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ABSTRACT 
Building very large computing systems is extremely challenging, 
given the lack of robust scalable communication technologies. 
This threatens a new generation of mission-critical but very large 
computing systems. Fortunately, a new generation of “gossip-
based” or epidemic communication primitives can overcome a 
number of these scalability problems, offering robustness and 
reliability even in the most demanding settings. Epidemic 
protocols emulate the spread of an infection in a crowded 
population, and are both reliable and stable under forms of stress 
that will disable most traditional protocols. This paper describes 
some of the common problems that arise in scalable group 
communication systems and how epidemic techniques have been 
used to successfully address these problems. 

1 INTRODUCTION 
Distributed computing will be central to advances in a broad range 
of critical applications, including intelligence information 
systems, military command and control, air traffic control, electric 
power grid management, telecommunications, and a vast array of 
web-based commercial and government applications. Indeed, a 
massive rollout of such systems is already underway. Yet while 
impressive capabilities have been easy to develop and 
demonstrate in small-scale settings, once deployed these systems 
often stumble badly. 

Software that runs securely and reliably in small-scale mockups 
may lose those properties as numbers of users, the size of the 
network and transaction processing rates all increase. Whereas 
small networks are well behaved, any sufficiently large network 
behaves like the public Internet, exhibiting disruptive overloads 
and routing changes, periods of poor connectivity and throughput 
instability. Failures rise in frequency simply because the numbers 
of participating components are larger. A scalable technology 
must ride out such forms of infrastructure instability. 

Our studies reveal that very few existing technologies have the 
necessary properties. Most, including the most prevalent 
commercial software, exhibit scalability problems when subjected 
to even modest stress. This finding reveals an imminent (and 
growing) threat to the full spectrum of emergent mission-critical 
computing systems. If we can’t solve the scalability problem, and 
develop a methodology yielding applications that remain secure 
and robust even when failures occur – indeed, even under attack, 
or during denial-of-service episodes – the very technologies that 
hold the greatest promise for major advances will prove to be the 
Achilles Heel of a future generation of mission-critical military 
and public-sector enterprises. 

In the past 4 years the Spinglass project has worked to overcome 
scalability barriers, starting with an idea that was first proposed in 
the context of replicated database systems. These systems 
employed what were called “epidemic-style” or “gossip” update 
algorithms, whereby sites periodically compare their states and 
reconcile inconsistencies, using a randomized mechanism for 
deciding when and with whom each participant will gossip. 
Traditionally, the database systems used gossip protocols at low 
speeds. Our work employs gossip at very high speeds, yielding a 
new generation of protocols that have an unusual style of 
probabilistic reliability guarantees –guarantees of scalability, 
performance, stability of throughput even under stress, and 
remarkable scalability. These properties hold even on Internet-like 
platforms. Epidemic protocols lend themselves to theoretical 
analysis, making it possible to predict their behavior with high 
confidence. However, the focus of our work at Cornell is mostly 
practical: we are using epidemics, together with other more 
traditional mechanisms, to develop new generations of scalable 
communications software and middleware for a wide variety of 
settings. 

In the initial toolset epidemic techniques were used for failure-
detection, group communication and distributed state-
management. Now that these tools are maturing, we are applying 
the techniques to other distributed systems areas that face similar 
scalability challenges, notably the areas of sensor networks and 
world-wide publish/subscribe systems. Our objective in the 
present paper is to review the scalability problem for group 
communication, and to summarize how we used epidemic 
techniques to solve it. The need for brevity limits the technical 
detail here, but other publications are available for the interested 
reader who wishes to learn more. 
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2 SCALABILITY PROBLEMS IN 
CURRENT COMMUNICATION 
SYSTEMS 

The scalability of distributed protocols and systems is a major 
determinant of success in demanding systems. For example, 
consider the September 2000 field-test of the Navy’s Cooperative 
Engagement Capability (CEC). During a two week period this 
system (which offers an over-the-horizon cooperative targeting 
capability for naval battleships) was subjected to a very modest 
stress test. The value of this system depends upon timely 
identification of threats and rapid decisions about which ship will 
respond to which threat: threats may be incoming missiles moving 
at several times the speed of sound. This translates to internal 
deadlines of about a second for the communication subsystem, 
which had been demonstrated easily capable of meeting the 
requirements under laboratory conditions with small numbers of 
participating computing systems. Yet under load, when even small 
numbers of battleships were added to the system, the underlying 
Data Distribution System (DDS) became unstable, failing 
outright, or delivering data after much more than the one-second 
threshold. (Defense News, October 16, 2000). The result was that 
the CEC basically failed – and this under rather benign conditions 
in which the only variable that changed was the number of 
participants.  

