
Passive Estimation of TCP Round-Trip Times

Hao Jiang
Computer and Information Sciences

University of Delaware

hjiang@cis.udel.edu

Constantinos Dovrolis
Computer and Information Sciences

University of Delaware

dovrolis@cis.udel.edu

ABSTRACT
We propose and evaluate a passive measurement method-
ology that estimates the distribution of Round-Trip Times
(RTTs) for the TCP connections that flow through a net-
work link. Such an RTT distribution is important in buffer
provisioning, configuration of active queue management, and
detection of congestion unresponsive traffic. The proposed
methodology is based on two techniques. The first tech-
nique is applicable to TCP caller-to-callee flows, and it is
based on the 3-way handshake messages. The second tech-
nique is applicable to callee-to-caller flows, when the callee
transfers a number of MSS segments to the caller, and it is
based on the slow-start phase of TCP. The complete esti-
mation algorithm reports an RTT for 55-85% of the TCP
workload, in terms of bytes, in the traces that we exam-
ined. Verification experiments show that about 90% of the
passive measurements are within 10% or 5ms, whichever is
larger, of the RTT that ping would measure. Also, mea-
surements on several NLANR traces show that the two es-
timation techniques agree within 25ms for 70-80% of the
processed TCP connections. We also apply the estimation
methodology on a number of NLANR traces and examine
the variability of the measured RTT distributions in both
short and long timescales.

1. INTRODUCTION
Passive monitors are increasingly used by network opera-
tors and researchers [6, 8]. This technology, which origi-
nated with Jacobson’s tcpdump in the late eighties [9], al-
lows recording of all network traffic that flows through a
link. With passive monitors we can observe the entire work-
load of a link, as opposed to active measurement tools that

Prepared through collaborative participation in the Com-
munications and Networks Consortium sponsored by the U.
S. Army Research Laboratory under the Collaborative Tech-
nology Alliance Program, Cooperative Agreement DAAD19-
01-2-0011. The U. S. Government is authorized to reproduce
and distribute reprints for Government purposes notwith-
standing any copyright notation thereon.

can just take samples of the end-to-end behavior in a path.
In addition, passive monitoring does not introduce traffic
overhead, and thus it does not interact with what is being
measured.

Our objective in this paper is to estimate the Round-Trip
Times (RTTs) of the TCP connections that go through a
network link, using passive measurements at that link. In
other words, we start with a traffic trace from a link, and
then attempt to measure the RTT of every TCP connec-
tion by only investigating the connection’s unidirectional
flow recorded in that trace. If a TCP connection between
hosts X and Y was actively opened by X, i.e., X sent the
first SYN message, we define that X is the caller and Y is
the callee. A unidirectional TCP flow in a trace can be from
the caller to the callee, or from the callee to the caller. Note
that a trace does not always include both flows of a TCP
connection, even when the passive monitor records traffic in
both directions of the link; the reason is that the routes be-
tween the caller and the callee may be asymmetric. Our first
measurement technique, called SYN-ACK (SA) estimation,
is applicable to all TCP flows from the caller to the callee.
Our second measurement technique, called Slow-Start (SS)
estimation, is applicable to some TCP flows from the callee
to the caller, namely those that transfer at least five consecu-
tive segments, the first four of which are Maximum Segment
Size (MSS) packets.

The complete estimation algorithm produces an RTT value
for 50-60% of the TCP connections, and for 55-85% of the
TCP bytes, in the traces that we examined. Most of the
connections that we cannot measure an RTT for are callee-
to-caller flows that do not satisfy the previous MSS-related
requirement. Additionally, we prefer to ignore connections
for which we have some evidence that the RTT estimate
may be wrong, reporting an estimation failure. This means
that we give a higher priority to accuracy than ‘estimation
yield’. Our experiments show that about 90% of the passive
measurements are within 10% or 5ms, whichever is larger, of
the RTT value that ping would measure. Measurements on
several NLANR-MOAT traces [18] show that the SA and SS
estimation techniques agree within 25ms for 70-80% of the
processed TCP connections. We have also applied these esti-
mation techniques on a number of NLANR traces in order to
examine the variability of the measured RTTs in both short
timescales (seconds, minutes) and long timescales (hours,
days, months).

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200275

Some preliminary RTT measurements using passive mea-
surements are reported in [12, 23], based on variations of
the SYN-ACK (SA) estimation technique. tcptrace mea-
sures several RTT values for each connection from the de-
lay between non-retransmitted data packets and their corre-
sponding ACKs. This technique works only when the trace
is collected at the TCP sender [19]. Balakrishnan et. al used
TCP traces at a WWW server to reproduce the evolution of
several TCP state variables, including the connection’s RTT
[4]. Allman measured several RTT values during the lifetime
of each HTTP connection at a WWW server, using passive
measurements at that server [1]. Measuring the RTTs of a
connection at end-hosts is easier, as we have access to both
data segments and their ACKs. Generally, our measure-
ments cannot be as accurate as those in [1], because the SA
and SS techniques operate on unidirectional TCP flows in
the ‘middle of the network’, where the impact of the network
jitter and losses is more significant. Also, the estimation
techniques that we propose are simple, making it likely that
routers could estimate the RTT of a new TCP connection
in real-time. More sophisticated algorithms, such as the al-
gorithm in §3.4 of [2], may be able to infer the evolution of
the congestion window from unidirectional measurements,
at the cost of higher computational complexity and per-flow
state, however.

The RTT that a connection experiences varies, due to queue-
ing delay variations or routing changes. Our estimation
techniques attempt to provide one measurement per con-
nection, which is the RTT that the connection experienced
during connection establishment or during its first slow-start
round-trip. Study of estimating retransmission timer (RTO)
in [2] shows that taking only one RTT sample for the RTO
estimator works fairly well. [1] reports additional measure-
ments on the RTT variations that a connection can experi-
ence during its lifetime.

The knowledge of connection RTTs at a network link has
several applications. First, the amount of required buffering
at a link depends on the RTTs of the TCP connections that
go through that link [24, 15]. An estimate of the TCP RTTs
is also useful in the configuration of active queue manage-
ment modules [13], and in the identification of congestion
unresponsive traffic [7, 11]. The proposed RTT estimation
techniques can provide input to these network provisioning
and traffic management modules.

The paper is structured as follows. Section 2 gives the basic
idea for the two RTT estimation techniques, SA and SS. Sec-
tion 3 describes the implementation of these techniques, and
explains some additional estimation heuristics and correct-
ness checks. Section 4 outlines the verification approaches
that we followed and shows typical accuracy results. Sec-
tion 5 presents RTT distributions from different monitored
links, focusing on the variations of the RTT distributions
over both short and large timescales.

