTTs are competing for the available band-
width, Equations 3 can be re-written as

ω1 ∗RTT1

KR1 ∗K′
1

>
ω2 ∗ RTT2

KR2 ∗K′
2

Substituting the value of ω and further solving it, we have,

⇒ (
RTT1

RTT2
)α−1 <

(K
′
+ 1)

K′

⇒ (α− 1) < log(1 +
1

K′ ) ⇒ α <= 1 (28)

The above equation has been derived by assuming a worst case
RTT ratio of 10 while taking the logarithm. It shows that when
the RTT compensation factor is chosen based on the relationship
KR ∝ RTTα the value of α should be less that or equal to 1, to
ensure asymptotic convergence. Since we aim to keep the behavior
of LTCP similar to that of TCP we choose KR ∝ RTT

1
3 .

3.5 Router Buffer Requirements
It has been conventional wisdom to set the router buffer size

based on the classical rule of thumb of delay-bandwidth product
of the link. For links with high bandwidth and high delays, this
choice makes the required router buffer size very large. Research
on sizing the router buffers [31] have shown that the classical rule
of thumb is based on the desire to maintain high link utilization on
the link, when a single flow tries to saturate the link. Since LTCP
uses a less drastic decrease rule compared to TCP, the buffer size
required by a single LTCP flow for keeping the link fully utilized all
the time, is lower than that of TCP. Based on analysis similar to that
in [31] it can be shown that the buffer size requirements for a single
LTCP flow is β

(1−β)
(C ∗ 2Tp) where C is the link capacity and Tp

is the propagation delay of the link. Since we choose the value of
β to be 0.15, the minimum buffer size required is 0.176 ∗C ∗ 2Tp,
an 82% reduction compared to that of TCP.

4. RESULTS
To evaluate the LTCP protocol, we conducted simulations on the

ns-2 simulator. Fig. 5 shows the network topology used in the sim-
ulations. The topology is a simple dumbbell network. The bottle-
neck link bandwidth is set to 1Gbps unless otherwise specified. The
links that connect the senders and the receivers to the router have a
bandwidth of 2.4Gbps. The end-to-end RTT is set to 120ms. The
routers have the default queue size set to 5000 packets which is one
third the delay-bandwidth product of the bottleneck link. DropTail
queue management is used at the routers. The LTCP protocol is
implemented by modifying the TCP/Sack1 agent. The unmodified
TCP/Sack1 agent is used for TCP. The receiver advertised window
is set to a large value to ensure that it does not interfere with the
simulations. For the LTCP flows, the parameter WT is set to 50
packets and the parameter β was set to 0.15. The traffic constitute
of FTP transfer between the senders and receivers.

4.1 Basic Comparison with TCP
Since LTCP uses adaptive layering, it is capable of increasing

its window size to the optimal value much faster than TCP. Also,
when a packet loss occurs, the window reduction of LTCP is not
as drastic as TCP. As a result the window adaptation of LTCP is
much more efficient in utilizing the link bandwidth in highspeed
networks. Fig. 6 shows congestion window of LTCP in compari-
son with that of TCP, when the network consists of only one flow.
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Figure 5: Simulation Topology

As seen from the figure, the congestion window of LTCP reaches
the optimal value several orders of magnitude faster than the TCP
flow. The comparison of windows for HTCP and BIC with TCP are
included for reference. Since HTCP chooses the window reduction
dynamically in the range (0.5, 0.8), the overall fluctuation in the
HTCP window is slightly worse than that of LTCP and BIC.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time (seconds)

W
in

do
w

LTCP
TCP

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time (seconds)

W
in

do
w

HTCP
TCP

(a) LTCP (b) HTCP

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time (seconds)