This paper focuses on scalability of distributed protocols 
providing some form of guaranteed reliability when 
communication among multiple participants is required. Use of 
these reliable group communication (multicast) protocols is very 
popular in distributed systems, as there is a natural match between 
the group paradigm and the way large distributed systems are 
structured. These protocols allow systems to be built in pure peer-
to-peer manner, removing the need for centralized servers, 
removing one of the bottlenecks in system scalability. 

Traditional reliable multicast protocols, including those developed 
by our research group, all exhibit severe scaling problems, 
especially when applied in large Internet-style settings. Even 
though some of these protocols appeared to be very promising in 
terms of scalability they all failed to operate as soon as the 
network conditions were no longer ideal. In general the 
performance analyses of the protocols only focuses on two 
extreme cases: performance of the protocol under ideal 
conditions, when nothing goes wrong, and the disruptive impact 
of a failure. Reality forces use to take a look at these protocols 
from a different perspective: what happens to these protocols 
under mundane transient problems, such as network or processor 
scheduling delays and brief periods of packet loss. One would 
expect that reliable protocols would ride out such events, but we 
find that this is rarely the case, particularly if we look at the 
impact of a disruptive event as a function of scale. On the 
contrary, reliable protocols degrade dramatically under this type 
of mundane stress, a phenomenon attributable to low-probability 
events that become both more likely and more costly as the scale 
of the system grows. 

Because of the need for brevity, we’ll limit ourselves to a 
summary of our finding with respect to the growth rate of 
disruptive overheads for a number of widely used multicast 
protocols. Elsewhere [3], we present a more detailed analysis of a 
variety of scenarios, modeled after the work of Gray et. al. [4], 
where a similar conclusion is reached with respect to database 

scalability. It is clear that scalability represents a widespread 
problem affecting a broad range of technologies and systems. 

2.1 Common Problems 
When subjected to transient problem that are related to scaling the 
environment, there are important categories of problems that 
appear: 
• Throughput Instability. All of the protocols that implement 

reliable group communication are subject a breakdown of 
message throughput as soon as one or more members 
experience perturbation. A single slow receiver, which can be 
cause by CPU overhead or some localized message loss, will 
eventually have an impact on the throughput to the overall 
group. The results in [3] show that this impact is even more 
dramatic and happens more rapidly if we scale up the system, 
making the protocol stability extremely volatile under even 
moderate scaling conditions. 

• Micropartitions. In reaction to the throughput instability 
problem, designers often go for the approach to as soon as 
possible to remove the trouble-causing member from the group 
by using more aggressive failure detection mechanisms. 
However when scaling the system to moderate Internet 
environments, one quickly discovers that this has the adverse 
effect that transient network problems, which occur frequently, 
frequently trigger incorrect failure-suspicions. Erroneous failure 
decisions involve particularly costly “leave/rejoin” events, 
where the overall system constantly needs to reconfigure itself. 
We will term this a micropartitioning of the group, because a 
non-crashed member effectively becomes partitioned away 
from the group and later the partition (of size one) must 
remerge. In effect, by setting failure detection parameters more 
and more aggressively while scaling the system up, we 
approach a state in which the group may continuously 
experience micropartitions, a phenomenon akin to thrashing. 

Costs associated with micropartitions rise in frequency with the 
square of the size of the group. This is because the frequency of 
mistakes is at least linear in the size of the group, and the cost 
of a membership change is also linear in the group size: a 
quadratic effect.  

• Convoys. An obvious response to the scalability problems just 
presented is to structure large systems hierarchically, as trees of 
participant groups. Unfortunately this option is also limited by 
disruptive random events, albeit in a different way. 
Experimentation has shown that such a tree structure, when 
confronted with moderate network instability, exhibits an 
amplification of the burstiness of the message traffic. Even 
though messages enter the system at a steady rate, the reliability 
and buffer strategies at each of the intermediate nodes in the 
trees have compressing effects on messages rates, especially 
when confronted with message loss. The term “convoy” has 
been used by the database community to describe this 
phenomenon, which is also well known to the packet routing 
community.  

2.2 Unsuccessful Solutions 
Some reliable multicast protocols have been successful at larger 
scale, but only by limiting the functionality of the protocols. 
Techniques the developers have resorted to achieve scalability 
are: 
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• Anonymous Membership. The protocol basically streams out 
information to whoever wants to receive messages, without any 
notion of admission control, failure detection or session state 
management. 