2. BASIC TECHNIQUES
We focus on RTT estimation techniques that operate on a
trace of all TCP traffic that flows in a network link during
a time period. Such a trace can be collected with a passive
monitor that is installed at the corresponding link [6]. The
trace must include the IP and TCP header fields and an

accurate timestamp for each packet. For each monitored
TCP connection the trace includes the flow from the caller
to the callee, or the flow from the callee to the caller. The
trace may not record both these flows, either because the
routes between the two hosts are asymmetric, or because
the link (or the passive monitor) is unidirectional1.

We use two different RTT estimation techniques, depend-
ing on the type of TCP flow that the trace records. When
we see a flow from the caller to the callee, the connection’s
trace starts with the SYN packet that initiates the three-
way handshake, followed by the the first ACK packet that
closes that handshake [22]. In that case, the RTT is esti-
mated based on the SA (SYN-ACK) estimation technique.
The second estimation technique, that we refer to as SS
(Slow-Start) estimation, is applied to callee-to-caller flows
that transfer at least five consecutive segments, the first
four of which are MSS packets. Usually, but not always,
such flows are from a server (callee) to a client (caller) (e.g.,
HTTP reply flows). It is important to note that we cannot
measure the RTT of all callee-to-caller flows.

All traces used in this paper are publicly available at the
NLANR-MOAT site [18]. The traces (and the correspond-
ing NLANR files) are named as Site Abbreviation - Times-
tamp. For example, the trace OSU-990050251 was taken
at 17:57:31 EST on 5/16/2001 at the Ohio State Univer-
sity (OSU) access link2. The capture times of all traces are
reported in Eastern Standard Time (EST).

2.1 SYN-ACK (SA) estimation
When we see a flow from a TCP caller to a callee, the RTT
is estimated from the packets exchanged during the three-
way handshake. Specifically, in that case the trace starts
with one (or more in case of losses) SYN packet, followed by
an ACK from the caller to the callee. Note that the trace
may not include the SYNACK packet from the callee to the
caller, because that packet is sent in the reverse-direction
flow. The basic idea in SA estimation is that the RTT can
be estimated from the time interval between the last-SYN
and the first-ACK that the caller sends to the callee. This
time period is shown in Figure 1.

The SA technique provides an accurate RTT estimate when
the following three conditions are met. First, the trans-
mission of the SYNACK packet from the callee, and of the
first-ACK packet from the caller, is not delayed. Second, the
SYNACK packet is not lost while in transit, and the first-
ACK is not lost before it reaches the monitor. Third, the
time spacing between the last-SYN and first-ACK packets
at the caller and at the monitor is roughly the same, i.e., the
delay jitter that is introduced in the network between these
two packets is not significant. As will be shown in §4, even
though these three conditions are not always met, the SA
technique works quite accurately for the majority of TCP

1It is also possible that the trace does not include all packets
between the two hosts because of route changes or multipath
forwarding. In such cases, our techniques may fail to esti-
mate the connection’s RTT, depending on which packets are
recorded in the trace.
2More information about the location and sta-
tus of each monitored link can be found at
http://pma.nlanr.net/PMA/Sites.

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200276

connections in the traces that we have experimented with.

As an illustration of the SA technique, Figure 2 shows the
first two packets for six connections of the same HTTP ses-
sion from a certain client to a WWW server. For each con-
nection, there is a line for every recorded packet. The first
line gives the packet number, timestamp of arrival at the
monitor (in seconds), source and destination IP addresses
(encrypted), source and destination port numbers, packet
size (bytes), and some TCP flags. The following lines give
the time spacing (‘delta’) of that packet relative to the pre-
vious packet, as well as the packet size and some TCP flags.
The RTT estimate that results with the SA technique is
given last. Note that the six RTT estimates in this HTTP
session are quite close (with 1ms of each other). This was
expected, as these six connections are established at about
the same time between the same pair of hosts.

2.2 Slow-Start (SS) estimation
The Slow-Start (SS) technique considers TCP flows that
transfer data from the callee to the caller. Among all such
flows in the trace, the Slow-Start technique can be applied
when the recorded flow starts with at least five consecutive
segments, the first four of which are MSS packets. The MSS
value can be estimated from the connection’s trace, com-
paring the flow’s largest segment size with one of the ‘well-
known’ MSS values, such as 1460 bytes, 1452 bytes, or 536
bytes (see [14] for more such values). Thus, the SS estima-
tion technique is not applicable for TCP flows that transfer
only small segments, or segments with unusual MSS values.

After the three-way handshake is completed, the behavior of
a TCP data transfer is governed by the slow start algorithm
[10, 3]. During slow start, the TCP sender increments the
congestion window variable (cwnd) by one MSS for each
received ACK that acknowledges new data. The value of
the Initial Window (IW) is usually up to two MSSs [10].
Experimental TCP extension allows that a TCP may use a
larger initial congestion window up to four MSSs [3]. When
ICW = 2MSS, and if the sender has enough data, it will
send two MSS packets to the receiver. Note that these two
first MSS packets are sent back-to-back, in a burst. We re-
fer to these MSS packets as the flow’s first MSS burst, or
simply first burst. When the ACK for these two packets is
received3, the sender increases cwnd to three, and sends
up to three additional MSS packets back-to-back. We refer

3With Delayed-ACKs, there will be only one ACK for the
first two packets.

ACK

SYN−ACK

SYN

MonitorCaller Callee

time time

RTT

packets not seen in the trace

packets seen in the trace

Figure 1: SYN-ACK (SA) RTT estimation.

- Connection-1

pack-1:T=0.522292 SA=10878977 DA=131073 SP=2418 DP=80 LEN=48 SYN

pack-2:∆=68.90 ms LEN=40 ACK

=> RTT=68.90 ms

- Connection-2

pack-1:T=0.523889 SA=10878977 DA=131073 SP=2419 DP=80 LEN=48 SYN

pack-2:∆=69.46 ms LEN=40 ACK

=> RTT: 69.46 ms

- Connection-3

pack-1:T=0.527233 SA=10878977 DA=131073 SP=2420 DP=80 LEN=48 SYN

pack-2:∆=68.74 ms LEN=40 ACK

=> RTT: 68.74 ms

- Connection-4

pack-1:T=0.531239 SA=10878977 DA=131073 SP=2421 DP=80 LEN=48 SYN

pack-2:∆=70.47 ms LEN=40 ACK

=> RTT: 70.47 ms

- Connection-5

pack-1:T=0.664952 SA=10878977 DA=131073 SP=2422 DP=80 LEN=48 SYN

pack-2:∆=70.14 ms LEN=40 ACK

=> RTT: 70.14 ms

- Connection-6

pack-1:T=0.668825 SA=10878977 DA=131073 SP=2423 DP=80 LEN=48 SYN

pack-2:∆=69.23 ms LEN=40 ACK

=> RTT: 69.23 ms

Figure 2: Sample trace of SA RTT estimation for
an HTTP session with six connections.

to these packets as the flow’s second burst. The basic idea
in SS estimation is that the time spacing between the first
and second bursts is roughly equal to the connection’s RTT.
This is shown in Figure 3-a. The first burst just after the
SYNACK packet should consist of at least two MSS pack-
ets, and it may include more (up to 4 MSS packets) if the
connection has a larger ICW. The SS technique is accurate
when the time spacing between the two bursts, as measured
at the monitor (RTTm), is approximately equal to the time
spacing between the two bursts at the sender (RTTs). De-
lay jitter in the network can of course distort this spacing,
increasing or decreasing the RTT estimate.

