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ABSTRACT
The success of a P2P file-sharing network highly depends
on the scalability and versatility of its search mechanism.
Two particularly desirable search features are scope (abil-
ity to find infrequent items) and support for partial-match
queries (queries that contain typos or include a subset of
keywords). While centralized-index architectures (such as
Napster) can support both these features, existing decen-
tralized architectures seem to support at most one: pre-
vailing protocols (such as Gnutella and FastTrack) support
partial-match queries, but since search is unrelated to the
query, they have limited scope. Distributed Hash Tables
(such as CAN and CHORD) constitute another class of P2P
architectures promoted by the research community. DHTs
couple index location with the item’s hash value and are
able to provide scope but can not effectively support partial-
match queries; another hurdle in DHT deployment is their
tight control the overlay structure and data placement which
makes them more sensitive to failures.

Associative overlays are a new class of decentralized P2P
architectures. They are designed as a collection of unstruc-
tured P2P networks (based on popular architectures such as
gnutella or FastTrack), and the design retains many of their
appealing properties including support for partial match
queries, and relative resilience to peer failures. Yet, the
search process is orders of magnitude more effective in lo-
cating rare items. Our design exploits associations inherent
in human selections to steer the search process to peers that
are more likely to have an answer to the query.

1. INTRODUCTION
Peer-to-peer (P2P) networks have become, in a short pe-

riod of time, one of the fastest growing and most popular
Internet applications. As for any heavily used large dis-
tributed source of data, the effectiveness of a P2P network
is largely a function of the versatility and scalability of its
search mechanism.

Peer-to-peer networks came to fame with the advent of
Napster [23], a centralized architecture, where the shared
items of all peers are indexed in a single location. Queries
were sent to the Napster Web site and results were returned
after locally searching the central index; subsequent down-
loads were performed directly from peers. The legal issues
which led to Napster’s demise exposed all centralized archi-
tectures to a similar fate. Internet users and the research
community subsequently turned to decentralized P2P archi-
tectures, where the search index and query processing, as
well as the downloads, are distributed among peers.

Existing decentralized architectures can be coarsely par-
titioned into two groups [27]: unstructured, where search is
blind (independent of the query or its context) and struc-
tured, where search is routed. Prevailing decentralized P2P
architectures are unstructured. One of these architectures
is Gnutella [14] under which items are only indexed by the
peer that cache them; search can be resolved only by prob-
ing these peers; and peers are probed using flooding (that
typically cover about 1000 nodes). The recent wave of Fast-
Track [33]-based P2P architectures (Morpheus, Kazaa [20,
19]) incorporate improved design that allows for more effi-
cient downloads (simultaneous from several peers and ability
to resume after failure); and improved search (by designat-
ing some peers as search-hubs supernodes that cache the
index of others).

A feature that undoubtedly contributes to the beaming
success of these decentralized unstructured architectures is
support for versatile (partial-match) queries: Shared items
typically have meta-attributes describing their type and prop-
erties (e.g., title, composer, performer); the search supports
partial-match queries that populate a subset of these fields
and may contain typos. Another important feature of these
architectures is their “loose” structure, with each particu-
lar peer being relatively dispensable; what makes the net-
work overlay more resilient to failures and frequent joins
and disconnects. On the flip side, unstructured architec-
tures lack an important feature which Napster had offered:
While popular items (current hit movies) can be located and
downloaded fairly efficiently, P2P users seemed to have lost
the ability to locate less-popular items (60’s hits).

A different class of architectures that was proposed and
promoted by the research community is decentralized struc-
tured P2P architectures [31, 28, 29, 35, 13, 18], commonly
referred to as Distributued Hash Tables (DHTs). With
DHTs, peers are required to store or index certain data
items, not necessarily those items that these peers have con-
tributed or interested in. Additionally, some hashing algo-
rithm is used to identify the peers storing a given data item.
The connections between different peers are also a function
of the architecture. Thus, while DHTs can be very effective
for applications where queries involve unique item identifiers
(e.g., P2P Web caching), they require that peers store data
for the “common good”; they incur much larger overhead
than “unstructured” architectures when peers fail or leave
the network; and inherently, they can not efficiently support
partial-match queries.