W
in

do
w

BIC
TCP

(c) BIC

Figure 6: Comparison of Congestion Window

The table in Fig. 7 shows the comparison between the good-
put and average packet loss rates for different protocols at different
bottleneck link bandwidths. The throughput is calculated over a
period of 2000 seconds after the flow reaches steady state. Due to
the large period for averaging the throughput and the buffer size of
5000 packets, TCP flow seems to be able to obtain reasonably high
throughput. As seen from Fig.6, due to the large width of the TCP
window cycle, using a smaller duration for measuring throughput
would yield lower TCP throughput, depending on the window size
during the measurement period. Since the high speed protocols op-
erate close to the optimal value most of the time, the link utilization
will be high even if the measurement duration is reduced. How-
ever, due to operating close to the optimal value, the congestion
loss rate observed by highspeed flows is larger than that of TCP
which due to under-utilization of the link sees lower congestion
losses. Among the different highspeed protocols, LTCP and BIC
have lower self-induced losses compared to HTCP while achieving
similar goodput.

Figure 7: Goodput and Packet Loss Rate for Different High-
speed Protocols

4.2 Intra-protocol Fairness
In this experiment, we evaluate the fairness of LTCP flows to

each other. Different number of LTCP flows are started at the same
time (with random staggering to avoid synchronization) and the av-
erage per-flow bandwidth of each flow is noted. The table in Fig 8
shows that when the number of flows is varied, the maximum and
the minimum per-flow throughputs remain close to the average, in-
dicating that the per-flow throughput of each flow is close to the
fair proportional share. This is verified by calculating the Fairness
Index proposed by Jain et. al., in [32]. The Fairness Index being
close to 1 shows that the LTCP flows share the available network
bandwidth equitably. Similar behavior was observed with BIC and
HTCP.

Figure 8: Fairness Among LTCP Flows

4.3 Dynamic Link Sharing
In the previous experiment with multiple flows, all the flows

were started at about the same time and all different protocol fla-
vors showed very good intra-protocol fairness. In this section, we
evaluate the convergence properties when flows start and stop at
different times, dynamically changing the available link bandwidth.
The first flow is started at time 0, and allowed to reach steady state.
A new flow is then added every 300 seconds. The flows last for
2100, 1500, 900 and 300 seconds respectively. Fig. 9 shows the
throughput of each flow. From the graph we see that, the BIC flows
take much longer to converge to fair share compared to LTCP and
HTCP. When bandwidth becomes available because of the comple-
tion of a flow, all three protocols are capable of quickly increasing
their sending rates and hence ensuring the link is fully utilized.

4.4 Effect of Random Losses
Fig. 4 shows the response curve of the different highspeed pro-

posals. [21] states that the response function of H-TCP is similar
to that of HS-TCP. In this simulation, we show the effect of the dif-
ferent response curves. We fix the capacity of the bottleneck link
at 1Gbps and induce random losses on the link using a uniform
loss model. Fig. 10 plots the throughput against the random loss
rate. Note that the lossrate on the x-axis does not include the self-
induced congestion losses. Packet loss rate of 10−7 due to channel
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Figure 9: Dynamic Link Sharing

errors is comparable to the error rate in long haul fibre links [17].
As the random loss rate increases, the link utilization of the differ-
ent protocols starts to deteriorate. The deterioration of LTCP and
BIC are similar, whereas the deterioration of HTCP is slightly more
drastic.

Figure 10: Effect of Random Losses on Different Highspeed
Protocols

4.5 Impact of Bottleneck Link Buffer Size
In this experiment we study the impact of the bottleneck link

buffer size on the performance of the different highspeed proto-
cols. For the given topology, the bandwidth-delay product(BDP)
is 15000 packets. We vary the bottleneck link buffer size from 1
times to 0.1 times the BDP. Fig. 11 shows the results. As seen
from the graph, when the bottleneck link buffer size is at least 0.5
times the BDP, all the highspeed protocols maintain high link uti-
lization. When the bottleneck link buffer size reduces below this,
the throughput starts to degrade a little, with the degradation for
HTCP being slightly worse than that of BIC or LTCP. As indicated
in section 3.5, even when the buffer size at the bottleneck link router
is low, LTCP can maintain high link utilization.

