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ABSTRACT 
 
Connection Admission Control (CAC) is an important 
function in a computer network that supports Quality of 
Service (QoS). The function of CAC is to decide whether a 
new connection can be admitted on the network or a part of 
the network in such a way that the QoS of the new 
connection and the already established connections will 
remain within the requested limits. CAC must also ensure 
that network resources are used efficiently avoiding 
unnecessary rejections of candidate connections. Some CAC 
algorithms attempt to estimate or derive available resources 
in each hop between the source and the destination. Then 
they use parameters of the candidate flow and the 
knowledge about the available resources to make the 
admission decision. Very often such algorithms use 
measurements to find out availability of the resources. 
Hence the name of such algorithms, Measurement-Based 
CAC (MBCAC). Another class of CAC algorithms assumes 
that it is the end nodes and not the network that should 
perform the connection admission. These algorithms use 
probing packets to probe the path between the end nodes for 
the requested level of QoS. In this paper a heuristic-based 
per-hop CAC algorithm is introduced that adapts the 
average rate of connection admission in response to the 
measured system performance. In particular, the algorithm 
decreases the rate of the connection admission when the 
system is overloaded and increases it when the system is 
underutilized. The paper uses simulations to show that the 
algorithm is free from the shortcomings of the current 
MBCAC algorithms. 
 

1.  INTRODUCTION 
 
The connection admission control (CAC) is one of the most 
important functions in a computer network that provides a 
guaranteed or at least predictive quality of service (QoS). The 
goal of the CAC is to ensure that a newly established 
connection will receive the requested QoS while already 
established flows will retain the QoS they requested. Thus, a 
CAC algorithm running on a network node must know the 
amount of resources (link bandwidth, buffer space) that is 
unused by the already established connections. If these 
resources are greater or equal to those required by the 
candidate connection, it is allowed to be established on that 
node.  
One of the most challenging tasks an efficient CAC algorithm 
faces in today’s networking assumptions is to provide high 
resource utilization while maintaining the QoS. A number of 
CAC algorithms have been developed to achieve these goals 
[1, 2, 3, 4]. The common feature among these algorithms is 
the identification of the available bandwidth. The 
identification is done on the basis of either measurements of 
the network (node) resource utilization alone or of the 
measurements and some sort of a statistical model. The 
model is used to predict the overload probability given the 
utilization measurements and traffic parameters of the new 
flow. CAC algorithms that use measurements of the network 
traffic activity to estimate or predict the available bandwidth 
are called measurement-based CAC (MBCAC). [1] presents 
an MBCAC that uses a time window estimator to find the 
aggregate rate of the established flows. If the estimate plus 
the token rate of the candidate flow are less than the node’s 
capacity the flow is admitted. [2], on the other hand, assumes 
that the aggregate traffic behavior can be described as a 
normally distributed random process and that the number of 
flows currently served by the system (node) is known. The 
MBCAC then uses values of the measured mean, variance of 
the aggregate traffic, and the number of present flows to 
derive the probability of the aggregate traffic exceeding the 
link capacity. The authors of [3, 4] present a family of 
MBCAC algorithms that use tangents to the effective 
bandwidth curve to identify the region in which QoS 
commitments are not violated. The effective bandwidth for a 
given QoS violation probability is found via the Chernoff 
bound.  
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A comparative study of most types of MBCAC algorithms 
was recently presented in [5]. The authors established that 
performance frontiers of MBCAC algorithms of various 
types are nearly the same. The study also showed that most 
of the algorithms do not have one explicit parameter that is 
responsible for the loss rate performance and that those 
algorithms that do have such a parameter miss the loss target 
by several orders of magnitude.  
An important aspect of a practical CAC algorithm is that it 
must rely on the information that is available within the QoS 
framework of the computer network in general and the 
Internet in particular. It should be noted that this 
information is limited. The limitation is especially valid 
assuming that the Differential Services (DiffServ) 
framework [6] will most likely dominate the Internet in the 
near future. The framework does not provide the network 
with traffic descriptors of the flows or with the loss and 
delay specification of the QoS that the flows demand. 
Instead, the framework allows individual flows to inform the 
network about the type of QoS they wish to receive. The 
QoS type is defined as Per Hop Behavior (PHB), which 
denotes the externally observed QoS that the particular flow 
receives. Thus, a CAC algorithm operating in a DiffServ 
network does not know the traffic parameters of the 
candidate flows. Neither does the algorithm know the exact 
QoS parameters the traffic wishes to observe. And, just like 
any other CAC algorithm, this one must have an explicit 
tuning parameter that regulates its performance in terms of 
the loss rate.  
Elek et al. recently presented in [7] an end-to-end 
measurement-based approach to provide a predictable loss 
rate on the entire path for individual flows. The sender node 
probes the path by sending a sequence of packets at the peak 
rate to the destination node. The receiver measures the loss 
among the probe packets and reports the loss to the sender. 
If the loss is below a certain target level, the sender starts to 
send the data packets to the receiver. This end-to-end, 
probing-based CAC has an advantage over per-hop MBCAC 
algorithms in that it does not require the network nodes to 
make the admission decisions. This agrees well with the 
DiffServ architecture. The probing requires awareness in the 
end node network applications, however, which can be an 
obstacle to wide-scale deployment. Furthermore, the 
question of the unresponsive end-node behavior, similar to 
that in the TCP and UDP flows, has not yet been fully 
addressed. 
The goal of this paper is to give a demonstration of a 
performance-driven MBCAC algorithm that is free from the 
drawbacks of the current MBCAC schemes. The CAC 
algorithm differs from the other algorithms in the ways it 
estimates resource availability in the system. Instead of 
estimating the bandwidth available for the new flows, the 
algorithm attempts to control the number of flows in the 
system given the target loss rate of the aggregate traffic. This 
principle is based on the assumption that there is an upper 
bound on the number of flows a system can serve given the 
target performance. Thus, by controlling the number of 
flows in the system in response to the measured 
performance, it should be possible to achieve the target level 
of performance. The algorithm presented here does not 
require signaling of traffic parameters of individual flows, 