Associative overlays, proposed here, are decentralized P2P
architectures, which on one hand, retain the desirable prop-

ACM SIGCOMM Computer Communications Review Volume 33, Number 1: January 200395



erties of prevailing unstructured architectures, including be-
ing fully decentralized with “loose” structure, and support-
ing partial-match queries, and on the other hand, address
their biggest drawback by boosting the efficiency of locating
infrequent items. Another desirable property of associative
overlays is that peers are not required to store arbitrary
data; peers store only what they use and their actions, in-
cluding answering queries, have direct self benefit.

1.1 Associativeoverlays
Associative overlays defines both the formation of the

overlay and the search process so that queries can be steered
to peers that are more likely to have an answer. The basic
premise, which we substantiate in the sequel, is that peers
that would have been able to satisfy previous queries by
the originating peer are more likely candidates to answer a
current query.

Main ingredients in our design are guide-rules and guided
search. A guide rule is a set of peers that satisfy some pred-
icate; each peer can participate in a number of guide-rules,
and for each guide-rule it participates in it maintains a small
list of other peers belonging to the same guide rule. For
each rule, the overlay induced by peers that participate in
the rule forms an unstructured network and exhibits similar
connectivity and expansion properties. Guided search ret-
ricts the propagation of queries to be within some specified
guide-rules. When a peer originates a search for an item,
it restricts the search propagation to a subset of its guide-
rules. A peer propagating a search can only propagate it to
neighbor peers within the specified rule(s).

Guide-rules should be such that peers belonging to some
guide rule contain data items that are semantically similar,
e.g., contain documents that deal with the philosophy of sci-
ence, or contain song titles by the artist formerly known as
Prince. Guided search can be viewed as a middle ground be-
tween blind search used by unstructured networks and the
routed search deployed by DHTs: Guided search provides a
mechanism to focus the search, that is, the relevance of the
peers that the query is propagated to, without tight control
of the overlay and item locations. The search process within
a rule mimicks search in unstructured networks, by essen-
tially performing a blind search. On the other hand, the
search strategy of the originating peer has the flexibility of
deciding which guide rules, among those that the originating
peer belongs to, to use for a given search.

The particular choice of the underlying set of guide-rules
is constrained by both “networking” aspects, which require
that the overlay has certain connectivity properties and can
be formed and maintained at low cost, and the “data min-
ing” aspects, which require that these rules meaningfully
distill common interests; and thus, restricting the propa-
gation of the query to peers within the guide rules of the
originating peer yields a more focused search.

1.2 Possessionrules
We focus on automatically-extracted guide rules of a very

particular form, which we call possession rules. Each posses-
sion rule has a corresponding data item, and its predicate is
the presence of the item in the local index, thus, a peer can
participates in a rule only if it shares the corresponding item.
Our underlying intuition, taken from extensive previous re-
search in the Data-Mining and Text Retrieval communities
([17, 9, 10, 8, 5, 22, 16]), is that, on average, peers that

share items (in particular rare items) are more likely to sat-
isfy each other’s queries than random peers. More precisely,
search using possession-rules exploits presence of pairwise
co-location associations between items.

Beyond the resolution of the search, possession rules pro-
vide an easy way to locate many other peers that share the
item. This feature is useful for distributing the load of send-
ing large files (parallel downloads are already practiced in
FastTrack networks), or locating alternative download sites
when a peer is temporarily swamped.

A feature that can allow associative overlays to strive un-
der “selfish” peer behavior is that participation in guide-
rules serves dual purpose: Supporting propagation of search
through the peer but also allowing the peer to focus its own
search process; A peer can participate in a rule only if it
shares the corresponding item, and peers that do not par-
ticipate in rules can not search better than via blind search.

