

The Power of Epidemics:
Robust Communication for Large-Scale Distributed Systems

Werner Vogels
Dept. of Computer Science

Cornell University

vogels@cs.cornell.edu

Robbert van Renesse
Dept. of Computer Science

Cornell University

rvr@cs.cornell.edu

Ken Birman
Dept. of Computer Science

Cornell University

ken@cs.cornell.edu

ABSTRACT
Building very large computing systems is extremely challenging,
given the lack of robust scalable communication technologies.
This threatens a new generation of mission-critical but very large
computing systems. Fortunately, a new generation of “gossip-
based” or epidemic communication primitives can overcome a
number of these scalability problems, offering robustness and
reliability even in the most demanding settings. Epidemic
protocols emulate the spread of an infection in a crowded
population, and are both reliable and stable under forms of stress
that will disable most traditional protocols. This paper describes
some of the common problems that arise in scalable group
communication systems and how epidemic techniques have been
used to successfully address these problems.

1 INTRODUCTION
Distributed computing will be central to advances in a broad range
of critical applications, including intelligence information
systems, military command and control, air traffic control, electric
power grid management, telecommunications, and a vast array of
web-based commercial and government applications. Indeed, a
massive rollout of such systems is already underway. Yet while
impressive capabilities have been easy to develop and
demonstrate in small-scale settings, once deployed these systems
often stumble badly.

Software that runs securely and reliably in small-scale mockups
may lose those properties as numbers of users, the size of the
network and transaction processing rates all increase. Whereas
small networks are well behaved, any sufficiently large network
behaves like the public Internet, exhibiting disruptive overloads
and routing changes, periods of poor connectivity and throughput
instability. Failures rise in frequency simply because the numbers
of participating components are larger. A scalable technology
must ride out such forms of infrastructure instability.

Our studies reveal that very few existing technologies have the
necessary properties. Most, including the most prevalent
commercial software, exhibit scalability problems when subjected
to even modest stress. This finding reveals an imminent (and
growing) threat to the full spectrum of emergent mission-critical
computing systems. If we can’t solve the scalability problem, and
develop a methodology yielding applications that remain secure
and robust even when failures occur – indeed, even under attack,
or during denial-of-service episodes – the very technologies that
hold the greatest promise for major advances will prove to be the
Achilles Heel of a future generation of mission-critical military
and public-sector enterprises.

In the past 4 years the Spinglass project has worked to overcome
scalability barriers, starting with an idea that was first proposed in
the context of replicated database systems. These systems
employed what were called “epidemic-style” or “gossip” update
algorithms, whereby sites periodically compare their states and
reconcile inconsistencies, using a randomized mechanism for
deciding when and with whom each participant will gossip.
Traditionally, the database systems used gossip protocols at low
speeds. Our work employs gossip at very high speeds, yielding a
new generation of protocols that have an unusual style of
probabilistic reliability guarantees –guarantees of scalability,
performance, stability of throughput even under stress, and
remarkable scalability. These properties hold even on Internet-like
platforms. Epidemic protocols lend themselves to theoretical
analysis, making it possible to predict their behavior with high
confidence. However, the focus of our work at Cornell is mostly
practical: we are using epidemics, together with other more
traditional mechanisms, to develop new generations of scalable
communications software and middleware for a wide variety of
settings.

In the initial toolset epidemic techniques were used for failure-
detection, group communication and distributed state-
management. Now that these tools are maturing, we are applying
the techniques to other distributed systems areas that face similar
scalability challenges, notably the areas of sensor networks and
world-wide publish/subscribe systems. Our objective in the
present paper is to review the scalability problem for group
communication, and to summarize how we used epidemic
techniques to solve it. The need for brevity limits the technical
detail here, but other publications are available for the interested
reader who wishes to learn more.