unlike the other MBCAC methods. The only signaling 
required is that of new flow arrivals. The algorithm attempts 
to control the number of flows in the system by enforcing an 
average flow inter-admission delay. The value of the delay is 
adjusted as the system’s performance deviates from the 
target.  
The paper is organized as follows. Section 2 presents the 
general structure of the algorithm. Section 3 gives the results 
of the simulations of the algorithm and a discussion. The 
control plane considerations of the algorithm are described in 
section 4, and section 5 contains conclusions and future 
work. 

2.  THE GENERAL STRUCTURE OF 
THE ALGORITHM  

 
The CAC algorithm proposed here is assumed to control the 
performance of a finite queue system by adjusting the 
enforced average flow inter-admission delay given the target 
level of the packet loss rate. In this paper the loss rate is 
assumed to be the measure of the QoS. The enforcement of 
the delay in turn allows controlling the number of flows in 
the system. The adjustment of the delay is based on the 
measured performance of the system. Thus, the algorithm is 
performance-driven. In particular, when the real performance 
of the system is poorer than the target, the number of flows is 
considered to be too high and the enforced delay value is 
adjusted to reduce their population in the system. Similarly, 
if the system is under-utilized while flows are being rejected, 
the enforced delay value is adjusted to allow a greater 
number of flows in the system.  
The algorithm has three major blocks: an admission block, a 
performance measurement block, and an enforced average 
inter-admission delay adjustment block. Figure 1 shows the 
relations among the blocks of the algorithm and the system. 
The solid lines represent the aggregate traffic flow and the 
dashed lines indicate the measurement and the control actions 
explained below. Following are detailed descriptions of each 
of the blocks. 

Admission
Block

S

Performance
Measurement

Block

The Enforced
Delay

Adjustment
Block

Finite queue

 
Figure 1. Relations among the blocks of the algorithm and 

the system 

2.1  Admission block 
 
The admission block is responsible for admitting new flows 
on the basis of the enforced average flow inter-admission 
delay (also denoted Del). To implement this enforcement the 
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block uses a counter of admissible flows, denoted C, which 
is incremented by one every Del seconds. When the 
enforcement is in use the operations on the counter are as 
follows: when a new flow arrives and the counter value is 
non-zero, the flow is admitted and the counter is reduced by 
one. If the counter is zero, the flow is rejected (Figure 2). 

C � 1 ?
New flow Yes

No

Admit the flow
and decrease C

by 1

Reject the flow

Increment by 1 every
Del seconds

C

 
Figure 2. Actions of the admission block 

 
 

Initialization (done once) 
LossQuota = LinkRate*TL*W_time/PacketSize; 
ThisLossQuota = 0; 
Time = 0; 
Initialization complete 
 
if(packet loss){ 
  ThisLossQuota ++; 
    if(ThisLossQuota > LossQuota){ 
      ThisLossQuota = 0; 
      W_work = 0; 
      Time = 0; 
      C = 0; 
      indication(“violation”) ; 
    } 
} 
 
if(Time == W_time){ 
  WLossQuota = W_work*TL; 
  if(ThisLossQuota <= WLossQuota) 
    indication(“underutilization”); 
  else{ 
    C = 0; 
    indication(“violation”); 
  } 
  ThisLossQuota = 0; 
  W_work = 0; 
  Time = 0; 
} 
Figure 3. Pseudo-code of the performance measurement 

block. 