1.3 The Rapier Search Strategy
The Rapier strategy is based on the following intuition:

let the areas of interest for a given peer be A, B, C, etc.,
randomly choose one of these areas of interest and perform
a blind search amongst those peers that also have inter-
est in this area. Rapier (Random Possession Rule) se-
lects a possession-rule uniformly at random from the list
of previously-requested items by the querying peer.

Evidently, if there are no correlations between items, Rapier
has no advantage over blind search. We use a two-pronged
evaluation of Rapier: First, we use a simple intuitive data
model (the Itemset model) to learn how the effectiveness
of Rapier grows with the amount of “structure” in the
data. Second, we evaluate Rapier on actual data, using
large datasets of users accessing web sites. We obtained
that Rapier is likely to perform significantly better than
blind search, in particular, it can be orders of magnitude
more effective in searching for infrequent items.

2. RELATED WORK
The effectiveness of blind search can be boosted by aggre-

gation and replication; for example, by peers summarizing
the content available from other peers such as with super-
peer architectures [33] and routing-indices [15] or by bal-
ancing the number of replicas against the query rates [12,
27]. The drawbacks of aggregation and proactive replica-
tion is that they are more sensitive to malicious or selfish
peer behaviour and spreading of mis-labeled files. Associa-
tive overlays offer an orthogonal approach which could be
combined with aggregation but does not require it.

Associative overlays address a networking challenge us-
ing an approach that is supported and motivated by exten-
sive previous research in the field of data-mining. The con-
straints of the P2P setting, however, make it fundamentally
different than traditional data-mining applications. A re-
lated classic data-mining problem is the Market-basket prob-
lem, which assumes a large number of items and customers
that fill their baskets with some subset of the items. This
framework applies to many domains of human activity in-
cluding supermarket shopping (customers vs items matrix),
library checkouts (readers vs books), document classifica-
tion (word/terms vs documents matrix), Web page hyper-
links (Web pages vs Web pages), Web browsing (Users vs
Web pages), and in our context, P2P networks (peers vs
items). Common to all these datasets is the presence of
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structure in data, namely, that these matrices are far from
random. It had been long recognized that these human-
selection datasets are in a sense very structured [17, 24, 6,
1]

One purpose of market-basket mining is extracting As-
sociation rules [2, 3]. An example of an association rule
is pairs of items that are often purchased together such as
“Champaign and Caviar” or “Beer and Diapers.” Such rules
had been used for marketing (e.g., placing Beer and Diapers
next to each other in the supermarket) and recommenda-
tion systems (e.g., recommend books to customers based on
previous book purchases) [7, 21, 25, 4]. A computationally
challenging important subproblem is to discover association
rules that have high correlation but low support (e.g., the
association rule “Champaign and Caviar” that are rare pur-
chases but are often purchased together) [11].

Similarly to these data-mining techniques, we exploit the
presence of associations; but the basic difference is our highly
distributed setting. Our solution does not (and can not) ex-
plicitly obtain association rules but does heavily utilize their
presence. Instead of clustering peers into communities we
restrict the search to communities without explicitly identi-
fying them.

Recent proposals to exploit “interest locality” to optimize
p2p search also include [30], where an existing p2p network
is extended by nodes linking directly to nodes that satis-
fied previous queries; This basic approach does not provide
a mechanism to “focus” query propagation beyond the first
hop. At the other end of the spectrum, PeerSearch [32], at-
tempts to import traditional vector space Information Re-
trieval (at the cost of tightly controlled DHT overlay and
communication overhead).

3. MODEL AND METHODOLOGY
We represent the data present in the network by the peer-

item matrix D ∈ {0, 1}n×m where n is the number of peers,
m is the number of items, and Dij = 1 if and only if peer i
contains data item j.