4.6 Interaction with TCP
In this section, we verify the effect of LTCP on regular TCP

flows. It must be noted that the window response function of LTCP,

Figure 11: Impact of Bottleneck Link Buffer Size on Different
Highspeed Protocols

BIC and HTCP are designed to be more aggressive than TCP in
high speed networks. So a single flow of TCP cannot compete with
a single flow of these highspeed protocols. We present these results
here to show that the highspeed protocols do not starve the TCP
flows for bandwidth. Fig.12 shows the results with one TCP flow
sharing the bottleneck link with a highspeed flow. With an increase
in the available bottleneck link capacity, the throughput achieved
by the TCP flow slightly increases. The throughput obtained by the
TCP flow is similar when competing with the different highspeed
flows.

Figure 12: Interaction with TCP

4.7 RTT Unfairness
In our analyses we have showed that the RTT unfairness of LTCP

can be tuned based on different requirements by modifying KR.
We choose KR so that LTCP displays RTT unfairness similar to
that of TCP, that is, the ratio of the throughput of two LTCP flows
with different RTTs is proportional to the inverse square of the ra-
tio of the RTTs. While, the choice of KR can easily be modified
to offer different levels of fairness, we present in this section the
results with the chosen design. Each simulation consists of two
flows with different RTTs competing for bandwidth on the bottle-
neck link. The RTT of the shorter link is fixed at 40ms, while vary-
ing the RTT of the larger link such that the RTTs have ratio 2, 3 and
4. The bottleneck link capacity is fixed at 1Gbps. Fig.13 shows the
results in comparison with HTCP and BIC. Since the scaling fac-
tor for HTCP is chosen to provide linear unfairness (as opposed to
the square unfairness of TCP), HTCP shows better performance.
According to [20], the RTT unfairness of BIC is the same as that
of TCP for high bandwidth, and the low RTT flows may starve the
high RTT flows at low bandwidth. In this experiment, the RTT un-
fairness of BIC was observed to be a little worse than that of the
inverse square unfairness of TCP.

4.8 Interaction with Non-responsive Traffic
In order to evaluate how LTCP responds to the presence of traffic

that does not respond to congestion, we conducted the following
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Figure 13: RTT Unfairness

simulation. In this simulation, non-responsive on-off traffic was
simulated using CBR/UDP source that sends data at half the bot-
tleneck link capacity (500Mbps) for 150 seconds and then remains
inactive for the next 150 seconds. Fig. 14 shows the throughput of
the two flows computed over 5 second intervals. Results of similar
experiments with BIC and HTCP are included for comparison. As
seen from the graph, the response of all the three protocols is simi-
lar. In the presence of nonresponsive traffic all of them reduce their
sending rate. When the non-responsive flows are not present, all of
them quickly ramp up the sending rate.
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Figure 14: Interaction with UDP Traffic

4.9 Emulation Results
We have implemented LTCP in the network stack of the Linux

2.4.25 kernel. The network stack in the 2.4.x kernel is quite sophis-
ticated and supports several standards from the RFCs as well as fea-
tures beyond those published in RFCs or IETF Drafts aimed to pro-
vide good network performance [34]. Our testbed consists of two
off-the shelf Dell Optiplex GX260 workstations with Pentium 4
3.06GHz CPU, 512MB of RAM, Intel PRO/1000 MT gigabit NICs
on to a 33MHz/32bit PCI bus. The two computers are connected
using a copper Cat 6 cable. The 33MHz PCI bus limits the achiev-
able throughput to around 750-800 Mbps. A packet delay scheduler
patch made available on the Linux mailing list (by Stephen Hem-
minger) is used to generate uniform delay for all packets, so that
larger RTTs can be emulated. This patch modifies the FIFO queue
such that every packet queued is delayed for a fixed amount. This
setup was used instead of the conventional sender-router-receiver
setup, due to the limitation imposed by the PCI bus which in the
router configuration would further reduce the bottleneck link ca-