2.2 Performance measurement block 
 
The performance measurement block monitors the actual 
loss rate caused by the current value of Del. The monitoring 
is done using a measurement window of duration W_time 

seconds. Given the total number of packets arrived over a 
single measurement window, W_work, the number of packets 
that can be lost without violating the target loss rate, TL, is 
WLossQuota = W_work*TL. This quota of packets that can 
be lost can be found only in the end of the measurement 
interval. But a heavy overload can exceed this quota much 
ahead of the completion of the measurement window. To 
account for such cases the algorithm uses another quota of 
lost packets, LossQuota = 
LinkRate*TLR*W_time/PacketSize. This quota assumes that 
the incoming traffic rate is equal to or greater than the link 
rate, which is reasonable in case of an overload. Figure 3 
contains a pseudo-code for the measurement block. 
In the code ThisLossQuota is an accumulator of lost 
packets in the current measurement window. The algorithm 
uses LossQuota to identify a violation of the QoS whenever 
a packet is lost, and WLossQuota to identify a QoS 
violation in the end of a measurement window. Maintenance 
of W_work is not shown for simplicity. Time is a timer used 
to check boundaries of the measurement window. indication 
is an instruction that issues a “violation” or 
“underutilization” indication to the delay adjustment block. If 
any of the quotas is exceeded the block issues a “violation” 
indication to the delay adjustment block. In this case the 
measurement process is restarted and the counter of 
admissible flows C is set to zero. This is done under the 
assumption that the previous history of the system 
performance is irrelevant to the new delay value and the high 
loss that occurred in the past can trigger a false violation 
alarm. 
 

2.3  Delay adjustment block 
 
The delay adjustment block acts on indications received from 
the performance measurement block. A “violation” indication 
means that flows are admitted too often and the value of Del 
must be increased. An “underutilization” indication means 
that no loss rate violation has been experienced within the 
last measurement window and it is allowed to reduce the 
value of Del to admit more flows. The way in which the 
delay value is changed upon the indications from the 
measurement block defines performance of the system. 
Figure 4 shows a pseudo-code for the delay adjustment 
block. Let us describe handling of the “violation” indication 
first. 
If it is the very first “violation” indication, the flow inter-
admission delay is initialized to AD, the measured inter-
arrival delay of candidate flows. The lowest margin of Del, 
DelMIN, is set to twice the value of AD. In case where this 
“violation” indication is not the first one and the previous 
indication was “underutilization”, DelMIN is set to the current 
value of Del. This is because the current delay value is too 
low to prevent target loss rate violations, and when Del is 
adjusted later on, it must not be reduced lower than this value 
again. The next step is to increase the value of Del. The 
increase of Del is AD/GF, where AD is as before and GF is 
the so-called growth factor of Del. Thus, the measured inter-
arrival delay of candidate flows obtained before the very first 
violation is also used to increase the inter-admission delay. 
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After Del and DelMIN have been set, the algorithm calculates 
the step of reduction of Del, DelReduction, which is used 
when the adjustment block receives an “underutilization” 
indication. The reduction step is calculated as a fraction of 
the difference between the updated value of Del and the 
lowest margin DelMIN. The reduction factor RF defines the 
value of the fraction. 
When an “underutilization” indication is received, the 
algorithm lowers the value of Del by the previously 
calculated value of the reduction step. The max statement 
ensures that the delay is not reduced below the lowest 
margin. If the constant ExpReduction is true, the reduction 
step is recalculated as the RF fraction of the difference 
between Del and DelMIN. In this case, subsequent 
“underutilization” indications result into exponential 
reduction of the value of the inter-admission delay since the 
last violation of QoS. If ExpReduction is false, the 
reduction of Del is linear. 
Let us come back to the point where the lowest margin of 
the delay is set. As it was mentioned earlier, DelMIN is set to 
Del if the previous indication was “underutilization”. A 
heavy overload may require that the number of flows in 
progress at the moment of the resulting violation be reduced 
so that the overload is eliminated. It is likely that a single 
increase in the value of Del is not enough to eliminate the 
overload. Thus, the performance measurement block may 
issue a number of subsequent “violation” indications. The 
resulting increase in the value of Del serves not as an 
estimate of the optimal inter-admission delay, but as a 
drastic measure to quickly drop the number of flows in the 
system. Therefore, setting DelMIN to any of the values of Del 
in this sequence would lead to an over-conservative lowest 
margin of the delay. 
 
