Reflections on Network Architecture:
an Active Networking Perspective

Ken Calvert*
Laboratory for Advanced Networking
University of Kentucky

calvert@netlab.uky.edu

ABSTRACT

After a long period when networking research seemed to be fo-
cused mainly on making the existing Internet work better, inter-
est in “clean slate” approaches to network architecture seems to be
growing. Beginning with the DARPA program in the mid-1990’s,
researchers working on active networks explored such an approach,
based on the idea of a programming interface as the basic interoper-
ability mechanism of the network. This note draws on the author’s
experiences in that effort and attempts to extract some observations
or “lessons learned” that may be relevant to more general network
architecture research.

Categories and Subject Descriptors

C.2.1 [Network Architectureand Design]: Packet-switching net-
works; C.2.2 [Network Protocols]: Protocol Architecture

General Terms
Design, Experimentation

1. INTRODUCTION

Networking is a complex, cooperative enterprise; as such it re-
quires division of labor and a clear assignment of functional re-
sponsibilities. A well-designed network architecture provides an
organizational framework that is more or less independent of spe-
cific technologies and applications. Although the protocol archi-
tecture of the Internet has undoubtedly been a key factor in its suc-
cess, it is not perfect, and indeed its shortcomings are becoming
more evident. During the 1990’s networking research seemed to
take place mainly (or even exclusively) within the framework of
the TCP/IP protocol architecture, with the worthy goal of making
the existing Internet work better. Recently, however, as the short-
comings of the Internet architecture become more evident, we have
seen renewed interest in network architecture from some quarters,
including funding agencies [5, 12].

Beginning with the DARPA program in the mid-1990s, a group
of researchers considered a “clean slate” approach to network ar-
chitecture, based on the idea of providing network service via a
programming interface, as opposed to a static packet format [17].
Although the term “active network” came to be associated with
one particular approach—in which each packet could carry instruc-
tions specifying its own handling—various dimensions of the con-
cept related to network architecture were explored over the last 10

*The support of DARPA, Intel Corporation, Air Force Research
Laboratory, and the National Science Foundation, and the contri-
butions of many collaborators and students are gratefully acknowl-
edged. Opinions expressed here are solely those of the author.

ACM SIGCOMM Computer Communication Review

27

years. As such, the work on active networking represents one of
the few recent research efforts that considered network architecture
as something other than a solved problem.

This note is an attempt to present some observations based on
the author’s experiences, in the hope of extracting some insight into
network architecture. It is neither an attempt to make a case for ac-
tive or programmable networking, nor to claim that experience with
active networks (AN) architecture necessarily transfers to other any
other kind of network architecture. The AN effort, after all, focused
on solving a particular problem—the difficult and lengthy process
of standardizing and deploying new protocols and services—using
a particular technology: programmable network nodes. Neverthe-
less, there may be some general lessons here. The reader will judge
whether that is the case.

2. ACTIVE NETWORK ARCHITECTURE

The development of the DARPA Architectural Framework for
Active Networks [7] was motivated by the need to reach agreement
about assumptions and goals for the DARPA active networks re-
search program. Although there had been a fair amount of work
on active networking architecture up to that time [1, 18, 19], there
was a need for a common vocabulary and frame of reference for
researchers in the program to understand, and, especially, lever-
age each others’ work. The DARPA framework was never an at-
tempt to define or prescribe any kind of standard. Rather, its aim
was to identify components and interfaces of a generic “network
node platform,” and suggest a reasonable assignment of functional-
ity so that work on different aspects could proceed independently.
A goal explicitly stated in [7] is to provide a model sufficiently
general to accomodate all the work going on in the DARPA pro-
gram, as well as experimentation with other, perhaps even more
radical, paradigms. Among other things, this meant that the archi-
tecture needed to accomodate both the “capsule” model, in which
programs, or references to programs, are carried instead of stan-
dardized headers in every packet, and the “programmable router”
model, in which the data forwarding path is customizable, but only
via an out-of-band interface. Another design goal of the archi-
tecture was to minimize the amount of global agreement required
among communicating entities. The result was a minimal frame-
work, rather than a complete network architecture. The architec-
tural framework specifies the functional components of a network
node, rather than any particular end-to-end service. The idea was
that once the right set of functions was available in a programmable
node platform, a variety of end-to-end services could (and would)
be built.