• Single Sender Groups. These protocols build a single 
dissemination tree per sender where each node is a potential 
receiver who cooperates in localized retransmission schemes. 
Groups with multiple senders, which are very common in 
distributed systems, are treated as multiple groups with single 
sender, requiring an explosion of state managed at each 
participant, and making it impossible to correlate messages 
from different senders. 

• Infinite Retransmission Buffers. One of the more complex 
problems in multi-sender protocols is the management of the 
messages stored for retransmission. The messages can be 
released once the system is certain that no retransmission 
requests can arrive any more. Given that many protocols have 
no knowledge about the receivers, this certainty can never be 
achieved and they resort to a method called application level 
framing to require the application to reconstruct message for 
retransmission. This was applicable to some multi-user 
collaboration tools, but was unusable for the majority of 
distributed systems. 

• Complete Lack of Security. In most protocols that combine 
application level framing with localized retransmission (others 
than the sender can retransmit lost messages), it is impossible 
guarantee secure communication, as nodes that retransmit can 
not sign the message with senders key. The original messages 
are not kept in lack of a garbage collection protocol, and the 
retransmission node cannot sign it with its own key as they are 
anonymous, and as such the receiver has no mechanism for 
checking the signature. 

These techniques are unacceptable if one wants to build robust, 
reliable, secure distributed systems that can be the basis for the 
mission critical enterprise systems.  

But the picture is not entirely bleak. After presenting these 
arguments, we shift attention to a new class of protocols based on 
an idea from Clearinghouse [2], the database replication 
technology developed at Xerox Parc in the 1980’s, and later used 
by Golding for the refDBMS system [5], and from NNTP, the 
gossip-based algorithm used to propagate Usenet “news” in the 
Internet. These turn out to be scalable under the same style of 
analysis that predicts poor scalability for their non-gossip 
counterparts.   

3 EPIDEMIC TECHNIQUES FOR 
SCALABLE MULTICAST PROTOCOLS  

Not all protocols suffer the behavior seen in these reliability 
mechanisms. In the class of reliable multicast protocols, epidemic 
multicast protocols scale quite well and easily rides out the same 
phenomena that cause problems with these other approaches to 
reliability and scalability. 

For example, Bimodal Multicast, a protocol reported in [1], uses 
an epidemic control protocol that somewhat resembles the old 
NNTP protocol, but is running at much higher speeds. The 
multicast protocol consists of two sub-protocols. One of them is 
an unreliable data distribution protocol similar to IP multicast, or 

based on IP multicast when available. Upon arrival, messages are 
buffered, and they are delivered to the application layer in FIFO 
order. The buffered messages are garbage collected after some 
period of time. 

The second sub-protocol, is based on epidemic techniques, and is 
used to repair gaps in the message delivery flow and to assist the 
garbage collection. It operates as follows: Each process in the 
system maintains a list containing some random subset of the full 
system membership. In practice, we weight this list to contain 
primarily processes from close by – processes accessible over 
low-latency links – but these details go beyond the scope of this 
paper. At some rate (but not synchronized across the system) each 
participant selects one of the processes in its membership list at 
random and sends it a digest of its current message buffer 
contents. This digest would normally just list messages available 
in the buffer: “messages 5-11 and 13 from sender s, …” for 
example. Upon receipt of a gossip message, a process compares 
the list of messages in the digest with its own message buffer 
contents. Depending upon the configuration of the protocol, a 
process may pull missing messages from the sender of the gossip 
by sending a retransmission solicitation, or may push messages to 
the sender by sending unsolicited retransmissions of messages 
apparently missing from that process. 

This simplified description omits a number of important 
optimizations to the protocol. In practice, we use gossip not just 
for multicast reliability, but also to track system membership and 
perform failure detection based on it [6]. We sometimes use 
unreliable multicast with a regional TTL value instead of unicast, 
in situations where it is likely that multiple processes are missing 
copies of the message. A weighting scheme is employed to 
balance loads on links: gossip is done primarily to nearby 
processes over low-latency links and rarely to remote processes, 
over costly links that may share individual routers [11]. The 
protocol switches between gossip pull and gossip push, using the 
former for “young” messages and the latter for “old” ones. 
Finally, we don’t actually buffer every message at every process; 
a hashing scheme is used to spread the buffering load around the 
system, with the effect that the average message is buffered at 
enough processes to guarantee reliability, but the average 
buffering load on a participant decreases with increasing system 
size. 