ACM SIGCOMM Computer Communications Review Volume 33, Number 1: January 2003131

2 SCALABILITY PROBLEMS IN
CURRENT COMMUNICATION
SYSTEMS

The scalability of distributed protocols and systems is a major
determinant of success in demanding systems. For example,
consider the September 2000 field-test of the Navy’s Cooperative
Engagement Capability (CEC). During a two week period this
system (which offers an over-the-horizon cooperative targeting
capability for naval battleships) was subjected to a very modest
stress test. The value of this system depends upon timely
identification of threats and rapid decisions about which ship will
respond to which threat: threats may be incoming missiles moving
at several times the speed of sound. This translates to internal
deadlines of about a second for the communication subsystem,
which had been demonstrated easily capable of meeting the
requirements under laboratory conditions with small numbers of
participating computing systems. Yet under load, when even small
numbers of battleships were added to the system, the underlying
Data Distribution System (DDS) became unstable, failing
outright, or delivering data after much more than the one-second
threshold. (Defense News, October 16, 2000). The result was that
the CEC basically failed – and this under rather benign conditions
in which the only variable that changed was the number of
participants.

This paper focuses on scalability of distributed protocols
providing some form of guaranteed reliability when
communication among multiple participants is required. Use of
these reliable group communication (multicast) protocols is very
popular in distributed systems, as there is a natural match between
the group paradigm and the way large distributed systems are
structured. These protocols allow systems to be built in pure peer-
to-peer manner, removing the need for centralized servers,
removing one of the bottlenecks in system scalability.

Traditional reliable multicast protocols, including those developed
by our research group, all exhibit severe scaling problems,
especially when applied in large Internet-style settings. Even
though some of these protocols appeared to be very promising in
terms of scalability they all failed to operate as soon as the
network conditions were no longer ideal. In general the
performance analyses of the protocols only focuses on two
extreme cases: performance of the protocol under ideal
conditions, when nothing goes wrong, and the disruptive impact
of a failure. Reality forces use to take a look at these protocols
from a different perspective: what happens to these protocols
under mundane transient problems, such as network or processor
scheduling delays and brief periods of packet loss. One would
expect that reliable protocols would ride out such events, but we
find that this is rarely the case, particularly if we look at the
impact of a disruptive event as a function of scale. On the
contrary, reliable protocols degrade dramatically under this type
of mundane stress, a phenomenon attributable to low-probability
events that become both more likely and more costly as the scale
of the system grows.

Because of the need for brevity, we’ll limit ourselves to a
summary of our finding with respect to the growth rate of
disruptive overheads for a number of widely used multicast
protocols. Elsewhere [3], we present a more detailed analysis of a
variety of scenarios, modeled after the work of Gray et. al. [4],
where a similar conclusion is reached with respect to database

scalability. It is clear that scalability represents a widespread
problem affecting a broad range of technologies and systems.

2.1 Common Problems
When subjected to transient problem that are related to scaling the
environment, there are important categories of problems that
appear:
• Throughput Instability. All of the protocols that implement

reliable group communication are subject a breakdown of
message throughput as soon as one or more members
experience perturbation. A single slow receiver, which can be
cause by CPU overhead or some localized message loss, will
eventually have an impact on the throughput to the overall
group. The results in [3] show that this impact is even more
dramatic and happens more rapidly if we scale up the system,
making the protocol stability extremely volatile under even
moderate scaling conditions.

• Micropartitions. In reaction to the throughput instability
problem, designers often go for the approach to as soon as
possible to remove the trouble-causing member from the group
by using more aggressive failure detection mechanisms.
However when scaling the system to moderate Internet
environments, one quickly discovers that this has the adverse
effect that transient network problems, which occur frequently,
frequently trigger incorrect failure-suspicions. Erroneous failure
decisions involve particularly costly “leave/rejoin” events,
where the overall system constantly needs to reconfigure itself.
We will term this a micropartitioning of the group, because a
non-crashed member effectively becomes partitioned away
from the group and later the partition (of size one) must
remerge. In effect, by setting failure detection parameters more
and more aggressively while scaling the system up, we
approach a state in which the group may continuously
experience micropartitions, a phenomenon akin to thrashing.

Costs associated with micropartitions rise in frequency with the
square of the size of the group. This is because the frequency of
mistakes is at least linear in the size of the group, and the cost
of a membership change is also linear in the group size: a
quadratic effect.