 
 
 
 
if(indication == “violation”){ 
  if(first “violation”){ 
    DelMIN = AD; 
    Del = AD*2; 
  } 
  else{ 
    if(previous indication == “underutilization”) 
      DelMIN=Del; 
 
    Del = Del + AD/GF; 
  } 
  DelReduction = (Del - DelMIN)/RF 
} 
 
if(indication == “underutilization”){ 
  Del = max(DelMIN, Del - DelReduction) 
  if(ExpReduction) 
    DelReduction = (Del - DelMIN)/RF; 
} 
 

Figure 4. Pseudo-code of the delay adjustment block 
 

3.  SIMULATION SETUP, RESULTS, 
AND DISCUSSION  

3.1 Simulation Setup 
 
The goal of the simulation is twofold. First, it is necessary to 
identify what impact different values of the algorithm’s 
parameters have on the performance of the algorithm. 
Second, the performance of the algorithm must be compared 
with the performance of other connection admission control 
algorithms.  
Some traffic models used in the simulations are chosen 
because they are similar to those used in other work on 
admission control algorithms. EXP1 model is an ON-OFF 
traffic source with exponentially distributed ON and OFF 
periods. The average duration of the ON periods is 312 msec 
and is 325 msec for the OFF periods. This model was used in 
[5] to compare various measurement-based CAC algorithms. 
The source generates 64 packets per second during each ON 
period. All the packets are 1 Kb long. The POO1 traffic 
model is the same as EXP1, but the ON and OFF periods are 
Pareto distributed. A traffic model similar to POO1 
represents the toughest challenge for measurement-based 
CAC algorithms in terms of matching the target and actual 
performance [5]. For heterogeneous traffic scenarios, the 
POO1 model was modified to generate data at 128 Kbit/sec 
and 1 Mbit/sec rates. In the latter case, the ON intervals were 
50 msec on average. All the flows generated have 
exponentially distributed lifetimes with the average being 
300 seconds. The flow inter-arrival delay is exponentially 
distributed with 400 msec average.  
All the simulations were carried out in a single hop 
environment where the network node represents a 10 
Mbit/sec server and a 160-packet long, tail-drop queue. Each 
set of simulations was repeated with ten random seeds. 
 

3.2 Performance of the algorithm versus 
the values of its parameters 

 
The algorithm has the following parameters: 
 
Length of the measurement window, W_time; 
Target loss rate, TL; 
Del growth factor, GF; 
Del reduction factor, RF. 
 
In addition, the algorithm can employ different ways of 
updating the value of Del. For example, the delay can be 
increased and/or decreased in an exponential or linear 
fashion. 
Before presenting particular simulation results, we will 
discuss what can be an appropriate value of W_time. The 
measurement window is used to detect violations of the target 
performance and underutilization of the system. Therefore, 
the window must be long enough to capture changes caused 
by the growth or decrease in the number of flows. However, a 
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value of W_time that is too long forces the algorithm to 
underutilize the system when Del is too high, and a too short 
measurement window may take burstiness of the flows for a 
performance trend presumably produced by the changing 
number of flows.  
To summarize, the length of W_time must be chosen as 
following: W_time = max(cell-level dynamics, min(Del, 
flow inter-departure delay)). The minimum is needed to 
avoid underutilization when no flows are admitted. Only one 
out of three components that must be used to find W_time is 
known. 
 

W_time 
(seconds) 

GF RF Loss target 

10 1 2 10-6 

30 2 10 10-4 

100 4 20 10-2 

300 5 50  
Table 1. Values of some parameters in the algorithm 

 
While finding the flow inter-departure delay can be 
facilitated by SIP or H.323 signaling (see the section on the 
control plane of the algorithm), discovery of the shortest 
interval that captures burstiness of the flows is not an easy 
task.  

 
Target 

loss rate 
Actual loss rate Actual utilization 

10-2 0.48*10-2; 
0.65*10-2 

0.910; 
0.930 

10-4 0.92*10-4; 
1.2*10-4 

0.853; 
0.863 

10-6 1.5*10-5; 
2.4*10-5 

0.841; 
0.852 

Table 2.  Actual  system performance versus target loss 
rate 

 
This question is left for further studies. The values of 
W_time used in the simulations are shown in Table 1 
together with values of other parameters of the algorithm. 
The effect of the target loss rate on the performance of the 
algorithm is first studied. In this set of simulations, the 
measurement window is 300 seconds, GF is 1 and RF is 2. 
The exponential reduction of Del is used. 
The performance metrics are the actual utilization and loss 
rate. Table 2 shows results of the simulations. Each value is 
shown as a 95% confidence interval. The results in the table 
indicate that the target loss rate value has a direct impact on 
the actual loss rate. This parameter defines the number of 
packets that can be lost within a measurement window. As a 
consequence, the algorithm signals a violation at different 
population levels in the system. Figures 5 and 6 show this 
effect on examples of some of the simulation runs for target 
loss rates set to 10-2 (Figure 5) and 10-6 (Figure 6). In these 
and the other examples of the simulation runs, the top line is 
the number of flows in the system, the step line is Del in 10 
msec units, and the spikes are the number of lost packets.  
The impact of different values of W_time, GF, and RF is 
explored next. In this case, both linear and exponential 
reduction methods were used for the delay. The target loss 

