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ABSTRACT* 
The Open Network Laboratory (ONL) is a remotely accessible 
network testbed designed to enable networking faculty, students 
and researchers to conduct experiments using high performance 
routers and applications. The system is built around a set of 
extensible, high-performance routers and has a graphical interface 
that enables users to easily configure and run experiments 
remotely.  ONL’s Remote Laboratory Interface (RLI) allows 
users to easily configure a network topology, configure routes and 
packet filters in the routers, assign flows or flow aggregates to 
separate queues with configurable QoS and attach hardware 
monitoring points to real-time charts. The remote visualization 
features of the RLI make it easy to directly view  the effects of 
traffic as it moves through a router, allowing the user to gain 
better insight into system behavior and create compelling 
demonstrations.  Each port of the router is equipped with an 
embedded processor that provides a simple environment for 
software plugins allowing users to extend the system’s 
functionality.  This paper describes the general facilties and some 
networking experiments that can be carried out.  We hope that you 
and your collegues and students will check out the facility and 
register for an account at our web site onl.arl.wustl.edu. 
 

Categories and Subject Descriptors 
C.2 [Internetworking]: Routers 

General Terms 
Experimentation, Measurement 
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1. INTRODUCTION 
As the Internet has matured and become more complex, it has 
become increasingly difficult for networking researchers to 
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conduct research that requires experimental modifications to the 
data path of high performance routers. The closed architectures of 
commercial routers makes them largely inaccessible for this type 
of research and the time and effort required to make experimental 
modifications to these systems, makes this type of work 
prohibitively difficult for most researchers. This is unfortunate, 
since many of the more exciting opportunities for advanced 
network services require the introduction of new functionality in 
the router data path. The Open Network Laboratory (ONL) has 
been designed as a resource for the networking research and 
educational communities, to enable users to conduct experiments 
using high performance routers and applications. ONL 
dramatically reduces the “barrier-to-entry” for this kind of 
research by providing access to a remote testbed of open, high 
performance routers and hosts that can be controlled through an 
intuitive Remote Laboratory Interface (RLI). 

ONL builds on an earlier effort at Washington University, in 
which Gigabit Network Kits [1] were produced for use by research 
groups at over thirty other universities. While the kits program 
was moderately successful, it became clear that most groups 
found it difficult to maintain the level of expertise needed to 
manage the experimental equipment and use it effectively. The 
more recent, and highly successful development of Emulab [2], 
provided an alternate model for how to enable experimental 
network research. In developing our ideas for the Open Network 
Lab, we have directly borrowed the Emulab approach, although 
we have substituted high performance routers with packet 
forwarding in hardware, for Emulab’s PC-based routers. 

The RLI allows a remote user to easily configure experiments 
and monitor components (e.g., traffic, queues). The extensive 
support for real-time data visualization allows users to develop the 
insights needed to understand the behavior of new capabilities and 
allows users to deliver compelling demonstrations of their 
research ideas in a realistic operating environment. 

Section II of the paper describes the architecture of ONL 
showing the technical components of the testbed.  Section III 
describes the basic features of the Remote Laboratory Interface 
showing how an experiment can be remotely configured and 
monitored.  Section IV discusses more advanced features such as 
packet filters and queue management.  Then, Section V describes 
router plugins that are software modules that can be inserted along 
a router’s data path to provide custom processing. 
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2. ONL ARCHITECTURE 
The Open Network Laboratory consists of four experimental  

routers called Network Service Platforms (NSPs) plus 40 rack-
mounted PCs that serve as end systems and control processors 
(Figure 1).  The hardware components are grouped into four 
clusters with each cluster consisting of a single NSP, a control 
processor (CP) that manages the NSP, a gigabit Ethernet subnet 
with three connected hosts, and two directly connected hosts. This 
leaves four of each NSP’s ports uncommitted. These four ports 
are connected to a Configuration Switch that serves as an 
“electronic patch panel” to connect NSPs to each other or to 
additional hosts. Users interact with the testbed using the RLI, 
which is a standalone Java application. The RLI communicates 
with the testbed through the main ONL server which relays 
messages to the various testbed components. A second server 
(onlBSD) host is provided to facilitate preparation of software 
plugins for the NSPs’ embedded processors. 

The core component of our testbed is a modular, gigabit router 
(Figure 2). The system uses a cell-switched core and the per port 
interface hardware includes an embedded processor subsystem, 
called the Smart Port Card (SPC) [3], and a programmable logic 
board, called the Field Programmable Port Extender (FPX) [4], 
which includes a large field programmable gate array, with four 
high speed memory interfaces providing access to 2 MB of 
SRAM and 128 MB of DRAM. The system supports several 
different types of line cards, including one for gigabit Ethernet 
(GigE).  The core cell switch supports 1024 virtual circuits per 
port, per virtual circuit traffic monitoring, support for multicast 
and two hardware priority levels. One port of the system is 
typically used by an external control processor for system 
management through in-band control cells. 