In some TCP implementations, the ICW is only one MSS
packet [1]. In that case, the sender first sends one MSS
packet, and after the ACK for that packet arrives, it sends
up to two MSS packets in a burst. This case is shown in Fig-
ure 3-b. The time spacing between the first packet and the
burst of the second/third packets may be larger than the
connection’s RTT, because of the Delayed-ACK algorithm
[5]. According to that algorithm, the receiver acknowledges
immediately only every second packet, and so the ACK for
the first packet will not be generated until a certain TCP
timer expires. It is because of this issue that the SS tech-
nique requires that the first burst should consist of at least
two MSS packets.

An example of the SS technique is shown in Figure 4 for two
callee-to-caller flows of the same HTTP session. The trace
shows the first 7 packets of each flow. The third and fourth
packets constitute the first burst in the flow. After a ‘silence
period’, some additional data packets are sent from the Web
server to the client back-to-back (second burst). The RTT is
estimated from that silence period, which is about the same

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200277

Request

packets seen in the trace

ACK

SYN

RTTm

MonitorCaller Callee

Request

Data

ACK

SYN−ACK

Data

1st burst

2nd burst

ACK

SYN

MonitorCaller Callee

SYN−ACK

Data

ACK
> RTT

Delay

time time
 (b) Initial cwnd = 1

RTT

ACK

Data

Data

(a) Initial cwnd = 2
timetime

RTTs

s

packets not seen in the trace

Figure 3: Slow-Start (SS) RTT estimation.

for both connections (116 − 118 ms).

3. FURTHER IMPROVEMENTS
The previous section described the basic idea in the SS and
SA techniques. An accurate RTT estimation algorithm,
however, needs to consider several ‘harder cases’, such as
connections that experience losses, retransmissions, or queue-
ing. In this section, we present some additional estimation
heuristics and correctness tests that we developed to deal
with, or at least detect, such cases, and give pseudocode for
the two estimation techniques.

3.1 SA estimation
3.1.1 Losses in the SA technique
Consider a caller-to-callee flow during the three-way hand-
shake. If the caller’s ACK is lost before it reaches the mon-
itor, the spacing between the last SYN and the first ACK
packets may include a retransmission timeout. In that case,
the SA-based RTT (RTTSA) will be overestimated. Accord-
ing to RFC 2988, the initial retransmission timeout (RTO)
should be set to 3 seconds [21]. Even though certain systems
use an initial RTO that is as low as 1.7 seconds or as high
as 6 seconds, most TCP implementations follow the 3 sec-
onds requirement [16]. When our SA estimate is larger than
3 seconds, we presume that it includes an initial RTO and
discard it. This means that the RTTs that we can measure
with the SA technique are limited to 3 seconds. We expect
that only a few TCP connections have an RTT that is more
than 3 seconds in today’s Internet.

3.1.2 Delayed first-ACK at the caller
The SA technique assumes that the caller will reply with the
first ACK immediately after receiving the callee’s SYNACK.
This is not always the case, however. Certain operating
systems, such as AIX and some versions of Linux, provide
socket options for delaying the first ACK. The advantage of
this option is that the first ACK can be piggybacked with

- Connection-1

pack-1:T=0.78318 SA=31073 DA=337729 SP=80 DP=1026 LEN=44 SYN ACK

pack-2:∆=119.94 ms LEN=40 ACK

pack-3:∆= 8.11 ms LEN=1500 PSH ACK

pack-4:∆= 0.10 ms LEN=1500 PSH ACK

pack-5:∆=115.83 ms LEN=1500 PSH ACK

pack-6:∆= 0.12 ms LEN=1500 PSH ACK

pack-7:∆= 0.12 ms LEN=1500 PSH ACK

=> RTT: 115.83 ms

- Connection-2

pack-1:T=2.39328 SA=31073 DA=337729 SP=80 DP=1032 LEN=44 SYN ACK

pack-2:∆=160.98 ms LEN=40 ACK

pack-3:∆= 3.05 ms LEN=1500 PSH ACK

pack-4:∆= 0.12 ms LEN=1500 PSH ACK

pack-5:∆=117.87 ms LEN=1500 PSH ACK

pack-6:∆= 0.13 ms LEN=1500 PSH ACK

pack-7:∆= 0.08 ms LEN= 504 ACK FIN

=> RTT: 117.87 ms

Figure 4: Sample trace of SS estimation for an
HTTP session with two connections.

the caller’s first request/data packet [17]. Even though this
socket option saves one ACK packet for the client, it can
cause significant RTT overestimation errors in the SA tech-
nique. As an illustration of this effect, Figure 5 shows the
first two packets (SYN and first ACK) for five connections
of the same HTTP session. The RTT estimates that the
SA technique gives vary from about 250ms to 390ms. It
is likely that these large variations are caused because the
client delays the transmission of the first ACK. We do not
have a general test to detect this problem. However, in cer-
tain cases we can identify whether the SA estimate is wrong
using some simple tests that we describe next.

3.1.3 The HTTP-request sanity check
In an HTTP connection, the caller (client) sends an HTTP
request to the callee (server) after the connection is estab-
lished. After the client receives the first one or two data
packets of the HTTP reply, it sends an ACK packet to
the server. As shown in Figure 6, the time interval X
between the HTTP request and the subsequent ACK sent
by the client is larger than the connection’s RTT, because
X includes processing delays at the server, and possibly a
Delayed-ACK timeout at the client. Consequently, when
the monitored flow is an HTTP request we can use X as an
upper bound on the estimated RTT. If the SA estimate is
RTTSA > X, it is discarded and no estimate is given for
that connection.

Monitor Callee

X > RTT

Caller

packets not seen in the trace

packets seen in the trace

HTTP Request

ACK

Data

Figure 6: The HTTP-request sanity check.

