

The Open Network Laboratory
A resource for

networking research and education

John DeHart, Fred Kuhns, Jyoti Parwatikar,
Jonathan Turner, Charlie Wiseman and Ken Wong

The Applied Research Laboratory
Department of Computer Science and Engineering

Washington University in St. Louis
St. Louis, MO 63130

{jdd,fredk,jp,jst,cgw1,kenw}@arl.wustl.edu

ABSTRACT*
The Open Network Laboratory (ONL) is a remotely accessible
network testbed designed to enable networking faculty, students
and researchers to conduct experiments using high performance
routers and applications. The system is built around a set of
extensible, high-performance routers and has a graphical interface
that enables users to easily configure and run experiments
remotely. ONL’s Remote Laboratory Interface (RLI) allows
users to easily configure a network topology, configure routes and
packet filters in the routers, assign flows or flow aggregates to
separate queues with configurable QoS and attach hardware
monitoring points to real-time charts. The remote visualization
features of the RLI make it easy to directly view the effects of
traffic as it moves through a router, allowing the user to gain
better insight into system behavior and create compelling
demonstrations. Each port of the router is equipped with an
embedded processor that provides a simple environment for
software plugins allowing users to extend the system’s
functionality. This paper describes the general facilties and some
networking experiments that can be carried out. We hope that you
and your collegues and students will check out the facility and
register for an account at our web site onl.arl.wustl.edu.

Categories and Subject Descriptors
C.2 [Internetworking]: Routers

General Terms
Experimentation, Measurement

Keywords
Experimental testbed, Education, Real-time displays

1. INTRODUCTION
As the Internet has matured and become more complex, it has
become increasingly difficult for networking researchers to

* This work was supported by NSF (ANI-023826).

conduct research that requires experimental modifications to the
data path of high performance routers. The closed architectures of
commercial routers makes them largely inaccessible for this type
of research and the time and effort required to make experimental
modifications to these systems, makes this type of work
prohibitively difficult for most researchers. This is unfortunate,
since many of the more exciting opportunities for advanced
network services require the introduction of new functionality in
the router data path. The Open Network Laboratory (ONL) has
been designed as a resource for the networking research and
educational communities, to enable users to conduct experiments
using high performance routers and applications. ONL
dramatically reduces the “barrier-to-entry” for this kind of
research by providing access to a remote testbed of open, high
performance routers and hosts that can be controlled through an
intuitive Remote Laboratory Interface (RLI).

ONL builds on an earlier effort at Washington University, in
which Gigabit Network Kits [1] were produced for use by research
groups at over thirty other universities. While the kits program
was moderately successful, it became clear that most groups
found it difficult to maintain the level of expertise needed to
manage the experimental equipment and use it effectively. The
more recent, and highly successful development of Emulab [2],
provided an alternate model for how to enable experimental
network research. In developing our ideas for the Open Network
Lab, we have directly borrowed the Emulab approach, although
we have substituted high performance routers with packet
forwarding in hardware, for Emulab’s PC-based routers.

The RLI allows a remote user to easily configure experiments
and monitor components (e.g., traffic, queues). The extensive
support for real-time data visualization allows users to develop the
insights needed to understand the behavior of new capabilities and
allows users to deliver compelling demonstrations of their
research ideas in a realistic operating environment.

Section II of the paper describes the architecture of ONL
showing the technical components of the testbed. Section III
describes the basic features of the Remote Laboratory Interface
showing how an experiment can be remotely configured and
monitored. Section IV discusses more advanced features such as
packet filters and queue management. Then, Section V describes
router plugins that are software modules that can be inserted along
a router’s data path to provide custom processing.

ACM SIGCOMM Computer Communication Review 75 Volume 35, Number 5, October 2005

2. ONL ARCHITECTURE
The Open Network Laboratory consists of four experimental

routers called Network Service Platforms (NSPs) plus 40 rack-
mounted PCs that serve as end systems and control processors
(Figure 1). The hardware components are grouped into four
clusters with each cluster consisting of a single NSP, a control
processor (CP) that manages the NSP, a gigabit Ethernet subnet
with three connected hosts, and two directly connected hosts. This
leaves four of each NSP’s ports uncommitted. These four ports
are connected to a Configuration Switch that serves as an
“electronic patch panel” to connect NSPs to each other or to
additional hosts. Users interact with the testbed using the RLI,
which is a standalone Java application. The RLI communicates
with the testbed through the main ONL server which relays
messages to the various testbed components. A second server
(onlBSD) host is provided to facilitate preparation of software
plugins for the NSPs’ embedded processors.