An epidemic-style protocol has a number of important properties: 
the protocol imposes constant loads on participants, is extremely 
simple to implement and rather inexpensive to run. More 
important from the perspective of this paper, however, such a 
protocol overcomes the problems cited earlier for other scalable 
protocols. Bimodal Multicast has tunable reliability that can be 
matched to the needs of the application (reliability is increased by 
increasing the length of time before a message is garbage 
collected, but this also causes buffering and I/O costs to rise). The 
protocol gives very steady data delivery rates with predictable, 
low, variability in throughput. For real-time applications, this can 
be extremely useful. And the protocol imposes constant loads on 
links and routers (if configured correctly), which avoids network 
overload as a system scales up. All of these characteristics are 
preserved as the size of the system increases. 
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4 OVERCOMING LIMITATION TO 
SCALE 

We can generalize from the phenomena enumerated above. 
Distilling these down to their simplest form, and elaborating 
slightly: 

• With the exception of the epidemic protocols, the different 
reliability model of group communication systems involves a 
costly, but infrequent fault-recovery mechanism: 
o Virtual synchrony based protocols employ flow control, 

failure detection and membership-change protocols; when 
incorrectly triggered, the cost is proportional to the size of 
the group. 

o Local repair based protocols have a solicitation and 
retransmission mechanism that involves multicasts; when a 
duplicate solicitation or retransmission occurs, all 
participants process and transmit extra messages. 

o FEC-based reliability mechanisms try to reduce 
retransmission requests to the sender by encoding 
redundancy in the data stream. As the group size grows, 
however, either the average multicast path length increases, 
hence so too the risk of a multi-packet loss. The sender will 
see increasingly many retransmission requests (consuming a 
scarce resource), or the redundancy of the stream itself must 
be increased (resulting in a bandwidth degradation and a 
system-wide impact). 

• Again with the exception of the epidemic protocols, the 
mechanisms we’ve reviewed are potentially at risk from 
convoy-like behaviors. Even if data is injected into a network at 
a constant rate, as it spreads through the network, router 
scheduling delays and link congestion can make the 
communication load bursty. Under extreme condition this 
behavior can even trigger message loss at the end nodes. To 
smoothen burstiness of messages from multiple senders one 
needs a global view of the system, which most reliable 
protocols have found impossible to implement. Epidemic 
techniques however are ideal to implement this global state 
sharing and allow the overall system to gracefully adapt to 
changes in the network. 

• Many protocols depend upon configuration mechanisms that 
are sensitive to network routing and topology. Over time, 
network routing can change in ways that take the protocol 
increasingly far from optimal, in which case the probabilistic 
mechanisms used to recover from failures can seem 
increasingly expensive.  Periodic reconfigurations, the obvious 
remedy, introduce a disruptive system-wide cost. 

In contrast, the epidemic mechanisms used in NNTP, the Xerox 
Clearinghouse system, the Astrolabe state management systems 
[7,8], and Bimodal Multicast protocol appear to scale without 
these kinds of problems. Throughput is stable if measured over 
sufficiently long periods of time – gossip protocols can be rather 
unstable if metered on a short time scales. Overheads are flat and 
predictable, and can be balanced with information about network 
topology, so that links and routers won’t become overloaded. 
And, the levels of reliability achieved are very high – indeed, 
potentially as high as those of the protocols purporting to offer 
stronger guarantees. 

Probabilistic guarantees may sound like a contradiction in terms, 
because one’s intuition suggests that anything but an absolute 

reliability guarantee would be the equivalent of no reliability at 
all. Our work suggests that this is not at all the case. First, it is 
possible to design mechanisms that have stronger guarantees, such 
as virtual synchrony, and yet reside in an end-to-end manner over 
the basic network architecture afforded by our gossip 
infrastructure. 

An important observation, contributing to the overall success of 
this approach, is also that the epidemic tools exploit scalability, 
and as such turn scale into an advantage instead of a problem that 
must be overcome. 

5 OTHER APPLICATIONS OF EPIDEMIC 
TECHNIQUES 

We have applied the epidemic techniques to develop a large set of 
protocols that each has excellent scalability properties for their 
target domains. This reaches from multicast and failure detection, 
through state-management and data-fusion to ad-hoc routing 
protocols and protocols for controlling power grids. An extensive 
list of relevant publications can be found at: 

http://www.cs.cornell.edu/Info/Projects/Spinglass.  

In our current activities we are expanding the application of 
epidemic techniques to other areas where scalability plays an 
important role. Two of these areas are power and coverage aware 
communication for sensor networks [9] and world-wide peer-to-
peer publish-subscribe networks [10]. 

This research is supported by DARPA/ONR under contract 
N0014-96-1-10014, by the National Science Foundation under 
Grant No. EIA 97-03470 and by grants from Microsoft Research. 
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