We define the support set of the jth item Sj ⊆ {1, . . . , n},
1 ≤ j ≤ m, to be

Sj = {`|D`j = 1}.

I.e., Sj is the set of all row indices (peers) that contain data
item j. The joint support set of two items j, k,

Sjk = Sjk = {`|D`k = 1and D`j = 1} ,

is the set of peers that contain both items. We refer to
Xi = {j|Dij = 1} (the set of items associated with peer
i) as the index of peer i. We use the notation sj = |Sj |,
sjk = |Sjk|, and xi = |Xi|.

We define Wi = xi
|D| , where |D| =

∑n
i=1 xi is the combined

size of all indexes. An item j has low support (is “rare”)
if |Sj |/n is small. An item has low support with respect to
the weights if

∑
i∈Sj Wi � 1.

We view the peer-item matrix as a current instantiation of
the data. We measure performance of different algorithms
by treating each “1” entry, in turn, as the most recent re-
quest: For each peer i and item j such that Dij = 1, we refer
to the request that corresponds to the i, j entry as the query
(i, j). Each query triggers a search process, which depends
on the matrix D with the entry Dij set to 0 and on the

peer i.1 The search process is a sequence of probes: when
a peer is probed, it attempts to match the query against
its local index using some algorithm. We assume that this
algorithm is perfect in the sense that a query of the form
(i, j) can always (and only) be resolved by a probe to peer
that contains the item j.2 The size of a search process is a
random variable, and the Expected Search Size EssAij is the
expectation of this random variable.

We compare different strategies by looking at all queries
(peer-item pairs with Dij = 1). We sweep a threshold on
the maximum value of the Ess, and look at the cumulative
fraction of queries (i, j) that have Essij below a threshold.

3.1 Blind Search asRandomSearch
Following [12, 27] we model the performance of blind

search in “traditional” unstructured networks using the Ran-
dom Search model. The intuition of why this abstraction is
valid is that the set of probed peers on a query in unstruc-
tured networks depends only on the overlay structure which
is independent of the query or previous selections by the
querying peer. Thus, on average, the effectiveness of each
probe can not be better than that of probing a random peer.

When comparing Rapier to blind search and to each
other we must ensure that we do not compare apples and
oranges. Rapier is somewhat biased towards searching in
peers with relatively many items. Thus, comparing Rapier
a blind search that chooses peers uniformly at random would
be unfair. One might suspect that the advantages shown ex-
perimentally are due to the choice of peers with many items,
and does not reflect any other property of these algorithms.
To avoid this potential pitfall, we seek to ensure that we
compare these algorithms to blind search algorithms that
compete on equal terms. Specifically, we consider weighted
versions of the random search model where hosts have dif-
ferent likelihood of receiving a probe: Each peer i has a
weight wi such that

∑
i wi = 1, and the likelihood that a

peer is visited in a random search probe is proportional to
wi. Weighted random search is used as a benchmark for the
performance of our associative search algorithms. To obtain
a fair comparison, we need to consider weights that reflect
the bias of the associative search algorithms towards peers
with larger index sizes.

We shall consider two natural weighting schemes:

• Uniform Random Search (Urand) where all peers are
equally likely to be probed (wi = 1/n). This models
pure blind search.

• Proportional Random Search (Prand), where the like-
lihood that a peer is probed is proportional to the size
of its index wi = Wi ∝

∑m
j=1 Dij . This models blind

search biased towards peers with larger indices. We
will show that this bias is exactly equal to the bias
introduced by Rapier and thus differences in perfor-
mance between the two cannot be due to this bias.

1Note that the search sequence does not depend on j, as
query properties (such as meta-data terms) are not used to
determine where to search. It is used only as a stopping
condition. See the introduction and conclusion sections for
a discussion on this issue.
2this simplification is justified as the matching issue of
queries to appropriate items is present with other architec-
tures and is orthogonal to the core of our contribution.
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With weighted random search, the size of the search for a
query (i, j) is a Geometric random variable. The Ess is the
mean of this random variable.