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200278

SYN

ACK

at

SYN

ACK

Monitor
SYN

ACK

starting
at
4.58 s

Monitor

4.57 s4.57 s

starting

Monitor

at
startingSYN

ACK

starting
at
0.51 s

Monitor

251 ms 271 ms250 ms

SYN

ACK

starting
at
4.61 s

Monitor

390 ms 360 ms

(1) (2) (3) (4) (5)

Figure 5: First two packets for five caller-to-callee flows of the same HTTP session.

foreach (SA flow)

{
RTT = P[first ACK].time - P[last SYN].time;

if (flow is HTTP request)

X = P[Ack after request].time - P[request].time;

if ((RTT <= X) && (RTT < 3sec))

return RTT;

else skip;

}

Figure 7: Pseudocode for SA estimation.

3.1.4 Pseudocode for SA estimation
Figure 7 gives a sketch of the SA estimation algorithm.

3.2 SS estimation
3.2.1 The effect of the Initial Window
In the SS technique, we examine each TCP callee-to-caller
flow for which we can estimate its MSS. Additionally, the
flow must start with at least five consecutive data packets
after the connection establishment, of which the first four
must be MSS. If this is the case, let {δ1, δ2, δ3, δ4} be the four
interarrivals between the first five data packets. Suppose
that the Initial Window is I segments. If I is 2, 3, or 4
segments, it is easy to see that the RTT estimate is the time
spacing between the first and second bursts in TCP’s slow-
start. That spacing, which is given by δI , is expected to
be the maximum of the four interarrivals {δ1, δ2, δ3, δ4} (see
Figure 3). When the Initial Window is one packet (I=1),
however, δ1 may include a delayed-ACK timeout, and so it
will be quite larger than δ2 and δ4; if that is the case, the
RTT estimate is δ3, as can be seen in Figure 3.

3.2.2 Lost and out-of-order packets
Packet loss or packet Out-Of-Order (OOO) delivery is not
uncommon in the Internet [20]. We have so far assumed
that there are no packet losses in the first two bursts of
the flow. The presence of losses in the first two bursts can
be detected using the TCP sequence numbers in the flow’s
packets. Some of the loss and out-of-order cases prevent
the SS technique from estimating the connection’s RTT, be-
cause the loss creates a spacing between the first and second
bursts that is related to either the Retransmission Timeout
(RTO) (see Figure 8-a), or to the Delayed ACK timeout
(Figure 8-b). Our algorithm detects packet loss or out-of-
order delivery, and discards such connections reporting that
it cannot report a reliable RTT measurement for them.

3 41 2 1

RTO

1 2 2

RTT+DelAck

RTO

b. Packet #2 lost after passing monitora. Packets #1 and #2 lost after passing monitor

Figure 8: Two packet loss scenarios in the first two
TCP bursts.

3.2.3 The SYNACK-ACK sanity check
In HTTP callee-to-caller flows, we often observe a pure ACK
after the SYNACK and before any data packets. That ACK
packet acknowledges the HTTP request that the client sent,
before the actual data transfer starts. It is easy to see that
the time interval X between the SYNACK and that pure
ACK is at least one RTT (see Figure 9). We use this time
interval X as a ‘sanity check’ for our SS estimate RTTSS:
if RTTSS is appreciably larger than X, the SS estimate is
probably wrong, and so it is discarded.

Request

SYN

SYN−ACK

ACK

ACK

Data

Data

timetime

Pure ACK

Caller Monitor Callee

X >= RTT

packets not seen in the trace

packets seen in the trace

Figure 9: The SYNACK-ACK sanity check.

3.2.4 Pseudocode for SS estimation
Figure 10 gives a sketch of the SS estimation algorithm.

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200279

foreach (SS flow)

{
P[i] = i’th data packet; (i ≥ 5)

if (i<5) skip; // not enough data packets

MSS = detect MSS value(P[]);

if (MSS < 0) skip; // unknown MSS

for (i=1; i<5; i++)

if (P[i] == MSS) δ[i] = P[i+1].time - P[i].time;

else skip; // not enough MSS packets

if (δ[1]>>δ[2] && δ[1]>>δ[4])

RTT = δ[3]; // ICW = 1

else RTT = max{δ[2], δ[3], δ[4]}; // 2 ≤ ICW ≤ 4

if (pure-ACK after SYNACK) {
X = P[ACK].time - P[SYNACK].time;

if (X ≥ RTT) return RTT;

else skip;

}
}

Figure 10: Pseudocode for SS estimation.

3.3 Skip cases
There are many TCP connections for which our estimation
techniques cannot produce an RTT. These ‘skip cases’ are
listed in Table 1. A ‘skip’ occurs when our algorithm prefers
to discard a connection, rather than producing an estimate
which is likely wrong. The various reasons to skip a connec-
tion are explained in the first column. The table also gives
the amount of TCP traffic that falls in each case as a frac-
tion of connections, and as a fraction of transferred bytes in
each dataset.

Unfortunately, both the percentage of skipped connections
and the percentage of skipped bytes is significant in the
traces that we have examined (between 40% to 50% for con-
nections, and 15% to 45% for bytes). It is important to
note that practically all skip cases occur in callee-to-caller
flows and SS estimation. The most common reason for ig-
noring a callee-to-caller flow is that it does not include at
least four consecutive MSS packets after the connection es-
tablishment. This is often the case with WWW ‘mice’, with
operating systems that do not set the Initial Window to a
multiple of MSS, and with applications that perform several
small ‘writes’ to the TCP socket instead of a single large
one. We note that even if the SS technique fails to produce
an RTT estimate for each callee-to-caller flow, it can still be
used to give an RTT distribution, based on a large sample
of the TCP connections in the link.

4. VERIFICATION
In this section, we examine the accuracy of the previous
RTT estimation techniques. We follow two verification ap-
proaches. The first is to compare the SA and SS estimates
with active RTT measurements between that connection’s
end-hosts. The second verification approach is indirect, and
it is based on the relation between the SA and SS estimates.

4.1 Direct verification approach
Our objective in this approach is to directly compare the SA
and SS passive RTT measurements with active RTT mea-
surements using ping. Given that both SA and SS examine
the initial phases of a TCP connection (3-way handshake

and slow-start, respectively), the ping measurements are col-
lected just before the connection establishment.