The hierarchy of components at a node is shown in Figure 1.
Each node in the active network runs one or more execution en-
vironments (EEs), each of which defines a “virtual machine” that

Volume 36, Number 2, April 2006



operates on packets. (For example, an EE might be a Java Vir-
tual Machine, suitably extended to parse bytecode programs car-
ried in packets, and send running code as packets.) Users invoke
Active Applications (AAs), which provide code to program an EE
to implement an end-to-end service. Execution environments gain
access to node resources (computing and transmission bandwidth,
storage) via a Node Operating System (NodeOS), which is respon-
sible for managing/sharing those resources among EEs at the level
of the node.

= = =
= =g =
Zi Z| Z Active
AA X AAY AA Z Applications
Execution
EEL EE1 EE2 Environments

Node Resources: channels, threads, storage, ... Node Operating System

Figure 1. Functional Componentsof Active Node Architecture

Each EE provides a set of abstractions from which end-to-end
services can be composed; each AA realizes such a service using
the set of abstractions provided by an EE. Thus, each AA is de-
signed (and constrained) to operate in the context of a particular
EE. The EE abstractions, in turn, are built from the basic elements
provided by the NodeOS, which hides the particulars of the hard-
ware platform. The NodeOS also provides basic “plumbing” facil-
ities to allow packets to be directed to/from EEs.

An important aspect of traditional network architectures is the
identification of the set of protocols that specify the form and mean-
ing of the “bits on the wire”. In the active network architecture, the
wire formats are determined by the EE, by any underlying “legacy”
channel protocols, and by the Active Network Encapsulation Pro-
tocol. ANEP [10] is in principle the only aspect of the AN architec-
ture that needs to be standardized. It provides a mechanism, consis-
tent across all nodes, that enables EEs and packets to rendezvous:
by placing appropriate values in the ANEP header of their pack-
ets, users can arrange for them to be processed by the EE of their
choice.

The framework evolved over time. The first version identified
only the NodeOS and EEs as components; the notion of an active
application came later, as the focus moved from individual node ar-
chitecture to end-to-end services based on node capabilities. Orig-
inally the framework document described the NodeOS program-
ming interface in detail. At some point the specifics of the pro-
gramming interface were relegated to a separate document so that
they could evolve without affecting the overall architecture, while
the description of the resource abstractions (thread pools, memory
pools, channels, etc.) remained. In the final version, all mention of
particular resources managed by the NodeOS was removed, leaving
the description completely neutral with respect to the NodeOS pro-
gramming interface [8, 15]. In a similar way, the security-relevant
portions of the architecture, which were originally treated (some-
what sketchily) in the framework document, became a more com-
prehensive document that stood on its own [9].

3. SOME OBSERVATIONS

Here, in more or less random order, are a handful of observa-
tions. Some are technology-specific, others have more to do with

ACM SIGCOMM Computer Communication Review

28

the nature of research in network architecture. Each reflects the
evolution of some aspect of at least one person’s architectural think-

ing.

3.1 Hardware and Packet-Processing Context

Modern routers typically process packets on port cards, which
connect to a channel on one side and a high-capacity intercon-
nect on the other (Fig. 2); the interconnect simply transfers pack-
ets from one port card to another. This structure, which seems
to be inherent in the topology of the problem, has the following
consequences. First, the processing on one port does not—indeed,
cannot—interact directly with the processing on other ports. The
router is basically a parallel multiprocessor. Second, processing
that occurs on a port card only needs to keep up with the channel;
per-packet processing that occurs in a central location must be able
to keep up with the aggregate speed of all channels to avoid over-
load. Third, packet-processing occurs in two contexts: the input
port context and the output port context. Routers may also have a
third context: a separate, general-purpose processing environment
that takes care of packets that require special handling, such as rout-
ing protocol packets or those addressed to the router itself.

The functional node structure depicted in Figure 1, on the other
hand, looks more like that of a general-purpose computer than a
router. (Jonathan Turner first pointed this out to me.) This is
not accidental; as a tool for separating concerns in an endeavor
concerned primarily with programming, the structure is sensible
and useful. Moreover, prototype active nodes—as is typical in
many networking research projects—were mostly implemented on
general-purpose PC platforms, with off-the-shelf operating systems
(linux) providing the resource management and protection func-
tions needed between EEs implemented as user processes. Of course
PC-based nodes could never provide high performance (even for
conventional networks), but the AN effort was not primarily about
performance anyway.