level was set to 10-4. In the exponential reduction GF and RF 
pairs chosen were (1, 2), and (4, 10). 

  
Figure 5. Target loss rate = 10-2 

 
Figure 6. Target loss rate = 10-6 

 
Figure 7. Linear reduction, GF = 1, RF = 2, W_time =  

100 seconds  
 

The pairs in the linear reduction were set to (1, 2) and (4, 20). 
The highest utilization (0.88) and loss rate (1.4*10-4) were 
achieved with the linear reduction where GF was set to 1, RF 
was set to 2, and W_time was set to 100 seconds. The lowest 
utilization and loss rate (0.83 and 0.6*10-4, respectively) 
were observed in the case of the exponential reduction with 
GF = 4, RF = 20, and W_time = 300 seconds.  
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Figure 8. Exponential reduction, GF = 4, RF = 20, 

W_time = 300 seconds 
 
Figures 7 and 8 give examples of simulation runs for each of 
the two extremes.  
In general, the following patterns can be identified through 
this set of simulations. With GF = 1 and RF = 2 utilization 
and loss are lowest with W_time equal to 10 and 300 
seconds and highest with W_time set to 30 and 100. This is 
true both for linear and exponential reductions. The 
difference between the utilization values is about 1%. This 
behavior can be explained by the following factors. When 
W_time is 10 seconds, the number of packets that can be 
lost before the violation is triggered is the smallest as 
compared with the other cases. Thus, the algorithm starts to 
react at a smaller flow population size. With W_time = 300 
seconds, it takes longer to move from an excessive value of 
Del to a lower one that allows more flows to be admitted. 
This leads to long periods of underutilization, as is seen in 
Figure 8.  
In simulations with higher GF and RF values, the difference 
between the utilization and loss rate performance is less 
significant. There is a slight increase in loss and utilization 
as the measurement window becomes longer. As before, this 
is caused by the increasing number of packets that can be 
lost before the violation is signaled. 

 
Figure 9. Exponential reduction, GF = 1, RF = 2, W_time 

= 100 seconds 

The way in which the Del value is reduced also has its 
impact on the algorithm’s performance. Figure 9 shows the 
same case as is shown in Figure 7 but with the exponential 
reduction. Since Del is reduced here at a finer granularity 

than in the linear reduction case, the algorithm can better 
match the estimate of the inter-admission delay against the 
optimal value. This reduces the thrashing of Del, which can 
be seen in Figure 7. A reduction in thrashing in turn reduces 
the number of violations and consequently the loss rate. So, 
the loss rate of the simulation run depicted in Figure 9 is 
0.53*10-4 (as opposed to 1.4*10-4 in the linear reduction 
case). 
 
Tuning performance of the algorithm in term of 
its parameters 
 
The results given in Table 2 were achieved by varying the 
target loss rate. They indicate that this algorithm parameter 
has the most pronounced effect on the actual performance. It 
can be argued that the range of values used for the target loss 
rate is the widest in comparison with the values of the other 
parameters. Hence, the influence on the performance. While 
this is generally true, such values would not reflect the 
possible real life values of these parameters.  
The requirement in choosing GF and RF values is that RF 
must be several times larger than GF, while GF should be 
more than 1. The latter recommendation helps avoid 
overshooting of the delay value when it is near the optimal 
level. A gradual reduction in Del provided by relatively large 
RF sets the violation instances further apart. This is 
especially valid when Del has reached a near-optimal level 
while the granularity of steps at which Del is changed does 
not allow a closer match with the optimal value. The 
simulations have shown that small growth steps in Del cope 
well with reaching a proximity to the optimal Del value. 
Special care must be taken when the exponential reduction is 
used. In this case, too high RF means a reduction with long 
tail, which may lead to underutilization.  
The choice of W_time affects the speed of Del convergence 
to the optimal value and also affects the actual loss rate. It 
should be noted that the convergence of Del takes place only 
once after the flow aggregate controlled by the algorithm has 
been initiated. If Del has succeeded in converging to a near 
optimal value during, say, the first busy hour period, the next 
busy hour will be served without the convergence phase. 