In more detail, the experimental methodology is as follows.
A set of about 120 university WWW servers around the
world form our ‘measurement targets’. The targets are dis-
tributed among US, European, and Asian sites, with about
40 servers in each of the three groups. A publicly available
HTTP file, larger than 6KB, is identified in each server. A
local machine in our lab measures the RTT to each measure-
ment target using ten ping measurements, and then trans-
fers the identified HTTP file from the target using the GNU
Wget utility. The same machine serves as a network moni-
tor, collecting a trace of all TCP traffic using tcpdump. After
the transfer is over, the RTT of the HTTP-TCP transfer is
estimated from the trace using both the SA and SS estima-
tion algorithms, if possible. Finally, the two RTT estimates
are compared to the median of the ten ping measurements.
The previous procedure was repeated on four different days
for each measurement target, to collect a total of about 480
comparison points for SA estimation, and about 350 com-
parison points for SS estimation. The number of SS esti-
mates is significantly lower, as some of the HTTP transfers
did not meet the requirements of the SS estimation algo-
rithm (see Figure 10).

It is important to note that although the trace is collected
at one of the two connection end-hosts, the network can still
cause delays and losses in both directions of the TCP con-
nection. Consequently, the previous verification approach
does not make the passive RTT estimation easier in any
way. Second, the RTT in a connection’s path is certainly
not constant, due to queueing delay variations. For this rea-
son, we use the median of the ping measurements as a basis
for comparison with the SA and SS estimates. Another ap-
proach would be to use the last ping measurement before
we start the TCP connection; we did not notice significant
differences with using the median, however.

Figure 11 shows the SA and SS estimates in comparison
with the corresponding ping measurements for each of the
three geographical areas. Note that since our host is in
the East Coast of USA, the RTTs to many US targets are
larger than the RTTs to European targets, and the RTTs
to Asian targets are generally even larger. We consider that
an SA or SS estimate is accurate, if it is within 5ms or
10%, whichever is larger, of the corresponding median ping
measurement. The dashed lines in Figure 11 bound this
accuracy region. With this error tolerance, and for at least
this small set of measurements, we see that the fraction of
inaccurate measurements is roughly 5-10% for SA estimates,
and only slightly more (10-15%) for SS estimates.

In absolute terms, the estimation errors generally increase
in paths with larger RTTs, as shown in the case of Euro-
pean and Asian targets. This is probably because longer
paths tend to consist of more multiplexing devices (routers
and switches), introducing increased jitter in the spacing
between the packets of a connection. Jitter in the 3-way
handshake packets, or in the first two slow-start bursts, can
add significant noise in the SA and SS techniques, respec-
tively.

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200280

4.2 Indirect verification approach
In order to evaluate the estimation algorithms on the NLANR
traces, which are collected from edge and backbone links, we
use an indirect verification approach4. The underlying idea
in this approach is to compare the SA and SS RTT estimates
for the same connection, when the trace includes both flows
from the caller to the callee and from the callee to the caller.
This is possible for a significant fraction of connections in the
NLANR traces. Since the SS and SA techniques are inde-
pendent, it is unlikely that both techniques will give the same
and wrong RTT estimate. Consequently, if the SA and SS
techniques give approximately the same RTT for a certain
connection, we expect that that RTT is correctly estimated.

Figure 12 shows the distribution of the difference between
the SA and SS estimates using several traces at four different
links. A difference is measured for each connection that
gives both an SA and an SS estimate. The graphs at the
left column show the distribution of the absolute difference,
i.e., RTTSA −RTTSS. The absolute difference is used here
because there is no way to know which one of two estimates,
RTTSA and RTTSS, is more accurate. The dashed lines
mark the ±25ms range.

The lowest 10% to 20% of the difference distributions are
due to connections in which the SS estimate is significantly
larger than the SA estimate, probably because RTTSS has
been overestimated. The highest 5% to 15% of the differ-
ence distributions are due to connections in which the SA
estimate is significantly higher than the SS estimate, either
because RTTSA has been overestimated (because of delays
at the transmission of the first ACK), or because RTTSS

has been underestimated. Overall, we observe that the two
RTT estimates have an absolute difference that is less than
25ms in about 70%-80% of the processed TCP connections.

The graphs at the right column show the corresponding
scatter plots for the two RTT estimates. The scatter plots
show how the absolute difference between the two estimates
relates to the absolute magnitude of the estimates. The
dashed lines mark again the ±25ms range. Overall, we do
not observe a bias towards larger RTT differences in connec-
tions with relatively small or large RTT values for the traces
we examined.

We finally note that a significant difference between the SA
and SS estimates is possible in transfers over slow links (e.g.,
dial-up modems). The serialization time of a packet at such
links can dominate the RTT, especially with large packets.
Consequently, the SA estimate, which is based on the small
(40-50 byte) 3-way handshake packets, can be much smaller
that the SS estimate, which is based on MSS packets.

5. RTT DISTRIBUTIONS
5.1 RTT distributions at different locations
In general, the RTT distribution at a link depends on the ge-
ographical location of each connection’s end-points. There-
fore, it is expected that different links can have significantly
different RTT distributions. Figure 13 shows the RTT cu-

4Direct verification based on ping measurements would not
be possible, because the NLANR traces encrypt the source
and destination IP addresses.

mulative distribution functions (CDFs) at both interfaces of
four duplex links, in terms of connections and bytes. The
four links cover a wide range of geographical locations and
network types. SDC is an OC3 access link at the San Diego
Supercomputer Center that carries commodity Internet traf-
fic. COS is an OC3 access link that connects Colorado State
University to the Front Range GigaPoP, and it carries both
Internet-2 and commodity traffic. IND is an OC12 link at
the Indiana University GigaPOP, and it is part of the Abi-
lene network’s backbone. TAU is an OC3 link at Tel Aviv
University that connects the Israel GigaPoP to Internet-2 in
the US.

The four graphs in Figure 13-a show the RTT distributions
in terms of TCP connections, i.e., one RTT measurement
per connection. A general observation is that more than 90-
95% of the TCP connections have an RTT that is less than
500ms. Additionally, in the case of US links, more than
75-90% of connections have an RTT is less than 200ms. In
terms of a lower RTT bound, there is a significant fraction
of TCP connections in all traces with an RTT of just a
few milliseconds. These are connections within the local
geographical area of the monitored link. It is noted that the
RTTs at a monitored link cannot be lower than the round-
trip propagation delay of that link.

Note that the backbone link (IND) has a wider RTT dis-
tribution that the two US access links (SDC and COS). It
is likely that this is because IND, being a core link, carries
traffic between a more geographically dispersed population
of users. SDC has a slightly wider distribution than COS
as well. Since SDC resides at the southwest tip of the US,
while COS resides more centrally in the US, it is reasonable
that the COS connections to US sites have a smaller RTT
range than the SDC connections.