• Convoys. An obvious response to the scalability problems just
presented is to structure large systems hierarchically, as trees of
participant groups. Unfortunately this option is also limited by
disruptive random events, albeit in a different way.
Experimentation has shown that such a tree structure, when
confronted with moderate network instability, exhibits an
amplification of the burstiness of the message traffic. Even
though messages enter the system at a steady rate, the reliability
and buffer strategies at each of the intermediate nodes in the
trees have compressing effects on messages rates, especially
when confronted with message loss. The term “convoy” has
been used by the database community to describe this
phenomenon, which is also well known to the packet routing
community.

2.2 Unsuccessful Solutions
Some reliable multicast protocols have been successful at larger
scale, but only by limiting the functionality of the protocols.
Techniques the developers have resorted to achieve scalability
are:

ACM SIGCOMM Computer Communications Review Volume 33, Number 1: January 2003132

• Anonymous Membership. The protocol basically streams out
information to whoever wants to receive messages, without any
notion of admission control, failure detection or session state
management.

• Single Sender Groups. These protocols build a single
dissemination tree per sender where each node is a potential
receiver who cooperates in localized retransmission schemes.
Groups with multiple senders, which are very common in
distributed systems, are treated as multiple groups with single
sender, requiring an explosion of state managed at each
participant, and making it impossible to correlate messages
from different senders.

• Infinite Retransmission Buffers. One of the more complex
problems in multi-sender protocols is the management of the
messages stored for retransmission. The messages can be
released once the system is certain that no retransmission
requests can arrive any more. Given that many protocols have
no knowledge about the receivers, this certainty can never be
achieved and they resort to a method called application level
framing to require the application to reconstruct message for
retransmission. This was applicable to some multi-user
collaboration tools, but was unusable for the majority of
distributed systems.

• Complete Lack of Security. In most protocols that combine
application level framing with localized retransmission (others
than the sender can retransmit lost messages), it is impossible
guarantee secure communication, as nodes that retransmit can
not sign the message with senders key. The original messages
are not kept in lack of a garbage collection protocol, and the
retransmission node cannot sign it with its own key as they are
anonymous, and as such the receiver has no mechanism for
checking the signature.

These techniques are unacceptable if one wants to build robust,
reliable, secure distributed systems that can be the basis for the
mission critical enterprise systems.

But the picture is not entirely bleak. After presenting these
arguments, we shift attention to a new class of protocols based on
an idea from Clearinghouse [2], the database replication
technology developed at Xerox Parc in the 1980’s, and later used
by Golding for the refDBMS system [5], and from NNTP, the
gossip-based algorithm used to propagate Usenet “news” in the
Internet. These turn out to be scalable under the same style of
analysis that predicts poor scalability for their non-gossip
counterparts.

3 EPIDEMIC TECHNIQUES FOR
SCALABLE MULTICAST PROTOCOLS

Not all protocols suffer the behavior seen in these reliability
mechanisms. In the class of reliable multicast protocols, epidemic
multicast protocols scale quite well and easily rides out the same
phenomena that cause problems with these other approaches to
reliability and scalability.

For example, Bimodal Multicast, a protocol reported in [1], uses
an epidemic control protocol that somewhat resembles the old
NNTP protocol, but is running at much higher speeds. The
multicast protocol consists of two sub-protocols. One of them is
an unreliable data distribution protocol similar to IP multicast, or

based on IP multicast when available. Upon arrival, messages are
buffered, and they are delivered to the application layer in FIFO
order. The buffered messages are garbage collected after some
period of time.

The second sub-protocol, is based on epidemic techniques, and is
used to repair gaps in the message delivery flow and to assist the
garbage collection. It operates as follows: Each process in the
system maintains a list containing some random subset of the full
system membership. In practice, we weight this list to contain
primarily processes from close by – processes accessible over
low-latency links – but these details go beyond the scope of this
paper. At some rate (but not synchronized across the system) each
participant selects one of the processes in its membership list at
random and sends it a digest of its current message buffer
contents. This digest would normally just list messages available
in the buffer: “messages 5-11 and 13 from sender s, …” for
example. Upon receipt of a gossip message, a process compares
the list of messages in the digest with its own message buffer
contents. Depending upon the configuration of the protocol, a
process may pull missing messages from the sender of the gossip
by sending a retransmission solicitation, or may push messages to
the sender by sending unsolicited retransmissions of messages
apparently missing from that process.