Interconnect

1] ~<——1—_Per—Port Processing

 — >

mrcT
P

i

-->

4

v T Centralized Processing

Figure 2: Processing contextsin arouter

The challenge is to ensure that Figure 1’s view of the system
does not obscure the notions of context that will become important
when it must be mapped to Figure 2. In particular, in designing an
EE (or for that matter any per-hop processing in a packet network),
the appropriate context for each function needs to be considered.
Whether this is straightforward or not depends very much upon the
EE’s packet-processing model. If the model specifies a sequence of
processing steps applied to each packet, the transfer of the packet
from the input port to the output port via the interconnect should
be explicitly identified in the sequence, to serve as a demarcation
point between the input and output contexts. The CANEs EE, for

Volume 36, Number 2, April 2006



example, did not identify such a point, although it would not have
been difficult to add it [2]. Other, language-based EEs also ignored
the distinction [20, 14], perhaps because they never considered that
the system would be implemented on a hardware architecture like
that of Fig. 2.

EE designers considering such a split would need some mech-
anism for bundling up the per-packet EE state and transferring it
along with the packet from input to output context. Since the under-
lying hardware architecture would strongly influence such a state-
transfer function, the NodeOS should provide it as a service. How-
ever, the NodeOS API never included such a function. The moral
of the story is that processing context should be considered when
specifying the general packet-processing model of a forwarding
node and the mechanisms to be provided within that model.

3.2 Node vs. End-to-End Focus

One of the selling points of programmable networks is the po-
tential to change the end-to-end network service “on a dime”. In
order to avoid constraining the set of possible services, the DARPA
framework explicitly avoided saying much about the end-to-end ar-
chitecture, except that it was packet-based. Instead, it focused on
the basic building-block of the network, the node platform. Em-
pirically it seems that there has been a good deal more research
on platform-oriented building blocks (NodeOS and EEs) than on
the services that can be built from them. A simple explanation for
this is that node-based building blocks are necessary for the end-to-
end services, and the whole point of the DARPA program was to
produce the platform, rather than any set of particular end-to-end
services. Yet this proportion seems to have persisted over a long
time. As one example, consider that a number of programmable
network platforms were defined that offered a wonderful opportu-
nity to investigate end-to-end issues considered important today,
such as routing and addressing. Alas, few, if any, published results
in those areas use active networks as a vehicle.

The general observation is that it is much easier to get solid re-
sults when research focuses on some local aspect of a network,
as opposed to the total end-to-end system. The difficulty of get-
ting definitive results about global end-to-end approaches is well
known: it is hard to provide an experimental infrastructure that is
both realistic in scale and controllable. Even given such an in-
frastructure, it is far from clear how to set parameters governing,
e.g., the nature and amount of background traffic; the parameter
spaces are simply far too large to explore thoroughly. (See Floyd
and Paxson [11] for an excellent discussion of these issues with re-
spect to simulation.) In contrast, research on local problems and
mechanisms—such as fair scheduling algorithms, efficient switch-
ing architectures, packet classification algorithms, and even TCP
congestion control mechanisms—generally requires modest infras-
tructure, and can be conducted in a controlled environment or ana-
lyzed with (relatively) simple models. This is not to say that such
research is in any way less valuable, but rather that it can often
provide more “bang for the buck”.

3.3 Late Binding: Boon or Bane?

The DARPA framework attempted to keep as many options open
as possible by not specifying any particular programming model,
instead allowing different models (in the form of different EEs) to
“compete”. The architecture specified a set of basic functions, but
left to the community the specification of a network API that would
provide access to those services. Several such APIs (EEs) were de-
fined [20, 14, 2], but no single one ever really emerged triumphant.
One can imagine several explanations for this. One possibility is
that all of the defined APIs were deficient in some way. Another

ACM SIGCOMM Computer Communication Review

29

is that the research program ended before any approach could gain
sufficient momentum. A third is that there was just not enough de-
mand for network programmability to allow differentiation among
approaches. However, | believe there is a principle involved that
applies to network architecture more generally.

The ability to support a variety of policies is clearly a desirable
goal for any network architecture. Certainly many of the recog-
nized shortcomings of today’s Internet relate to the desire of var-
ious stakeholders to enforce policies, where there is inadequate
mechanism to do so. For example, an architecture designed for late
binding of, say, policies regarding which packets will be allowed
to transit through a domain (as in [16]) would eliminate problems
arising from conflicting provider policies in BGP [13]. On the other
hand, allowing late binding of mechanism (i.e. providing multiple
ways to achieve the same thing) can actually hinder interoperabil-
ity. In active networks the question inevitably arose whether two
hosts that supported disjoint sets of EEs would be able to commu-
nicate; shortly after that came the notion of processing a packet
through multiple EEs on the same node.