A weighted random search for item j by peer i has likeli-

hood of success in each probe pij =
∑
k 6=iwkDkj

1−wi
. and thus

for any weighted random search algorithm A EssAij = p−1
ij =

1−wi∑
k 6=i wkDkj

. (The search is performed on all peers excluding

peer i).
Thus, a Urand search for item j by peer i has

EssUrand
ij =

n− 1∑
k 6=iDkj

; (1)

and a Prand search has

EssPrand
ij =

1 −Wi∑
k 6=iWkDkj

. (2)

4. POSSESSION-RULE OVERLAYS

Guiderulesconnectivity. : Peers that participate in the
same guide-rule form a sub-overlay that resembles a “tra-
ditional” unstructured network. Thus, each guide-rule con-
stitutes a sub-overlay, and these sub-overlays are generally
overlapping. Search is conducted using guide rules. Sim-
ilarly to search in traditional unstructured networks, it is
propagated from peer to neighbors but the propagation is
only to peers belonging to the selected guide rule. Each
guide-rule sub-overlay needs to have the form of a “tradi-
tional” unstructured overlay. For each guide-rule it is asso-
ciated with, a peer needs to remember a small list of peers
which belong to the guide rule; and neighbors should be such
that guided-search reaches a large number of peers. The
specifics can vary from a Gnutella-like design where each
peer has few viable neighbors (Typical Gnutella number is
2-4) and many other peers can be reached through them, to
a FastTrack-like design where search is facilitated through a
core network of supernodes (in our case supernodes are as-
sociated with guide-rules). The specifics are orthogonal to
our basic approach, we only need to make sure that our se-
lected guide rules are such that the underlying unstructured
network can form.

Search strategy. : A search strategy defines a search pro-
cess as a sequence of guide rule probes. An example of
a strategy is “search 100 peers that have item A and 200
peers that have item B, if this is unsuccessful, then search
400 more that have item A and 50 peers with item C, . . . ”

Our general expectation is that the total number of guide
rules may be large, but a typical peer uses a bounded num-
ber of rules. The applicability of a specific set of guide-rules
depends on the implementability of the connectivity require-
ment. This requirement has two parts, first there should be
a simple mechanism to locate a peer (and through it other
peers) that belong to the same guide rule. It is also a re-
quirement that this selection should result in large connected
components. Below we argue that possession-rules fill the
first part. As for large components, practice shows that
simple neighbor selection strategies of current P2P imple-
mentation result in large connected components, and thus,
we argue that selections within a guide-rule are likely to re-
sult in large components. (Random connections are known
to yield large components and apparently actual selections
are “sufficiently random” to obtain this property). In any

case, the same issue of obtaining large components exists in
traditional unstructured architectures and the connectivity
algorithms deployed in these networks can be adapted to
our context. There is thus no need to re-tackle this issue.

The possession-rule overlay is self-boosting: If peer-A con-
ducts a search for item i that is resolved by peer-B then it
is able to obtain through peer-B a list of other peers that
index item i. As a result, each peer has a neighbor list which
is an array of (item,peer) pairs for (most) items in its index.
Thus, for possession rules, the construction of the overlay
is symbiotic with the search process. There is seemingly a
major issue in that a peer in a guide-rule network may keep
track of many other peers, proportional to the number of
guide rules it belongs to. Even when bounding the number
of guide-rules a peer participates in, the number of neigh-
bors is considerably larger than in existing architectures.
This is in contradiction to the philosophy used by existing
P2P architectures, which promotes having a small number
of neighbors. We argue, however, that there is no reason for
guided search to abide by this rule whereas there are clear
reasons for other P2P architectures to keep it. Unlike DHTs,
the update cost of a neighbor going offline is minimal; we
may discover it when trying to search through these peers
and may then remove them from our list following one or
more unsuccessful tries; replacements are easy to find if at
least some of the guide-rule neighbors are active. It is also
advantageous for search in unstructured network to have
a small fan-out, but we achieve that since each guide-rule
sub-overlay has a low degree.