Packets entering the system first pass to the FPX, which can be 
configured to do IP routing, flow classification and packet 
scheduling. Packets that require software processing can be 
diverted to the SPC on either the input or output side of the 
system. The system uses a modular design that allows easy 
insertion of add-on cards like the FPX and SPC. Such cards are 
equipped with connectors at either end and are stacked on top of 
one another. This makes it easy to upgrade individual pieces and 
to configure systems with a variety of characteristics. 

The SPC includes a dual port network interface chip (the ATM 
Port Interconnect Controller or APIC), which allows any portion 
of the traffic entering or leaving the system to be diverted to the 
Pentium processor module on the card. The APIC transfers IP 
packets directly to and from processor memory over a 32 bit PCI 

bus. In situations where 10% of the link traffic requires software 
processing, the SPC allows the execution of close to 50 
instructions per byte, which is sufficient to implement moderately 
complex applications that examine and modify the packet data. 

The FPX contains two field programmable gate arrays. The 
Network Interface Device (NID) can be used to redirect any 
portion of the arriving traffic to the Reprogrammable Application 
Device (RAD), which is a Xilinx XCV2000E, with 80 KB of on-
chip SRAM and 38,400 basic logic blocks, each containing one 
flip flop, a configurable four variable logic function generator and 
miscellaneous support circuits. The RAD is equipped with 2 
SRAMs and 2 SDRAMs, which can operate at up to 100 MHz, 
giving it a raw memory bandwidth of up to 2.5 GBytes per 
second. The available resources allow it to support all the core 
packet processing functions required of an advanced router 
supporting gigabit link speeds. The FPX supports dynamic 
reconfiguration of the RAD. A complete new RAD configuration 
can be downloaded in just a few seconds. 

3. THE REMOTE LAB INTERFACE  
The RLI is a standalone Java application that allows a remote 

user to interactively configure an experiment and monitor a 
variety of measurement points within the testbed infrastructure. 
This section describes the basic features of the RLI including 
resource acquisition, routing table configuration and traffic 
monitoring. Later sections describe more advanced features such 
as bandwidth allocation and router plugins. 

The first step in constructing an experiment is to define the 
network components and topology.  Figure 3 shows the main RLI 
panel during the configuration phase with its main drop-down 
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Figure 2.  NSP Hardware. 
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Figure 1.  Open Network Laboratory Configuration. 

 
Figure 3.  Topology Construction. 
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Figure 4.  A Traffic Display. 

menus at the top.  The user has added components using the 
Topology menu.  The links are shown as dashed lines, and the 
hosts and NSPs are shown in light shade indicating that the 
components have not yet been bound to actual testbed resources. 
A cluster consists of an NSP, with its Control Processor (CP), two 
directly connected hosts and a gigabit Ethernet subnet with three 
more hosts. Additional hosts can be added and linked to other 
ports by selecting Topology ⇒ Add Host and Topology ⇒ Add 
Link.  The Generate Default Routes item in the Topology menu 
initializes the NSPs’ routing tables so that packets sent to any host 
will be routed to it along some minimum hop path.  Experimental 
configurations can be saved to a file by selecting File ⇒ Save As, 
making it relatively easy to return to an experiment later. 

Although in this example we accepted default values for 
parameters such as link rates and queue sizes and accepted default 
routing, the user can modify these settings as well as give special 
treatment to flows, and install plugins for special packet 
processing.  This topology configuration phase is defined with 
logical resources and can be done without connecting to the ONL 
testbed.  But in order to run an experiment, the user must reserve 
resources and the system must bind the logical components to 
actual resources. 

A user can either reserve resources in advance through a web-
based reservation system that is modeled after a restaurant 
reservation system or reserve the resources during the resource 
binding process. To allocate, bind and initialize physical resources 
in the testbed, the user connects to an ONL server with an ssh 
tunnel and selects File ⇒ Commit in the RLI. The RLI initiates 
the setup and as resources are allocated and initialized, dashed 
links become solid lines and components are displayed in a darker 
color (see Figure 4). 

The RLI can also be used to visually display traffic moving 
through various monitoring points within the NSPs.  Figure 4 
shows a situation where the user is monitoring the traffic 
generated by ping traffic from host n1p2 to host n2p3 as it leaves 
port 6 of NSP 1 and is about to add another plot showing the 
returning traffic coming into port 6 of NSP 1. 

The NSPs provide a wide variety of monitoring points, such as 
link bandwidth, the number of packets matching any given route 
or packet filter, queue lengths and the number of packets 
discarded due to link overflows or header errors. All can be 

connected to real-time displays, that can be customized in a 
variety of ways to best suit the user’s needs.  

4. FILTERS, QUEUES AND BANDWIDTH 
The RLI also allows the user to access more advanced features 

of the hardware such as packet classification, queueing and 
redirection, and bandwidth sharing.  This section describes a 
simple experiment in which UDP traffic from multiple sources 
flowing through a bottleneck link are given different bandwidth 
and queue shares. The real-time display capability is used to 
verify that the system behaves as expected. 