There are other, well-known historical illustrations of this phe-
nomenon. The OSI network layer featured both a connectionless
and a connection-oriented service; they did not interoperate. In
contrast, though flexibility of service was one of the primary goals
of the Internet architecture [6], it was designed to achieve that goal
through a single mechanism: best-effort datagram forwarding, the
“waist of the hourglass”.

It is true that some situations require flexibility of mechanism.
Cryptographic algorithms in protocols are the canonical example:
late binding is necessary because of the potential for any given al-
gorithm to be “broken” at any time. In other situations (routing
algorithms), there is advantage in using different mechanisms in
different scopes. But in many cases, late binding of mechanisms
is simply an admission by the architects that they could not pick a
“winner” among the possible mechanisms. So they call it a draw,
perhaps declaring that things will be sorted out in the future by
“competition.” As observed above, the situation in networking is
different from that in graphics or CPU architecture. Competition
among network mechanisms can raise the total cost to the user, be-
cause multiple mechanisms must be supported to achieve universal
connectivity.

A related point is what might be called “the tyranny of the clean
slate”. It would seem that a fresh start like that provided by a
programmable infrastructure would make re-inventing the network
layer easier, by allowing new assumptions and exploration of new
tradeoffs. The unfortunate reality is that starting with a clean slate
is harder than an incremental approach, because so many things
have to be considered at once. The space of possible solutions is
so vast that one cannot always foresee the results of tradeoffs with-
out significant experimentation. Research projects with limited re-
sources must focus on a few specific aspects of the architecture; for
other aspects they end up adopting existing, known-to-work solu-
tions in order to avoid re-inventing (or just re-implementing) too
many wheels. The result is often something that is mostly incre-
mental, even if the slate was clean initially.

The moral of the story is that constraints on the solution space
are a good thing, because they provide focus [3, 4].

3.4 Internal Interfaces: Specified vs. Implicit

The NodeOS Interface Specification [8, 15] ended up being based
on POSIX-like capabilities. The original motivation for specifying
this interface within the group was so that EE developers could
count on a basic level of functionality to be available at every ac-
tive node. Given such a consistent interface, porting EEs between
different active nodes would be a simple matter.

Volume 36, Number 2, April 2006



This approach had some interesting consequences. First, it im-
plied that the primary burden of EE (and thus, in fact, active net-
work) deployability fell on the NodeOS implementors: an EE de-
veloped to the NodeOS interface specification could not be de-
ployed on a platform until that platform supported the interface.
Second, in order to quickly reach agreement on a basic specifi-
cation, radical, controversial, or platform-specific functions were
simply left out of the drafts. Indeed, the NodeOS specification
says that where non-AN-specific functionality is needed, POSIX
functions should be used if possible. In other words, the NodeOS
Interface Specification was rather biased toward the functionality
provided by a general-purpose computing environment.

An alternative approach would have been to agree on the exis-
tence of the interface, and the separation of concerns it implies,
while leaving the details of the interface to the node “vendor.” This
puts the burden of adapting the EE’s model to each vendor’s pro-
gramming interface entirely on the EE developer. In retrospect,
it seems likely that node developers would provide a sufficiently
large set of common functions to enable an EE to be ported to all
platforms.

The lesson is that specification of internal interfaces should come
last, rather than first, and internal interfaces should be specified
only when there is a compelling reason to do so. The IETF has a
long-standing tradition of specifying only the “bits on the wire”,
and letting internal interfaces take care of themselves. This pro-
vides maximum freedom to the implementor, and allows a more
direct “competition” of functionalities vying for inclusion.

3.5 Proving “Lifecycle” Benefits

The ability to more easily and quickly upgrade and deploy ser-
vices has often been cited as motivation for active/programmable
networks. Moreover, improved managability and control is likely
to be an important goal for the next generation Internet architecture.
Unfortunately, to demonstrate or rigorously quantify such benefits,
a very long baseline is required. Since nobody really knows the
half-life of a protocol architecture deployed on millions of nodes, it
is hard to even estimate the time required. How large of a network is
required before management costs of a proposed architecture could
be fairly compared with costs in the existing Internet? It seems that
the only way to for a new architecture to achieve acceptance is for it
to offer obvious advantages from the outset—for example, freedom
from denial-of-service attacks.