This simplified description omits a number of important
optimizations to the protocol. In practice, we use gossip not just
for multicast reliability, but also to track system membership and
perform failure detection based on it [6]. We sometimes use
unreliable multicast with a regional TTL value instead of unicast,
in situations where it is likely that multiple processes are missing
copies of the message. A weighting scheme is employed to
balance loads on links: gossip is done primarily to nearby
processes over low-latency links and rarely to remote processes,
over costly links that may share individual routers [11]. The
protocol switches between gossip pull and gossip push, using the
former for “young” messages and the latter for “old” ones.
Finally, we don’t actually buffer every message at every process;
a hashing scheme is used to spread the buffering load around the
system, with the effect that the average message is buffered at
enough processes to guarantee reliability, but the average
buffering load on a participant decreases with increasing system
size.

An epidemic-style protocol has a number of important properties:
the protocol imposes constant loads on participants, is extremely
simple to implement and rather inexpensive to run. More
important from the perspective of this paper, however, such a
protocol overcomes the problems cited earlier for other scalable
protocols. Bimodal Multicast has tunable reliability that can be
matched to the needs of the application (reliability is increased by
increasing the length of time before a message is garbage
collected, but this also causes buffering and I/O costs to rise). The
protocol gives very steady data delivery rates with predictable,
low, variability in throughput. For real-time applications, this can
be extremely useful. And the protocol imposes constant loads on
links and routers (if configured correctly), which avoids network
overload as a system scales up. All of these characteristics are
preserved as the size of the system increases.

ACM SIGCOMM Computer Communications Review Volume 33, Number 1: January 2003133

4 OVERCOMING LIMITATION TO
SCALE

We can generalize from the phenomena enumerated above.
Distilling these down to their simplest form, and elaborating
slightly:

• With the exception of the epidemic protocols, the different
reliability model of group communication systems involves a
costly, but infrequent fault-recovery mechanism:
o Virtual synchrony based protocols employ flow control,

failure detection and membership-change protocols; when
incorrectly triggered, the cost is proportional to the size of
the group.

o Local repair based protocols have a solicitation and
retransmission mechanism that involves multicasts; when a
duplicate solicitation or retransmission occurs, all
participants process and transmit extra messages.

o FEC-based reliability mechanisms try to reduce
retransmission requests to the sender by encoding
redundancy in the data stream. As the group size grows,
however, either the average multicast path length increases,
hence so too the risk of a multi-packet loss. The sender will
see increasingly many retransmission requests (consuming a
scarce resource), or the redundancy of the stream itself must
be increased (resulting in a bandwidth degradation and a
system-wide impact).

• Again with the exception of the epidemic protocols, the
mechanisms we’ve reviewed are potentially at risk from
convoy-like behaviors. Even if data is injected into a network at
a constant rate, as it spreads through the network, router
scheduling delays and link congestion can make the
communication load bursty. Under extreme condition this
behavior can even trigger message loss at the end nodes. To
smoothen burstiness of messages from multiple senders one
needs a global view of the system, which most reliable
protocols have found impossible to implement. Epidemic
techniques however are ideal to implement this global state
sharing and allow the overall system to gracefully adapt to
changes in the network.

• Many protocols depend upon configuration mechanisms that
are sensitive to network routing and topology. Over time,
network routing can change in ways that take the protocol
increasingly far from optimal, in which case the probabilistic
mechanisms used to recover from failures can seem
increasingly expensive. Periodic reconfigurations, the obvious
remedy, introduce a disruptive system-wide cost.

In contrast, the epidemic mechanisms used in NNTP, the Xerox
Clearinghouse system, the Astrolabe state management systems
[7,8], and Bimodal Multicast protocol appear to scale without
these kinds of problems. Throughput is stable if measured over
sufficiently long periods of time – gossip protocols can be rather
unstable if metered on a short time scales. Overheads are flat and
predictable, and can be balanced with information about network
topology, so that links and routers won’t become overloaded.
And, the levels of reliability achieved are very high – indeed,
potentially as high as those of the protocols purporting to offer
stronger guarantees.