The core component of our testbed is a modular, gigabit router
(Figure 2). The system uses a cell-switched core and the per port
interface hardware includes an embedded processor subsystem,
called the Smart Port Card (SPC) [3], and a programmable logic
board, called the Field Programmable Port Extender (FPX) [4],
which includes a large field programmable gate array, with four
high speed memory interfaces providing access to 2 MB of
SRAM and 128 MB of DRAM. The system supports several
different types of line cards, including one for gigabit Ethernet
(GigE). The core cell switch supports 1024 virtual circuits per
port, per virtual circuit traffic monitoring, support for multicast
and two hardware priority levels. One port of the system is
typically used by an external control processor for system
management through in-band control cells.

Packets entering the system first pass to the FPX, which can be
configured to do IP routing, flow classification and packet
scheduling. Packets that require software processing can be
diverted to the SPC on either the input or output side of the
system. The system uses a modular design that allows easy
insertion of add-on cards like the FPX and SPC. Such cards are
equipped with connectors at either end and are stacked on top of
one another. This makes it easy to upgrade individual pieces and
to configure systems with a variety of characteristics.

The SPC includes a dual port network interface chip (the ATM
Port Interconnect Controller or APIC), which allows any portion
of the traffic entering or leaving the system to be diverted to the
Pentium processor module on the card. The APIC transfers IP
packets directly to and from processor memory over a 32 bit PCI

bus. In situations where 10% of the link traffic requires software
processing, the SPC allows the execution of close to 50
instructions per byte, which is sufficient to implement moderately
complex applications that examine and modify the packet data.

The FPX contains two field programmable gate arrays. The
Network Interface Device (NID) can be used to redirect any
portion of the arriving traffic to the Reprogrammable Application
Device (RAD), which is a Xilinx XCV2000E, with 80 KB of on-
chip SRAM and 38,400 basic logic blocks, each containing one
flip flop, a configurable four variable logic function generator and
miscellaneous support circuits. The RAD is equipped with 2
SRAMs and 2 SDRAMs, which can operate at up to 100 MHz,
giving it a raw memory bandwidth of up to 2.5 GBytes per
second. The available resources allow it to support all the core
packet processing functions required of an advanced router
supporting gigabit link speeds. The FPX supports dynamic
reconfiguration of the RAD. A complete new RAD configuration
can be downloaded in just a few seconds.

3. THE REMOTE LAB INTERFACE
The RLI is a standalone Java application that allows a remote

user to interactively configure an experiment and monitor a
variety of measurement points within the testbed infrastructure.
This section describes the basic features of the RLI including
resource acquisition, routing table configuration and traffic
monitoring. Later sections describe more advanced features such
as bandwidth allocation and router plugins.

The first step in constructing an experiment is to define the
network components and topology. Figure 3 shows the main RLI
panel during the configuration phase with its main drop-down

ATM
Switch
Core

FPX
SPC

PP

PP

PP

.
.

.

CP

ex
te

rn
a
l

lin
ks

Lookup

.
.

. . . .

. . .

SPC plugin
env.

FPX

ATM
Switch
Core

FPX
SPC

PP

PP

PP

.
.

.

CP

ex
te

rn
a
l

lin
ks

Lookup

.
.

. . . .

. . .

SPC plugin
env.

FPX

Lookup

.
.

.
.

.
. . . .

. . .

.

SPC plugin
env.

FPX

Figure 2. NSP Hardware.

16

control subnet

CP 23

0
GE

1 2,3

NSP1

CP 23

0
GE

1 2,3

NSP2

CP 23

0
GE

1 2,3

NSP3

CP 23

0
GE

1 2,3

NSP4

4-7 4-74-7 4-7

configuration switch

onl server

onlBSD

netBSD server
for plugin prep

192.160.1.* 192.160.4.*192.160.3.*192.160.2.*

Internet

onl

usr

1616

control subnet

CP 23

0
GE

1 2,3

NSP1

CPCP 2233

0
GE

1 2,3

NSP1

CP 23

0
GE

1 2,3

NSP2

CPCP 2233

0
GE

1 2,3

NSP2

CP 23

0
GE

1 2,3

NSP3

CPCP 2233

0
GE

1 2,3

NSP3

CP 23

0
GE

1 2,3

NSP4

CPCP 2233

0
GE

1 2,3

NSP4

4-7 4-74-7 4-7

configuration switch

onl server

onlBSDonlBSD

netBSD server
for plugin prep

192.160.1.* 192.160.4.*192.160.3.*192.160.2.*

InternetInternet

onlonl

usrusr

Figure 1. Open Network Laboratory Configuration.