Number of packets

time

Queue limit

Proactive
threshold

Target loss

Queue
threshold

 
Figure 10. Queue threshold concept 

 
Achieving tight loss rate targets requires a special care. In 
this case, it takes fewer packet losses to cross the violation 
threshold, and thus less time. To avoid the problem of the 
tight loss rate targets, it may be reasonable to introduce a 
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proactive threshold for the queue occupancy. Combined 
with the detection of the lost packets, the threshold would 
then trigger the adjustment block actions. This idea is 
illustrated in Figure 10. 

 

Comparison with the measured-sum 
measurement-based connection 
admission control algorithm 
 
Results reported in [5] demonstrate that there is a rather 
insignificant difference between various types of 
measurement-based CAC algorithms. Hence, the 
performance of the algorithm presented here is compared 
with only one of these algorithms.  
The measured-sum algorithm was chosen for this purpose 
[1]. The algorithm has two measurement windows of T and 
S packet transmission times. The S window is used to 
measure the link load. S is smaller than T. At the end of 
each T window, the algorithm selects the maximum load 
value (�) and the maximum observed delay (D). These 
values are used in admission decisions in the next T 
window. If a higher delay or utilization value is observed 
during the next T window, this value replaces the one set at 
the beginning of the window. The admission decision is 
based on the target utilization (�t) and delay (Dt) values. If 
the sum of � + r, where r is the peak rate of the candidate 
flow, is more than �t or D + d > Dt (d is the delay incurred 
by the candidate flow), the candidate flow is rejected. This 
paper does not use leaky buckets to shape the flows, and 
thus d is set to 1024/(� - �). � stands for the link capacity. If 
a candidate flow is admitted, � and D are updated with the 
values of the sums in the admission decision inequalities.  
The MBCAC algorithm is applied to the same node model 
as the enforced flow inter-admission delay algorithm. The 
size of the T window is varied from 500 to 3000 packet slots 
while the S window is kept 100 packet slots. Dt is set to 16 
msec and �t is 1. 
The enforced inter-admission delay algorithm is simulated 
using the following parameters: GF = 5, RF = 50, W_time = 
100 seconds, linear reduction. 
 
Loss versus utilization performance 
 
In this set of simulations the EXP1 traffic model was used 
for both algorithms in order to make a comparison similar to 
that made in [5]. Figure 11 contains the loss versus 
utilization curves for the measured-sum MBCAC algorithm 
(dashed line) and the enforced inter-admission delay 
algorithm (solid line).  
It can easily be seen that the measured sum algorithm has 
about a 6 % higher utilization at the same loss rate than the 
other algorithm. This is because of the following two 
factors. The first factor is the back-off done by the enforced 
inter-admission delay algorithm when the value of Del is 
increased. The second factor is the difference between the 
average inter-admission delay value and its instantaneous 

optimal value, which creates additional variations in the 
number of flows, seen in Figure 8. 

 
Figure 11. Loss rate versus utilization comparison  

Figures 12 and 13 give examples of the actual loss rate on a 
one-minute time scale for the two algorithms. The loss rate 
over the entire simulation run is about 10-3 for both cases. It 
can be seen that the measured-sum algorithm provides a more 
uniform loss rate pattern than the enforced flow inter-
admission algorithm. 
It should be noted that the measured-sum MBCAC algorithm 
requires that the network and the end nodes support RSVP 
and thus has much more information than the inter-admission 
delay algorithm that requires neither RSVP nor any other 
QoS protocol or framework. Therefore, the somewhat lower 
performance of the inter-admission delay algorithm is traded 
for independence from the QoS architecture of the network. 
 
Performance in heterogeneous flow scenarios  
 
Three flow models were used in the simulations presented 
here. One is the POO1 model and the two others are also 
ON-OFF sources with Pareto-distributed ON and OFF 
periods but with 128 Kbit/sec and 1 Mbit/sec peak rates, 
respectively. The average duration of the ON periods in the 1 
Mbit/sec model is set to 50 msec to reduce the average rate of 
these flows and allow a reasonable statistical gain on the 10 
Mbit/sec link. 

 
Figure 12. One-minute loss rate samples for the measured 

sum algorithm 
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Figure 13. One-minute loss rate samples for the enforced 

inter-admission delay algorithm 
 

The simulations show that the enforced inter-admission 
delay algorithm does not favor smaller flows over flows with 
a higher peak rate, as does the measured-sum MBCAC 
algorithm. 