Probabilistic guarantees may sound like a contradiction in terms,
because one’s intuition suggests that anything but an absolute

reliability guarantee would be the equivalent of no reliability at
all. Our work suggests that this is not at all the case. First, it is
possible to design mechanisms that have stronger guarantees, such
as virtual synchrony, and yet reside in an end-to-end manner over
the basic network architecture afforded by our gossip
infrastructure.

An important observation, contributing to the overall success of
this approach, is also that the epidemic tools exploit scalability,
and as such turn scale into an advantage instead of a problem that
must be overcome.

5 OTHER APPLICATIONS OF EPIDEMIC
TECHNIQUES

We have applied the epidemic techniques to develop a large set of
protocols that each has excellent scalability properties for their
target domains. This reaches from multicast and failure detection,
through state-management and data-fusion to ad-hoc routing
protocols and protocols for controlling power grids. An extensive
list of relevant publications can be found at:

http://www.cs.cornell.edu/Info/Projects/Spinglass.

In our current activities we are expanding the application of
epidemic techniques to other areas where scalability plays an
important role. Two of these areas are power and coverage aware
communication for sensor networks [9] and world-wide peer-to-
peer publish-subscribe networks [10].

This research is supported by DARPA/ONR under contract
N0014-96-1-10014, by the National Science Foundation under
Grant No. EIA 97-03470 and by grants from Microsoft Research.

REFERENCES
[1] Birman, Ken, Hayden, Mark, Ozkasap, Oznur, Xiao,

Zhen, Budiu, Mihai and Minsky, Yaron “Bimodal
Multicast” ACM Transactions on Computer Systems,
Vol. 17, No. 2, pp 41-88, May, 1999.

[2] Demers, A. et. al. Epidemic Algorithms for
Replicated Data Management. Proceedings of the 6th
Symposium on Principles of Distributed Computing
(PODC), Vancouver, Aug. 1987, 1-12.

[3] Gupta, Indranil, Birman, Ken, and van Renesse,
Robbert, “Fighting Fire with Fire: Using
Randomized Gossip to Combat Stochastic Scalability
Limits”, Special Issue of Quality and Reliability of
Computer Network Systems, Journal of Quality and
Reliability Engineering International, May/June
2002, Vol. 18, No. 3, pp 165-184

[4] Gray, Jim, Helland, Pat, O'Neil, P., and Shasha, D.,
The dangers of replication and a solution.
Proceedings 1996 SIGMOD Conference, June 1996.

[5] Golding, Richard and Taylor, Kim,. Group
Membership in the Epidemic Style. Technical report
UCSC-CRL-92-13, University of California at Santa
Cruz, May 1992.

ACM SIGCOMM Computer Communications Review Volume 33, Number 1: January 2003134

[6] van Renesse, Robbert, Minsky, Yaron, and Hayden,
Mark, “A Gossip-Based Failure Detection Service”,
in the Proceedings of Middleware '98. England,
August 1998.

[7] van Renesse, Robbert, and Birman, Kenneth P,
“Astrolabe: A Robust and Scalable Technology for
Distributed System Monitoring, Management, and
Data Mining”, Submitted to ACM TOCS, November
2001

[8] van Renesse, Robbert, and Birman, Kenneth P,
Dumitriu, Dan and Vogels, Werner, “Scalable
Management and Data Mining Using Astrolabe” in
the. Proceedings of the First International Workshop
on Peer-to-Peer Systems (IPTPS),. Cambridge,
Massachusetts. March 2002.

[9] Robbert van Renesse, Power-Aware Epidemics, In
the Proceedings of the International Workshop on
Reliable Peer-to-Peer Systems, Osaka, Japan.
October 2002.

[10] Werner Vogels, Chris Re, Robbert van Renesse and
Ken Birman, .”A Collaborative Infrastructure for
Scalable and Robust News Delivery”. In the
Proceedings of the IEEE Workshop on Resource
Sharing in Massively Distributed Systems
(RESH'02), Vienna, Austria, July 2002.

[11] Xiao, Zhen and Birman, Ken. A Randomized Error
Recovery Algorithm for Reliable Multicast. In the
Proceedings of FTCS 2001. July 2001.

ACM SIGCOMM Computer Communications Review Volume 33, Number 1: January 2003135

ACM SIGCOMM Computer Communications Review Volume 33, Number 1: January 2003136