Figure 3. Topology Construction.

ACM SIGCOMM Computer Communication Review 76 Volume 35, Number 5, October 2005

Figure 4. A Traffic Display.

menus at the top. The user has added components using the
Topology menu. The links are shown as dashed lines, and the
hosts and NSPs are shown in light shade indicating that the
components have not yet been bound to actual testbed resources.
A cluster consists of an NSP, with its Control Processor (CP), two
directly connected hosts and a gigabit Ethernet subnet with three
more hosts. Additional hosts can be added and linked to other
ports by selecting Topology ⇒ Add Host and Topology ⇒ Add
Link. The Generate Default Routes item in the Topology menu
initializes the NSPs’ routing tables so that packets sent to any host
will be routed to it along some minimum hop path. Experimental
configurations can be saved to a file by selecting File ⇒ Save As,
making it relatively easy to return to an experiment later.

Although in this example we accepted default values for
parameters such as link rates and queue sizes and accepted default
routing, the user can modify these settings as well as give special
treatment to flows, and install plugins for special packet
processing. This topology configuration phase is defined with
logical resources and can be done without connecting to the ONL
testbed. But in order to run an experiment, the user must reserve
resources and the system must bind the logical components to
actual resources.

A user can either reserve resources in advance through a web-
based reservation system that is modeled after a restaurant
reservation system or reserve the resources during the resource
binding process. To allocate, bind and initialize physical resources
in the testbed, the user connects to an ONL server with an ssh
tunnel and selects File ⇒ Commit in the RLI. The RLI initiates
the setup and as resources are allocated and initialized, dashed
links become solid lines and components are displayed in a darker
color (see Figure 4).

The RLI can also be used to visually display traffic moving
through various monitoring points within the NSPs. Figure 4
shows a situation where the user is monitoring the traffic
generated by ping traffic from host n1p2 to host n2p3 as it leaves
port 6 of NSP 1 and is about to add another plot showing the
returning traffic coming into port 6 of NSP 1.

The NSPs provide a wide variety of monitoring points, such as
link bandwidth, the number of packets matching any given route
or packet filter, queue lengths and the number of packets
discarded due to link overflows or header errors. All can be

connected to real-time displays, that can be customized in a
variety of ways to best suit the user’s needs.

4. FILTERS, QUEUES AND BANDWIDTH
The RLI also allows the user to access more advanced features

of the hardware such as packet classification, queueing and
redirection, and bandwidth sharing. This section describes a
simple experiment in which UDP traffic from multiple sources
flowing through a bottleneck link are given different bandwidth
and queue shares. The real-time display capability is used to
verify that the system behaves as expected.

The experiment uses the two-NSP topology described in the
previous section (Figure 4), but instead of sending ping traffic, we
use the iperf utility [5] to send UDP traffic from the three hosts
n1p2, n1p3 and n1p4 to hosts n2p2, n2p3 and n2p4 through the
bottleneck link joining port 6 of NSP 1 to port 7 of NSP 2.

In order to give special treatment to these three flows, we use
General Match filters in the FPX at the egress side of port 6 of
NSP 1 to redirect the flows to separate reserved queues. The FPX
has three parallel lookup tables at each port: 1) a Route Table that
uses longest prefix matching, 2) a Flow Table that uses Exact
Match (EM) filters, and 3) a Filter Table that uses General Match
(GM) filters. Both EM and GM filters match on a packet’s IP
address fields, transport layer port fields and protocol field. But
EM filters differ from GM filters in two respects: GM filters
allow wild-carding of these fields, and they have assignable
priorities. When a packet matches multiple filters, the highest
priority entry is chosen.

We have set the configuration parameters for the queues at port
6 of NSP 1 so that the egress link capacity is 300 Mbps, and the
internal switch capacity has been set to 600 Mbps giving a 2:1
switch speed advantage. The link bandwidth can be set to any rate
up to 1 Gb/s. In this example, the desired bandwidth ratios of
queues 300-302 were set to 4:2:1 by modifying entries in the
Egress Queue Table which control the bandwidth shares of a
Weighted Deficit Round Robin (WDRR) packet scheduler. The
egress queue sizes for each of these flows were also set in the
Egress Queue Table.

Figure 5 shows two plots. The top plot shows the bandwidths
in incremental form. Specifically, the first solid curve shows the
bandwidth entering the bottleneck link coming from the first flow,

Figure 5. Traffic Bandwidth and Queue Lengths.