The effect of the geographical location is more prominent in
the case of the TAU link. The TAU RTT distribution makes
a significant ‘step’ between about 50ms and 200ms. About
35% of the connections have an RTT that is less than 50ms,
while the rest of the connections have an RTT that is larger
than 200ms. We expect that the former group is connections
within Israel, or between Israel and Europe, while the latter
is connections mainly to North America.

Figure 13-b shows the RTT CDFs for the same traces and
links, but in terms of bytes, i.e., one RTT measurement per
transferred byte. These CDF graphs are more sensitive to
individual connections, since a huge transfer can cause a
significant vertical step in the measured RTT distribution.
This is the case, for example, with a connection at interface-
1 of the COS link: that connection transferred about 30%
of the link’s traffic during the trace, and it had an RTT of
about 200ms. As was also the case in Figure 13-a, more
than 95% of the bytes are transferred from connections with
RTT less than 500ms.

Figure 13 shows that the RTT distributions of the two link
interfaces are quite similar, when the distributions are plot-
ted in terms of connections. This is the case with these
particular links because they usually carry both directions
of a TCP connection. So, if we estimate the RTT of a cer-
tain connection at interface-1, it is likely (but not always the

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200281

case) that we will also estimate the RTT of that connection
in interface-2. In terms of bytes, however, the RTT distri-
butions of the two interfaces can be significantly different.
This is expected, as most TCP connections transfer data
only in one direction.

We also investigated the correlation between a connection’s
RTT and transfer size to examine whether shorter-RTT con-
nections tend to transfer more data. Based on the measure-
ments that we have analyzed so far, it is inconclusive to say
that this is the case in general. At the TAU link, however,
we note that about 60% of the bytes are transferred by short-
RTT connections (RTT less than 50ms), while the fraction
of short-RTT connections is only 35%. The presence of Web
caches (or similar proxy servers) in Israel may be one un-
derlying reason for this effect. Another reason may be that
large transfers usually take place locally in that dataset.

5.2 RTT variations in different timescales
By splitting a trace of duration T into four parts, each hav-
ing a duration about T/4, we can examine the stationarity
of the RTT distribution in the timescales of tens of sec-
onds. For an ordinary NLANR trace, T is usually about
90 seconds, and so each trace-quarter is about 22 seconds.
Figure 14 shows the four resulting RTT distributions5 for
both interfaces of the SDC link. Visually, the CDFs at the
four quarters are almost the same, providing some evidence
that the RTT distributions do not change significantly in the
timescales of tens of seconds for the traces we examined. Oc-
casionally, there are some measurement periods over which
the RTT distribution is quite different, but this usually hap-
pens when the corresponding trace-quarter does not include
enough measurement points.

In the timescales of hours, we are mostly interested in dif-
ferences between daytime and nighttime. Figure 15 shows
the RTT distributions for both interfaces of the SDC link
at three different times on a weekday in 19996. One of the
traces (4:29pm) was captured during daytime in the conti-
nental US, while the two other traces (1:47am and 7:52am)
were captured at late night in the West Coast and early
morning in the East Coast respectively. What is more im-
portant is that during both 1:47am and 7:52am EST, it is
daytime in both Europe and Asia. Consequently, we expect
that the link’s workload during those two traces carried a
larger fraction of traffic from remote continents. This ex-
plains why the RTT distributions in the 1:47am and 7:52am
traces are larger by 100-300ms for about 50% of the connec-
tions than the 4:29pm trace.

In the timescales of days, we are interested in differences
between weekdays and weekends. We were initially expect-
ing to measure lower RTTs during the weekend, as a result
of lower network usage, and thus lower queueing delays. It
turned out, however, that that is not the case, at least in
the links that we have experimented with. Figure 16 shows
the RTT distributions for both interfaces of the IND link at
about the same time on three different days in September

5The following RTT distributions are all in terms of connec-
tions.
6We remind the reader that all the reported times are in
EST, and so the corresponding time in San Diego would be
three hours earlier.

2001. Note that there are no important or consistent dif-
ferences in these RTT distributions between weekdays and
weekends. The reason may be that the queueing delays in
several backbone networks (including the Abilene) are quite
low compared to the propagation delays.

In the timescales of months, variations in the RTT distri-
bution can be due to technology changes (e.g., addition of
new links or routers), or due to long-term Internet evolu-
tion trends (e.g., gradually lower queueing delays). Fig-
ure 17 shows the RTT distribution over more than a year
(March 2000 to April 2001) at TAU. An RTT distribution
is measured for every other month. Prior to September
2000, a large fraction of connections had larger RTTs than
400ms. Sometime around October 2000, there was a major
shifting of the RTT distribution towards values that were
about 200ms lower. A possible explanation for this change
is that a satellite link with round-trip delay of about 400ms
was replaced with a transatlantic link with round-trip de-
lay of about 200ms, causing a 200ms RTT reduction in all
the Israel-USA traffic. The distribution from 10/14/2000 is
somewhere in the middle, indicating that the network may
have been in a transition state during that month, using
both the satellite and transatlantic links.

5.3 Effect of queueing delays
Overall, we have not observed persistently increased RTTs
during certain times or days that we can attribute to queue-
ing delays. As an exception to the rule, however, Figure 18
shows the RTT distributions at SDC on May 15, 2000 (a
Monday) at 11:21am and 2:54pm EST. The 2:54pm trace
gave an RTT distribution that is shifted by approximately
100ms towards larger values at both interfaces. A possible
explanation for this change is that ‘the Internet cloud around
SDSC’ became significantly congested on that morning, in-
flating the RTT of most connections by about 100ms.

Based on all the traces we examined, we summarize in the
perspective of ’middleman’ in the network that RTT distri-
butions are different across network, they may vary in the
granularity of hourly timescale, and they strongly depend
on the traffic conditions of the Internet cloud. So, it is im-
portant to be able to passively measure RTTs in the middle
of network for those possible applications mentioned in the
introduction, instead of simply hardcoding one known RTT.

6. SUMMARY AND FUTURE WORK
We presented and evaluated a passive measurement method-
ology that attempts to estimate the RTT of a TCP flow dur-
ing the connection’s initial stages. Measurements on several
NLANR traces show that the estimation algorithm produces
an RTT value for 55-85% of the TCP workload, in terms of
bytes. In terms of accuracy, we found that about 90% of the
passive measurements are within 10% or 5ms, whichever is
larger, of the RTT value that ping would measure. Also,
experiments with NLANR traces showed that the SA and
SS passive RTT estimates agree within 25ms for 70-80% of
the processed TCP connections.