The experiment uses the two-NSP topology described in the 
previous section (Figure 4), but instead of sending ping traffic, we 
use the iperf  utility [5] to send UDP traffic from the three hosts 
n1p2, n1p3 and n1p4 to hosts n2p2, n2p3 and n2p4 through the 
bottleneck link joining port 6 of NSP 1 to port 7 of NSP 2. 

In order to give special treatment to these three flows, we use 
General Match filters in the FPX at the egress side of port 6 of 
NSP 1 to redirect the flows to separate reserved queues. The FPX 
has three parallel lookup tables at each port: 1) a Route Table that 
uses longest prefix matching, 2) a Flow Table that uses Exact 
Match (EM) filters, and 3) a Filter Table that uses General Match 
(GM) filters.   Both EM and GM filters match on a packet’s IP 
address fields, transport layer port fields and protocol field. But 
EM filters differ from GM filters in two respects:  GM filters 
allow wild-carding of these fields, and they have assignable 
priorities. When a packet matches multiple filters, the highest 
priority entry is chosen. 

We have set the configuration parameters for the queues at port 
6 of NSP 1 so that the egress link capacity is 300 Mbps, and the 
internal switch capacity has been set to 600 Mbps giving a 2:1 
switch speed advantage. The link bandwidth can be set to any rate 
up to 1 Gb/s.  In this example, the desired bandwidth ratios of 
queues 300-302 were set to 4:2:1 by modifying entries in the 
Egress Queue Table which control the bandwidth shares of a 
Weighted Deficit Round Robin (WDRR) packet scheduler. The 
egress queue sizes for each of these flows were also set in the 
Egress Queue Table. 

Figure 5 shows two plots. The top plot shows the bandwidths 
in incremental form. Specifically, the first solid curve shows the 
bandwidth entering the bottleneck link coming from the first flow, 

 

 
Figure 5.  Traffic Bandwidth and Queue Lengths. 
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the second solid curve shows the bandwidth contributed by the 
first two flows and the third shows the total bandwidth contributed 
by all three flows. The dashed curves show the bandwidth leaving 
the bottleneck link. Note that the three sources are sending at an 
aggregate rate of over 700 Mbps, well over the 300 Mbps capacity 
of the bottleneck.  The dashed curves indicate  that the three UDP 
flows are receiving bandwidth in the proportion 4:2:1 when all 
three flows are active (middle section) and 2:1 (right end) when 
only qids 301 and 302 have packets.  The bottom plot shows the 
queue length of the reserved flow queues and that the length of the 
three reserved flows is in the ratio 2:3:4 as required by the 
threshold settings. 

5. ROUTER  PLUGINS  
A user can divert traffic to plugins loaded into the SPCs to 

perform custom packet processing such as: 
• Examine or modify packet headers and/or bodies 
• Model packet delays, drops and modifications 
• Produce additional packets 
• Change the normal packet forwarding action 

Figure 6 shows how a packet flows from a link through the FPX 
to an SPC plugin, back to the FPX and then finally out to the 
switch core. 

In order to use an existing plugin, a user creates an instance of 
the plugin at a port, creates a filter to divert traffic to the plugin 
instance and then binds the plugin instance to the filter. Figure 7 
shows the panels used to create a plugin at the egress side of port 
2 to delay TCP ACK packets.  The GM filter in this example 
places all packets into queue 8 which is headed for the SPC where 
instance 0 of the pdelay plugin will delay packets it receives by 50 
msec before forwarding them.  A user can select from a set of 
standard plugins or write his/her own plugin. 

A user can send messages to plugins through the RLI.  For 
example, the delay plugin can be told to change its delay and can 
be queried for the number of packets that it has forwarded and has 
in its queue.  Data from plugins can also be easily displayed in 
real-time panels like any other data. 

6. CONCLUSIONS 
We have described the Open Network Laboratory and have 

shown how ONL’s Remote Laboratory Interface (RLI) allows 
users to easily create a network topology, configure the routers in 
the network and attach the system’s extensive traffic monitoring 
mechanisms to real-time displays. We have also shown how the 
functionality of the routers can be extended through the addition 

of software plugins, providing a rich experimental environment 
for developing and evaluating advanced services.  The ONL has  
other features (e.g., user-data displays, debugging, plugin writing) 
which have been omitted for the sake of brevity here. 

We plan to make it possible for users to modify the 
configurable logic in the FPX’s FPGAs. While the essential 
technical capabilities needed to support this exist (we routinely 
load new configurable logic files in order to add features and 
correct errors), we need to develop mechanisms to ensure this can 
be done reliably, without risking damage to system components. 

We believe that ONL can be an important addition to the set of 
resources available to systems researchers in networking, 
complementing existing testbeds, such as Emulab and Planetlab. 
We hope that you and your collegues and students will check out 
the facility and register for an account at our web site 
onl.arl.wustl.edu. 
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Figure 7.  Adding a Delay Plugin to Port 2. 
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Figure 6.  The Plugin Environment. 
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