ACM SIGCOMM Computer Communication Review 77 Volume 35, Number 5, October 2005

the second solid curve shows the bandwidth contributed by the
first two flows and the third shows the total bandwidth contributed
by all three flows. The dashed curves show the bandwidth leaving
the bottleneck link. Note that the three sources are sending at an
aggregate rate of over 700 Mbps, well over the 300 Mbps capacity
of the bottleneck. The dashed curves indicate that the three UDP
flows are receiving bandwidth in the proportion 4:2:1 when all
three flows are active (middle section) and 2:1 (right end) when
only qids 301 and 302 have packets. The bottom plot shows the
queue length of the reserved flow queues and that the length of the
three reserved flows is in the ratio 2:3:4 as required by the
threshold settings.

5. ROUTER PLUGINS
A user can divert traffic to plugins loaded into the SPCs to

perform custom packet processing such as:
• Examine or modify packet headers and/or bodies
• Model packet delays, drops and modifications
• Produce additional packets
• Change the normal packet forwarding action

Figure 6 shows how a packet flows from a link through the FPX
to an SPC plugin, back to the FPX and then finally out to the
switch core.

In order to use an existing plugin, a user creates an instance of
the plugin at a port, creates a filter to divert traffic to the plugin
instance and then binds the plugin instance to the filter. Figure 7
shows the panels used to create a plugin at the egress side of port
2 to delay TCP ACK packets. The GM filter in this example
places all packets into queue 8 which is headed for the SPC where
instance 0 of the pdelay plugin will delay packets it receives by 50
msec before forwarding them. A user can select from a set of
standard plugins or write his/her own plugin.

A user can send messages to plugins through the RLI. For
example, the delay plugin can be told to change its delay and can
be queried for the number of packets that it has forwarded and has
in its queue. Data from plugins can also be easily displayed in
real-time panels like any other data.

6. CONCLUSIONS
We have described the Open Network Laboratory and have

shown how ONL’s Remote Laboratory Interface (RLI) allows
users to easily create a network topology, configure the routers in
the network and attach the system’s extensive traffic monitoring
mechanisms to real-time displays. We have also shown how the
functionality of the routers can be extended through the addition

of software plugins, providing a rich experimental environment
for developing and evaluating advanced services. The ONL has
other features (e.g., user-data displays, debugging, plugin writing)
which have been omitted for the sake of brevity here.

We plan to make it possible for users to modify the
configurable logic in the FPX’s FPGAs. While the essential
technical capabilities needed to support this exist (we routinely
load new configurable logic files in order to add features and
correct errors), we need to develop mechanisms to ensure this can
be done reliably, without risking damage to system components.

We believe that ONL can be an important addition to the set of
resources available to systems researchers in networking,
complementing existing testbeds, such as Emulab and Planetlab.
We hope that you and your collegues and students will check out
the facility and register for an account at our web site
onl.arl.wustl.edu.

7. REFERENCES
[1] Kits Gigabit Kits Technology Distribution Program.,

http://www.arl.wustl.edu/gigabitkits, 1998.
[2] Brian White, Jay Lepreau, Leigh Stoller, et. al., “An

Integrated Experimental Environment for Distributed
Systems and Networks,” Proc. 5th Symp. on Op. Sys.
Design & Implementation, Dec. 2002, pp. 255-270.

[3] John D. DeHart, William D. Richard, Edward W.
Spitznagel, and Dave Taylor, “The Smart Port Card: An
Embedded Unix Processor Architecture for Network
Management and Active Networking,” Washington
University, Department of Computer Science Technical
Memorandum WUCS-TM-01-15, July 2001.

[4] John W. Lockwood, Naji Naufel, Jon S. Turner, and
David Taylor, “Reprogrammable Network Packet
Processing on the Field Programmable Port Extender
(FPX),” Proc. ACM Intl. Symp. On Field Programmable
Gate Arrays (FPGA’2001), Monterey, CA, Feb. 2001, pp.
87-93.

[5] http://dast.nlanr.net/Projects/iperf/.

Figure 7. Adding a Delay Plugin to Port 2.

Lookup

.
.

. . . .

. . .

SPC plugin
env.

FPX

to/from
links

to/from
switch core

Lookup

.
.

.
.

.
. . . .

. . .

.

SPC plugin
env.

FPX

to/from
links

to/from
switch core

Figure 6. The Plugin Environment.

ACM SIGCOMM Computer Communication Review 78 Volume 35, Number 5, October 2005