In the sequel, we assume that our network is a possession-
rule overaly. Each sub-overlay resembles an unstructured
network and we use the model of random search used in [12,
27] to capture the performance of search within a rule.

5. RAPIER SEARCH STRATEGY
Rapier is a simple search strategy that uses possession-

rules overlay. The strategy repeats the following until search
is successful (or search size limit is exceeded):

1. Choose a random item from your index.

2. Perform a blind search on the possession-rule for the
item to some predetermined depth.

The main parameter we look at is the size of the search
which is the total number of peers probed. We model Rapier
search by the following process: For a query for item j issued
by peer i, a column k is drawn uniformly from Xi \ {j} (the
index of i excluding j). Then a peer r is drawn uniformly
from Sk \ {i}. The search is successful iff Drj = 1.

Thus, the likelihood of success for Rapier per step is

pij = (xi − 1)−1
∑

k∈Xi\{j}

skj − 1

n − 1
.

and thus

EssRapier
ij =

(xi − 1)(n− 1)∑
k∈Xi\{j}(skj − 1)

. (3)

As discussed earlier, search strategies may differ to the ex-
tent that they utilize peers of different index sizes. Rapier,
in particular, is more likely to probe peers with larger in-
dices, since such peers share items with a larger number of
other peers. We can show that averaged over queries, the
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likelihood that a peer is probed under Rapier is equal to Wi

(its likelihood to be probed under Prand). Thus, it is fair
to use Prand as a benchmark for Rapier since per-search,
they have the same bias towards peers with larger index
sizes. We compare the performance of the two algorithms
on the Itemset model and using simulations.

6. THE ITEMSETS MODEL
Frequency and size distributions of items and peers are

reasonably-well understood and are typically modeled by
Zipf-like distributions. But even though these distributions
capture enough aspects of the data to evaluate the per-
formance of blind search, they do not capture correlations
that are necessary for evaluating associative search. Mod-
els which capture correlations present in market-basket data
and Web hyperlink structure had been proposed [3, 25, 26].
We use one such model, the Itemsets model (which resem-
bles models in [3, 25]), to convey intuition why and when
we anticipate Rapier to perform well.

The Itemsets model partitions items into N “interest ar-
eas” (which we refer to as itemsets). Each peer belongs to
some subset of the itemsets, and contains f fraction of items
(picked uniformly at random) in each itemset it belongs to.

Items in different itemsets are generally not correlated,
and items in the same itemset are correlated. Our expec-
tation is that if peers belong to many itemsets (at the ex-
treme, all peers have all itemsets), there is no advantage for
Rapier over Prand. When peers belong a to a small num-
ber of itemsets we expect Rapier to perform better; and we
expect this advantage to increase as the number of itemsets
decreases. We formalize this intuition below.

Suppose that each peer belongs to exactly k itemsets3,
and these itemsets are independent or positively correlated,
that is, if p(x) is the fraction of peers belonging to itemset
x, and p(x ∩ y) is the fraction of peers belonging both to
itemsets x and y, then p(x ∩ y) ≥ p(x)p(y). Let x(`) be
the itemset of item ` and let p(x(`)) be the fraction of the
peers that contain itemset x(`). Consider a query made to
an item `. Then the success probability of a Prand probe is
R` = fp(x(`)) ; and the success probability of Rapier probe
is C` = f

k
(1 + (k − 1)p(x(`))). It follows that the ratio of

the Ess under Prand to the Ess under Rapier for item `
by any peer is 1

kp(x(`))
+ k−1

k
. Since p(x(`)) ≤ 1, Rapier is

always at least as effective as Prand. When p(x(`))� 1/k,
Rapier is much more efficient than Prand. This simplistic
model provides some intuition to when Rapier is more ef-
fective than Prand: Rapier benefits, when users interests
are more “focused” (small k) and for items in rare itemsets
(small p(x(`))).