 
Figure 14.  Enforced inter-admission delay algorithm, 

POO1 and 1 Mbit/sec flows, 50/50 mix 
 
Figures 14 and 15 show some simulation runs with POO1 
and 1 Mbit/sec flow mixes for each of the algorithms. 
Admission requests for each of the flow types are generated 
with equal probability. The number of 1 Mbit/sec flows is 
shown as a bold line. The measured-sum algorithm shows 
similar biased behavior even when the difference between 
the peak rates of the candidate flows is not very significant. 
Figure 16 shows a simulation run for the measured-sum 
algorithm with POO1 and the 128 Kbit/sec flow mix. Again, 
the algorithm heavily discriminates against the faster flows 
in favor of the slower ones. This is because the algorithm, 
like many other MBCAC algorithms, bases the admission 
decision on the traffic descriptor of the candidate flow. It is 
more likely that a smaller bandwidth is available when a 
candidate flow arrives, smaller flows are thus more 
frequently admitted because they are less demanding. On the 
other hand, the enforced inter-admission delay algorithm 
admits flows with various patterns as often as they appear 
among the candidate flows. As additional evidence of the 
unbiased behavior of the algorithm, Figure 17 shows the 
number of admitted flows when the 1 Mbit/sec flow requests 
are generated with probability 0.7. The average number of 
POO1 flows in this case is 17, and the average number of 

the 1 Mbit/sec flows is 40. This fair treatment of flows with 
different peak rates is observed in all the simulations of the 
heterogeneous scenarios of the algorithm. 
 

 
Figure 15. Measured sum MBCAC algorithm, POO1 and 

1 Mbit/sec flows, 50/50 mix 

 
 

 
Figure 16. Measured sum MBCAC algorithm, POO1 and 

128 Kbit/sec flows, 50/50 mix 

 

 
Figure 17.  Enforced inter-admission delay algorithm, 

POO1 and 1 Mbit/sec flows, 30/70 mix 
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4. CONTROL PLANE OF THE 
ALGORITHM 

 
In general, from the moment a candidate flow is admitted on 
a particular link or traffic aggregate, the network node must 
distinguish this flow from those that did not gain admission. 
The differentiation can be done in several ways depending 
on the protocol environment assumed.  
Frameworks such as IntServ and ATM assume that the end 
nodes comply with control messages from the network. For 
example, if a call setup has failed, the network returns a 
“tear-down” or a “setup failure” message to the source end 
node. In this case the end node refrains from sending the 
flow or attempts to re-establish the connection. In this way 
the network nodes explicitly know which flows or calls are 
admitted. If a network node observes a successful exchange 
of flow setup messages, the node allows the flow through. 
Otherwise, if the flow setup fails, the node deletes any 
partial state associated with the flow. 
The algorithm described in this paper does not require 
presence of ATM or RSVP signaling messages and can 
operate without these or any other QoS frameworks. To 
enforce the admission decision, a network node would need 
to filter on header fields of arriving packets to identify 
whether they belong to a new or an already established flow. 
The filtering rule can be based, for example, on the source-
destination IP address pair, IPv6 flow identifier, or MPLS 
label. The latter is possible only if the labels of individual 
flows are not merged upstream. Thus, the network node 
keeps a table of flow IDs that contains identifiers of 
admitted flows. Packets with header field values that match 
any of the table entries are forwarded, while the other 
packets are dropped. Figure 18 shows the processing 
required to identify the new flows and connection of the 
processing with the admission decision. Besides being 
added to the table, flows that are admitted must be removed 
from it when they terminate. Since no tear-down messages 
are assumed, the only possibility to remove a flow from the 
table is based on the activity of the flow. In other words, a 
timer is used that is updated whenever a packet of the flow 
is observed. If the timer expires, the flow is considered 
terminated and is removed from the table.  
Another way to maintain the table of admitted flows is to 
use H.323 suite [9] or SIP [10] messages. SIP is an end-to-
end signaling protocol used for establishing, maintaining, 
and tearing down end-to-end flows. These functions are also 
available in the H.323 protocol suite. In this case there is no 
need to detect new flows by comparing the header field 
values of each arriving packet with the table entries. 
Furthermore, the identification of flow termination does not 
require a timer on each table element. Figure 19 shows a 
diagram of actions for flow admission in this case. 
We will now briefly discuss what can go wrong in the 
control plane. First, assume the case in which a downstream 
router rejects a flow. This means that the flow is admitted on 
only a part of the path to the destination. Ideally, the router 
that rejected the flow would send an upstream tear-down 
control message. The message would instruct the upstream 
routers to remove the flow ID from the tables. It is easy to 
identify two problems here, the stemming from the 