pacity as it is shared by both incoming and outgoing interfaces.
The machine configured as the sender used the 2.4.25 kernel with

the LTCP patch. The machine configured as the receiver used the
2.4.26-rc1 kernel with the packet delay scheduler patch. iperf [35]
was used for generating traffic. We increased the socket buffers to
allow maximum link utilization. The txqueuelen for the NIC was
set to the default value of 1000. The backlog queue was modified
to have a size of 1000.

We present here the results of the experiment comparing the per-
formance of the standard Linux TCP (TCP-SACK) with that of
LTCP at different RTTs for a 900 second transfer. The socket buffer
size at both the sender and receiver is set to 32MB to ensure that a
single flow can utilize all the available bandwidth. The experiment
is run for 15 minutes (900 seconds) and is repeated four times. The
table in Fig.15 shows the average number of bytes transferred and
the average transfer rate. At low RTTs, both the TCP and LTCP
flows manage to keep the link almost fully utilized and transfer
about 75 GBytes of data. As the RTT increases, TCP takes longer
to recover from packet losses and its performance starts to deteri-
orate. For an RTT of 120ms, which is comparable to that of the
transatlantic links, the performance deterioration is significant and
in 900 seconds, the TCP flow manages to transfer only about 22
GBytes. In contrast, a single LTCP flow transfers an average of
about 65 GBytes.

Figure 15: Linux Performance Test

We have conducted several other experiments to validate some
of the results obtained in the ns-2 simulations. Currently, we are in
the process of obtaining access to the Internet2 backbone so more
experiments can be conducted with real traffic in the background.

5. CONCLUSIONS
In this paper we have proposed LTCP, a layered approach for

modifying TCP for high-speed links. LTCP uses the concept of
virtual layers to increase the congestion window when congestion
is not observed over an extended period of time. When operating
at layer K, LTCP uses modified additive increase (by K per RTT)
and remains ack-clocked. The layered architecture provides flex-
ibility in choosing the sizes of the layers for achieving different
goals. This paper explored the design option that retains the AIMD
characteristics of TCP.

We have shown through analysis and experimental evaluation
that a single LTCP flow can adapt to nearly fully utilizing the link
bandwidth on highspeed links. Other significant features of the
chosen design are - (a) it provides a significant speedup in claiming
bandwidth and in packet loss recovery times compared to TCP (b)
multiple flows share the available link capacity equitably (c) RTT
unfairness can be controlled by choosing KR appropriately (d) re-
quires only simple modifications to TCP’s congestion response mech-
anisms and retains the AIMD behavior. Extensive experiments
comparing LTCP to other proposals namely BIC and HTCP have
shown that LTCP can produce similar or better performance than
these schemes with the additional benefit that the time-tested AIMD
characteristics are retained.
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Currently we are in the process of evaluating the Linux imple-
mentation of LTCP on an Internet2 testbed and comparing its per-
formance with BIC and HTCP. Comparative third party evaluation
of LTCP against other proposals is also underway at SLAC, Stan-
ford.

Our design is hinged on an early decision to use multiplicative
decrease, and on the stipulation that at most one layer is dropped af-
ter a congestion event. In addition, we have chosen to use a constant
value of 0.15 for the decrease factor β. A number of other possibil-
ities exist for alternate designs of the general LTCP approach. We
plan to pursue these options in future. LTCP improves on the loss-
based congestion probing mechanism of TCP and makes it more
aggressive. As part of our future work, we plan to investigate the
behavior of loss-based mechanisms versus the rate-based mech-
anisms (such as FAST [18]) in high-speed environments and the
possibility of a hybrid mechanism for reducing self induced losses
while retaining the stability.
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