One possibility for future work would be to improve the
SS technique so that it is applicable to a larger number of
connections, and to analyze more than the first slow-start
round-trip. We spent a significant amount of time attempt-

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200282

ing to do so. Unfortunately, it is quite hard to analyze in
a robust manner the slow-start behavior of unidirectional
TCP flows in ‘the middle of the network’. This is because
there are significant differences among various TCP imple-
mentations in terms of their ACKing policy, initial window,
and MSS selection. Application-layer issues, such as using
persistent HTTP connections, or writing small chunks of
data to the TCP socket, can cause additional unpredictabil-
ity in the evolution of a TCP connection. Finally, the possi-
bility of losses, reordering, and arbitrary delay jitter in the
flow of data segments or ACKs makes the analysis even more
difficult.

As a next step, we plan to investigate ways in which routers
can use this RTT estimation methodology in real-time to
compute the required amount of buffering at the link, to con-
figure Active Queue Management modules, or to detect con-
gestion unresponsive flows. Another interesting task would
be to investigate the fraction of TCP connections that a
router would need to examine in order to get a good approx-
imation of the link’s RTT distribution. Such sampling can
reduce the overhead associated with these measurements.

7. ACKNOWLEDGMENTS
The authors are grateful to the three anonymous referees
and to the CCR editor B. Krishnamurthy. The two-round
review process helped significantly in improving the paper.

This work would not be possible without the traces col-
lected from the NLANR Passive Measurement and Analy-
sis (PMA) project. The NLANR PMA project is supported
by the National Science Foundation Cooperative Agreement
No. ANI-9807479, and by the National Laboratory for Ap-
plied Network Research.

The views and conclusions contained in this document are
those of the authors and should not be interpreted as rep-
resenting the official policies, either expressed or implied, of
the Army Research Laboratory or the U. S. Government.

8. REFERENCES
[1] M. Allman. A Web Server’s View of the Transport

Layer. Computer Communication Review, 30(5), Oct.
2000.

[2] M. Allman and V. Paxson. On Estimating
End-to-End Network Path Properties. In Proceedings
of ACM SIGCOMM, Sept. 1999.

[3] M. Allman, V. Paxson, and W. Stevens. TCP
Congestion Control, Apr. 1999. IETF RFC 2581.

[4] H. Balakrishnan, V. N. Padmanabhan, S. Seshan,
M. Stemm, and R. H. Katz. TCP Behavior of a Busy
Internet Server: Analysis and Improvements. In
Proceedings of IEEE INFOCOM, Apr. 1998.

[5] R. Braden. Requirements for Internet Hosts –
Communication Layers, Oct. 1989. IETF RFC 1122.

[6] J. Cleary, S. Donnelly, I. Graham, A. McGregor, and
M. Pearson. Design Principles for Accurate Passive
Measurement. In Proceedings Passive and Active
Measurements (PAM) workshop, Apr. 2000.

[7] S. Floyd and K. Fall. Promoting the Use of
End-to-End Congestion Control in the Internet.
IEEE/ACM Transactions on Networking,
7(4):458–473, Aug. 1999.

[8] C. Fraleigh, C. Diot, B. Lyles, S. Moon, P. Owezarski,
D. Papagiannaki, and F. Tobagi. Design and
Deployment of a Passive Monitoring Infrastructure. In
Proceedings of Passive and Active Measurements
(PAM) Workshop, 2001.

[9] V. Jacobson. TCPdump, the protocol packet capture
and dumper program.
ftp://ftp.ee.lbl.gov/tcpdump.tar.Z.

[10] V. Jacobson. Congestion Avoidance and Control. In
Proceedings of ACM SIGCOMM, pages 314–329, Sept.
1988.

[11] R. Mahajan, S. Floyd, and D. Wetherall. Controlling
High Bandwidth Flows at the Congested Routers. In
Proceedings of IEEE ICNP, Nov. 2001.

[12] H. S. Martin, A. J. McGregor, and J. G. Cleary.
Analysis of Internet Delay Times. In Proceedings of
Passive and Active Measurements (PAM) workshop,
2000.

[13] V. Misra, W. B. Gong, and D. Towsley. Fluid-based
Analysis of a Network of AQM Routers Supporting
TCP Flows with an Application to RED. In
Proceedings of ACM SIGCOMM, Sept. 2000.

[14] J. C. Mogul and S.E.Deering. Path MTU Discovery,
Apr. 1990. RFC 1191.

[15] R. Morris. Scalable TCP Congestion Control. In
Proceedings of IEEE INFOCOM, Apr. 2000.

[16] R. Mortier, I. Pratt, C. Clark, and S. Crosby. Implicit
Admission Control. IEEE Journal on Selected Areas
in Communications, 18(12):2629–2639, Dec. 2000.

[17] E. M. Nahum, T. Barzilai, and D. Kandlur.
Performance Issues in WWW Servers. IEEE/ACM
Transactions in Networking, 2001. Accepted for
publication.

[18] NLANR MOAT. Passive Measurement and Analysis.
http://pma.nlanr.net/PMA/, Nov. 2001.

[19] S. Ostermann. tcptrace: TCP dump file analysis tool.
http://www.tcptrace.org.

[20] V. Paxson. End-to-end Internet Packet dynamics. In
Proceedings of ACM SIGCOMM, Sept. 1997.

[21] V. Paxson and M. Allman. Computing TCP’s
Retransmission Timer, Nov. 2000. IETF RFC 2988.

[22] L. L. Peterson and B. S. Davie. Computer Networks,
A Systems Approach. Morgan Kaufmann, 2000.

[23] A. Veres. end2end-interest mailing list.
http://www.icir.org/floyd/other/Veres.April2001,
Apr. 2001.

[24] C. Villamizar and C.Song. High Performance TCP in
ANSNET. ACM Computer Communication Review,
Oct. 1994.

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200283

Skip case ADV-990048291 SDC-989798803 BWY-989898294 TAU-992132802
% conns % bytes % conns % bytes % conns % bytes % conns % bytes

SA sanity checks 0.0 0.0 0.3 0.1 0.0 0.0 0.1 0.0
SS sanity checks 3.1 20.0 1.3 6.3 0.3 0.7 0.6 5.2
Packet Loss/OOO delivery 0.4 0.8 0.8 2.5 1.0 12.2 0.3 0.7
All other SS skip cases 37.5 21.1 41.7 20.6 47.4 5.2 47.1 32.3
Total 41.0 41.9 44.1 29.5 48.7 18.1 48.1 38.2

Table 1: Skip cases and the corresponding fractions of TCP connections and TCP bytes.