4. CONCLUSIONS

Much of the foregoing now seems “obvious in hindsight”, but it
must be noted that the author’s views have changed on every single
one of the above issues, in some cases rather dramatically. That
may simply reflect the meager state of my understanding at the
beginning. Perhaps a more important conclusion is that research
in network architecture is just hard.

5. REFERENCES

[1] D. Alexander, W. Arbaugh, M. Hicks, P. Kakkar,
A. Keromytis, J. Moore, C. Gunter, S. Nettles, and J. Smith.
The Switchware Active Network Architecture. IEEE
Network Special Issue on Active and Controllable Networks,
12(3):29-36, 1998.
S. Bhattacharjee, K. Calvert, Y. Chae, S. Merugu,
M. Sanders, and E. Zegura. Canes: An execution
environment for composable services. In DARPA Active
Networks Conference and Exposition, pages 255-272, May
2002.

(2]

ACM SIGCOMM Computer Communication Review

30

[3] K. Calvert, J. Griffioen, B. Mullins, A. Sehgal, and S. Wen.
Concast: Design and implementation of an active network
service. |EEE Journal on Selected Areas of Communications,
19(3), March 2001.

[4] K. Calvert, J. Griffioen, and S. Wen. Lightweight network
support for scalable end-to-end services. In ACM SGCOMM
2002, pages 265-278, August 2002.

[5] D. Clark et al. New arch: Future generation network

architecture (final technical report), 2004.

http://www.isi.edu/newarch/iDOCS/final.finalreport.pdf.

David D. Clark. The design philosophy of the DARPA

internet protocols. In ACM SSGCOMM ' 88, pages 106-114,

August 1988.

K. L. Calvert (editor). Architectural Framework for Active

Networks. DARPA Active Networks Working Group Draft,

December 2001.

L. L. Peterson (editor). NodeOS Interface specification.

DARPA Active Networks Working Group Draft, January

2001.

S. Murphy (editor). Security Architecture for Active Nets.

DARPA Active Networks Working Group Draft, November

2001.

D. Scott Alexander et. al. Active Network Encapsulation

Protocol (ANEP), 1997.

http://www.cis.upenn.edu/ dsl/switchware/ ANEP/.

Sally Floyd and Vern Paxson. Difficulties in simulating the

internet. IEEE/ACM Transactions on Networking,

9(4):392-403, August 2001.

[12] National Science Foundation. Future internet design

program. http://find.isi.edu.

[13] T. Griffin and G. Wilfong. An analysis of BGP convergence

properties. In ACM SGCOMM ' 99, pages 277-288,

September 1999.

Michael W. Hicks, Pankaj Kakkar, Jonathan T. Moore,

Carl A. Gunter, and Scott Nettles. PLAN: A packet language

for active networks. In International Conference on

Functional Programming, pages 86-93, 1998.

L. Peterson, Y. Gottlieb, M. Hibler, P. Tullmann, J. Lepreau,

S. Schwab, H. Dandekar, A. Purtell, and J. Hartman. An OS

Interface for Active Routers. IEEE Journal on Selected areas

of Communicasitons, 19(3), March 2001.

B. Raghavan and A. Snoeren. A system for authenticated

policy-compliant routing. In ACM SSIGCOMM 2004, pages

167-178, August 2004.

J. M. Smith, K. L. Calvert, S. L. Murphy, H. K. Orman, and

L. L. Peterson. Activating networks: A progress report. |EEE

Computer, 32(4), April 1999.

[18] David L. Tennenhouse and David J Wetherall. Towards an

Active Network Architecture. Computer Communication

Review, 26(2), April 1996.

Christian F. Tschudin. The Messenger Environment MO - a

Condensed Description.

http://cui.unige.ch/tios/msgr/m0/doc/overview.html, May

1997.

David J. Wetherall, John V. Guttag, and David L.

Tennenhouse. ANTS: A Toolkit for Building and

Dynamically Deploying Network Protocols. In IEEE

OPENARCH '98, April 1998.

(6]

[7]

(8]

(9]

[10]

[11]

[14]

[15]

[16]

[17]

[19]

[20]

Volume 36, Number 2, April 2006