possibility that the upstream and downstream routes may not 
be symmetric. The second problem is related to the message 
getting lost. Together this means that the control message 
does not reach some or all of the network nodes. There are 
two possible outcomes of this situation. The one assumes that 
the rejection of the flow means dropping the flow setup 
message. Consequently, the end-to-end flow setup fails and 
the compliant end nodes do not initiate the flow itself. 
Alternatively, in the case of the absence of end-to-end control 
messages, the end nodes observe no connectivity. In both 
cases, no further packets appear in this flow and the upstream 
nodes remove the flow ID after the inactivity time-out. On 
the other hand, an end node that starts sending data without 
waiting for the flow to be admitted on the entire path to the 
destination may still generate the flow despite an incomplete 
setup or the absence of the receiver response.  
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The flow ID will not be timed out in this case and the flow 
may eventually be admitted on the entire path to the 
destination. The down side of a persistent end node behavior 
of this kind is the wasted work that the upstream nodes 
spend on forwarding the flow while it is being discarded 
downstream. 
 

5.  CONCLUSIONS AND FURTHER 
WORK  

 
To summarize, this paper showed what kind of QoS 
guarantees in terms of packet loss rate can be achieved in a 
network that does not implement any QoS framework by 
using a per-hop MBCAC algorithm. The algorithm bases 
admission decisions on the performance-adjusted average 
flow inter-admission delay. This feature makes the algorithm 
different from the Measurement-Based CAC (MBCAC) 
algorithms, which make their admission decision on the 
basis of the estimated or predicted resources available and 
the traffic parameters of the candidate flows. This difference 
makes the algorithm presented here independent of the QoS 
architecture of the Internet because it neither requires 
signaling of the traffic parameters of the individual flows 
nor it demands any additional signaling over the one that 
exists today. The only signaling the algorithm needs is the 
arrival of the new flows, which is basic for any connection 
admission control. The simulation results reported 
demonstrate that the algorithm performs well in the heavy-
tailed traffic environment. The simulations showed that the 
actual performance of the algorithm in terms of the loss rate 
is easily tuned by changing the target loss rate parameter. A 
comparative study was made of the enforced inter-admission 
delay algorithm and the measured-sum MBCAC algorithm. 
This showed that the enforced inter-admission algorithm 
does not achieve as high a utilization as the simulated 
MBCAC algorithm. At the same time, the inter-admission 
algorithm does not require as much information as is needed 
in the MBCAC algorithm. The inter-admission delay 
algorithm also showed an unbiased behavior in the 
heterogeneous flow scenarios, because it does not use the 
traffic parameters of the candidate flows in its admission 
decisions. Still, unawareness of the traffic parameters of the 
candidate flows has its shortcomings. Consider a case where 
the aggregate flow mix is heterogeneous and proportions of 
flows with different rates are not constant. In this case, the 
algorithm will adjust the value of Del to the traffic mix with 
the lowest number of flows. At the same time, the lowest 
margin of the delay, DelMIN, will not let the algorithm adapt 
to a mix with smaller flows. Similarly, if the system is highly 
utilized and the algorithm admits a flow with rate that 
exceeds the spare bandwidth, a loss rate violation will 
follow, forcing the algorithm to re-adjust the value of Del. 
Despite the fact that the algorithm maintains a per-flow 
state, the traffic parameter unawareness prohibits the use of 
traffic shapers and packet schedulers together with the 
algorithm. For example, in case of a heterogeneous traffic 
mix, a packet scheduler would distribute the link capacity 
evenly among the flows, which is wrong, since different 
flows have different rates. However, the question of traffic 

policing is not the same as the question of the admission 
control. Considering a network domain, the policing could be 
done at the edge of the domain while the core would be 
unaware of the traffic parameters of the individual flows. 
Combining the admission algorithm with a traffic policing 
algorithm as well as extending the algorithm to support 
traffic descriptors is a subject of future research. 
It was also found that the algorithm did not succeed in 
exactly matching the 10-6 target loss rate. Future work will 
include an implementation of the mechanism described in the 
discussion of the simulation results to achieve a better match 
between the actual and the target loss rates in the cases of 
tight target loss rate values. Another question is an 
integration of the buffer and the link utilization 
measurements with those of the actual loss rate to enable a 
faster discovery of the target loss violation and violation 
elimination instants. In addition, it would be interesting to 
investigate whether the algorithm can be tuned with respect 
to the time scale of the target loss rate definition. 
In its present state the algorithm requires manual 
configuration. Making the algorithm more viable in a real life 
situation requires self-tuning of such parameters as the 
measurement window size and the steps of adjustment of the 
delay.  
Attention should also be given to the various effects of the 
control plane on the performance of the algorithm, 
particularly to how different flow ID timeout intervals affect 
the overall treatment of the flows. 
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