0 20 40 60 80 100 120 140
Median of 10 ping probes (ms)

0

20

40

60

80

100

120

140

S
A

 e
st

im
at

e
(m

s)

USA sites

10 out of 161 outside region

0 20 40 60 80 100 120 140
Median of 10 ping probes (ms)

0

20

40

60

80

100

120

140

S
S

 e
st

im
at

e
(m

s)

USA sites

10 out of 102 outside region

80 100 120 140 160 180 200 220 240 260 280 300
Median of 10 ping probes (ms)

0

50

100

150

200

250

300

S
A

 e
st

im
at

e
(m

s)

European sites

11 out of 162 outside region

80 100 120 140 160 180 200 220 240 260 280 300
Median of 10 ping probes (ms)

0

50

100

150

200

250

300

S
S

 e
st

im
at

e
(m

s)

European sites

17 out of 137 outside region

150 200 250 300 350 400 450 500 550 600 650 700
Median of 10 ping probes (ms)

150

200

250

300

350

400

450

500

550

600

650

700

S
A

 e
st

im
at

e
(m

s)

Asian sites

17 out of 154 outside region

200 250 300 350 400 450 500 550 600
Median of 10 ping probes (ms)

200

250

300

350

400

450

500

550

600

S
S

 e
st

im
at

e
(m

s)

Asian sites

11 out of 113 outside region

(a) SA estimates (b) SS estimates

Figure 11: Comparison of the SA and SS estimates with the median of ten ping measurements just before
the TCP connection establishment.

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200284

0 10 20 30 40 50 60 70 80 90 100
CDF (%)

-200

-150

-100

-50

0

50

100

150

200

RT
T SA

 -
 R

TT
SS

 (m
s)

440 connections

ADV(982207003, 982229130, 989920421,989961128, 990048291)

0 50 100 150 200 250 300 350 400 450 500
RTT

SA
 (ms)

0

50

100

150

200

250

300

350

400

450

500

R
TT

SS
 (m

s)

90 out 440 outside region

ADV(982207003, 982229130, 989920421, 989961128, 990048291)

0 10 20 30 40 50 60 70 80 90 100
CDF (%)

-200

-150

-100

-50

0

50

100

150

200

RT
T SA

 -
 R

TT
SS

 (m
s)

460 connections

BWY(982229130, 982273413, 989898294, 989950025)

0 50 100 150 200 250 300 350 400 450 500
RTT

SA
 (ms)

0

50

100

150

200

250

300

350

400

450

500

R
TT

SS
 (m

s)

55 out of 460 outside region

BWY(982229130, 982273413, 989898294, 989950025)

0 10 20 30 40 50 60 70 80 90 100
CDF (%)

-200

-150

-100

-50

0

50

100

150

200

RT
T SA

 -
 R

TT
SS

 (m
s)

1390 connections

SDC (987293556, 987328206, 987372005, 989798803)

0 50 100150200250300350400450 500 550 600 6507007508008509009501000
RTT

SA
 (ms)

0
50

100
150
200
250
300
350
400
450
500
550
600
650
700
750
800
850
900
950

1000

R
TT

SS
 (m

s)

420 out of 1390 outside region

SDC(987293556, 987328206, 987372005, 989798803)

0 10 20 30 40 50 60 70 80 90 100
CDF (%)

-200

-150

-100

-50

0

50

100

150

200

RT
T SA

 -
 R

TT
SS

 (m
s)

1120 connections

TAU (992132802, 992145552, 992219301, 992305802)

0 50 100 150 200 250 300 350 400 450 500 550 600 650700 750 800
RTT

SA
 (ms)

0

50

100

150

200

250

300

350

400

450

500

550

600

650

700

750

800

R
TT

SS
 (m

s)

340 out of 1120 outside region

TAU(992132802, 992145552, 992219301, 992305802)

(a) Difference distribution (b) Scatter diagrams

Figure 12: Difference distributions between the SA and SS RTT estimates, as well as the corresponding
scatter plots, for four links.

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200285

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 (

%
)

RTT of interface 1
RTT of interface 2

SDC (11:49, 05/14/2001)

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 in

 b
yt

es
 (

%
)

RTT of interface 1
RTT of interface 2

SDC (11:49, 05/14/2001)

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 (

%
)

RTT of interface 1
RTT of interface 2

COS (11:02, 05/15/2001)

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 in

 b
yt

es
 (

%
)

RTT of interface 1
RTT of interface 2

COS (11:02, 05/15/2001)

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 (

%
)

RTT of interface 1
RTT of interface 2

IND (11:42, 09/18/2001)

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 in

 b
yt

es
 (

%
)

RTT of interface 1
RTT of interface 2

IND (11:42, 09/18/2001)

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 (

%
)

RTT of interface 1
RTT of interface 2

TAU (20:30, 06/11/2001)

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 in

 b
yt

es
 (

%
)

RTT of interface 1
RTT of interface 2

TAU (20:30, 06/11/2001)

(a) in terms of connections (b) in terms of bytes

Figure 13: RTT distributions at four duplex links

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200286

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 (

%
)

First quarter
Second quarter
Third quarter
Fourth quarter

SDC (20:06, 05/13/2001)

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 (

%
)

First quarter
Second quarter
Third quarter
Fourth quarter

SDC (20:06, 05/13/2001)

(a) interface 1 (b) interface 2

Figure 14: Variations in short timescales (tens of seconds)

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 (

%
)

1:47am
7:52am
4:29am

SDC (12/15/1999)

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 (

%
)

1:47am
7:52am
4:29am

SDC (12/15/1999)

(a) interface 1 (b) interface 2

Figure 15: Variations in hourly timescales

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 (

%
)

Tue. 14:47, 09/18/2001
Thu. 14:43, 09/20/2001
Sat. 14:39, 09/22/2001

IND

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 (

%
)

Tue. 14:47, 09/18/2001
Thu. 14:43, 09/20/2001
 Sat. 14:39, 09/22/2001

IND

(a) interface 1 (b) interface 2

Figure 16: Variations in daily timescales

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200287

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 (

%
)

19:16 on 03/14/2000
20:01 on 07/14/2000
20:50 on 10/14/2000
19:51 on 02/14/2001
20:12 on 04/14/2001

TAU

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 (

%
)

19:16 on 03/14/2000
20:01 on 07/14/2000
20:50 on 10/14/2000
19:51 on 02/14/2001
20:12 on 04/14/2001

TAU

(a) interface 1 (b) interface 2

Figure 17: Variations in monthly timescales

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 (

%
)

11:21am on 05/15/2000
 2:54pm on 05/15/2000

SDC

0 500 1000 1500 2000 2500
RTT (ms)

0

10

20

30

40

50

60

70

80

90

100

C
D

F
 (

%
)

11:21am on 05/15/2000
 2:54pm on 05/15/2000

SDC

(a) interface 1 (b) interface 2

Figure 18: Increased RTTs due to queueing delays

ACM SIGCOMM Computer Communications Review Volume 32, Number 3: July 200288