7. SIMULA TION RESULTS
As large scale peer-item data is not available publicly,

we opted to use a different source of similarly-structured
(“market-basket”) data. We used Boeing [34] Web proxy
logs of a lower-level proxies serving end users and extracted
the matrix of users versus hostnames. In the sequel, we refer
to users as peers and to hostnames as items. The resulting
data matrices (for each day of the Boeing logs) had about
57K peers, 45K items, and 115K pairs.

3Similar results would hold when we assume that each peer
belongs to at most k itemsets

As is typical with such data, we observed high skew in
both the size of the index peers have and the support-size of
items (large fraction of peers having small index sizes and
large fraction of items being present at a small fraction of
peers. About 60% of queries are issued to items whose sup-
port is over 0.01 fraction of peers; so considerable fraction
(40%) of queries target unpopular items.

We evaluated the performance of 3 search strategies:
Algorithm Ess computed according to

Urand Equation 1
Prand Equation 2
Rapier Equation 3
The results of the simulations are shown in Figures 1.

The figure shows a cumulative fraction of queries that have
Ess below a certain threshold. They show the performance
for items across support levels and also focus on items that
have lower support (occur in the index of at most 10−2-
10−4 of peers). The figures show that Urand is the worst
performer. The Ess of Urand on an item is the inverse
of its fraction of peers that index it, thus, when focusing
on items occurring in at most 10−4 of users, the respective
Ess is over 10K, and the Urand curve coincides with the
x-axis. The Prand strategy that prefers peers with larger
index sizes manages to see more items in each probe and
performs considerably better than Urand, across items of
different support levels.

We observe that Rapier, which has the same bias towards
peers with larger index as Prand, outperform Prand; more-
over, the performance gap is significantly more pronounced
for items with low support. This indicates strong presence
of the semantic structure Rapier is designed to exploit; and
also emphasizes the qualitative difference between Rapier
and aggregation-based search startegies.

For a typical Gnutella search size, estimated to cover
about 1000 peers, the simulations on the Boeing dataset
show that Rapier covers 52% of queries made to items
that are present on at most 10−4 fraction of peers, whereas
Prand covers only 14% of queries. Out of all queries, Rapier
covers 95% and Prand covers 90%. On a smaller search size
of a 100, Rapier and Prand, respectively, cover 30% and
1.3% of items with support below 10−4 fraction of peers,
and cover 90% and 80% of all items. For search sizes where
Prand covers most queries, Rapier obtains about half the
failure rate of Prand.

8. CONCLUSION
Associative overlays retain the advantages of unstructured

architectures (such as gnutella and FastTrack); including rel-
ative insensitivity to peer failures and support for partial-
match queries; but can offer orders of magnitude improve-
ment in the scalability of locating infrequent items. Our de-
sign exploits presence of associations in the underlying data.
Such associations were previously exploited for Web search,
Data-mining, and collaborative filtering applications, but
the techniques were not portable to the P2P setting which
requires simple, resilient, and fully decentralised protocols.
Our approach maintains the essense of these techniques while
striking a balance with the challenges of the P2P setting.

We argued that Rapier, the simplest search strategy on
possession-rule overlays, can dramatically increase the ef-
fectiveneess of search for rare items over that of plain un-
structured networks. It is likely that better search perfor-
mance on possession-rule overlays can be achieved by prefer-
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Figure 1: Search performance on items present in (1e-4, 1e-3, 1e-2, all) fraction of peers (Boeing-Day3 log).

ing rules that correspond to recently acquired items or rules
where the meta data of the corresponding items is more re-
lated to the query terms. It is also possible to design more
refined search strategies that acount for relations between
guide rules.
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