
An Enforced Inter-Admission Delay Performance-Driven Connection
Admission Control Algorithm

Stanislav Belenki

Department of Computer Engineering
Chalmers University of Technology

S-412 96 Göteborg, Sweden
tel. +46 31 772 1710

belenki@ce.chalmers.se

ABSTRACT

Connection Admission Control (CAC) is an important
function in a computer network that supports Quality of
Service (QoS). The function of CAC is to decide whether a
new connection can be admitted on the network or a part of
the network in such a way that the QoS of the new
connection and the already established connections will
remain within the requested limits. CAC must also ensure
that network resources are used efficiently avoiding
unnecessary rejections of candidate connections. Some CAC
algorithms attempt to estimate or derive available resources
in each hop between the source and the destination. Then
they use parameters of the candidate flow and the
knowledge about the available resources to make the
admission decision. Very often such algorithms use
measurements to find out availability of the resources.
Hence the name of such algorithms, Measurement-Based
CAC (MBCAC). Another class of CAC algorithms assumes
that it is the end nodes and not the network that should
perform the connection admission. These algorithms use
probing packets to probe the path between the end nodes for
the requested level of QoS. In this paper a heuristic-based
per-hop CAC algorithm is introduced that adapts the
average rate of connection admission in response to the
measured system performance. In particular, the algorithm
decreases the rate of the connection admission when the
system is overloaded and increases it when the system is
underutilized. The paper uses simulations to show that the
algorithm is free from the shortcomings of the current
MBCAC algorithms.

1. INTRODUCTION

The connection admission control (CAC) is one of the most
important functions in a computer network that provides a
guaranteed or at least predictive quality of service (QoS). The
goal of the CAC is to ensure that a newly established
connection will receive the requested QoS while already
established flows will retain the QoS they requested. Thus, a
CAC algorithm running on a network node must know the
amount of resources (link bandwidth, buffer space) that is
unused by the already established connections. If these
resources are greater or equal to those required by the
candidate connection, it is allowed to be established on that
node.
One of the most challenging tasks an efficient CAC algorithm
faces in today’s networking assumptions is to provide high
resource utilization while maintaining the QoS. A number of
CAC algorithms have been developed to achieve these goals
[1, 2, 3, 4]. The common feature among these algorithms is
the identification of the available bandwidth. The
identification is done on the basis of either measurements of
the network (node) resource utilization alone or of the
measurements and some sort of a statistical model. The
model is used to predict the overload probability given the
utilization measurements and traffic parameters of the new
flow. CAC algorithms that use measurements of the network
traffic activity to estimate or predict the available bandwidth
are called measurement-based CAC (MBCAC). [1] presents
an MBCAC that uses a time window estimator to find the
aggregate rate of the established flows. If the estimate plus
the token rate of the candidate flow are less than the node’s
capacity the flow is admitted. [2], on the other hand, assumes
that the aggregate traffic behavior can be described as a
normally distributed random process and that the number of
flows currently served by the system (node) is known. The
MBCAC then uses values of the measured mean, variance of
the aggregate traffic, and the number of present flows to
derive the probability of the aggregate traffic exceeding the
link capacity. The authors of [3, 4] present a family of
MBCAC algorithms that use tangents to the effective
bandwidth curve to identify the region in which QoS
commitments are not violated. The effective bandwidth for a
given QoS violation probability is found via the Chernoff
bound.

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200231

A comparative study of most types of MBCAC algorithms
was recently presented in [5]. The authors established that
performance frontiers of MBCAC algorithms of various
types are nearly the same. The study also showed that most
of the algorithms do not have one explicit parameter that is
responsible for the loss rate performance and that those
algorithms that do have such a parameter miss the loss target
by several orders of magnitude.
An important aspect of a practical CAC algorithm is that it
must rely on the information that is available within the QoS
framework of the computer network in general and the
Internet in particular. It should be noted that this
information is limited. The limitation is especially valid
assuming that the Differential Services (DiffServ)
framework [6] will most likely dominate the Internet in the
near future. The framework does not provide the network
with traffic descriptors of the flows or with the loss and
delay specification of the QoS that the flows demand.
Instead, the framework allows individual flows to inform the
network about the type of QoS they wish to receive. The
QoS type is defined as Per Hop Behavior (PHB), which
denotes the externally observed QoS that the particular flow
receives. Thus, a CAC algorithm operating in a DiffServ
network does not know the traffic parameters of the
candidate flows. Neither does the algorithm know the exact
QoS parameters the traffic wishes to observe. And, just like
any other CAC algorithm, this one must have an explicit
tuning parameter that regulates its performance in terms of
the loss rate.
Elek et al. recently presented in [7] an end-to-end
measurement-based approach to provide a predictable loss
rate on the entire path for individual flows. The sender node
probes the path by sending a sequence of packets at the peak
rate to the destination node. The receiver measures the loss
among the probe packets and reports the loss to the sender.
If the loss is below a certain target level, the sender starts to
send the data packets to the receiver. This end-to-end,
probing-based CAC has an advantage over per-hop MBCAC
algorithms in that it does not require the network nodes to
make the admission decisions. This agrees well with the
DiffServ architecture. The probing requires awareness in the
end node network applications, however, which can be an
obstacle to wide-scale deployment. Furthermore, the
question of the unresponsive end-node behavior, similar to
that in the TCP and UDP flows, has not yet been fully
addressed.
The goal of this paper is to give a demonstration of a
performance-driven MBCAC algorithm that is free from the
drawbacks of the current MBCAC schemes. The CAC
algorithm differs from the other algorithms in the ways it
estimates resource availability in the system. Instead of
estimating the bandwidth available for the new flows, the
algorithm attempts to control the number of flows in the
system given the target loss rate of the aggregate traffic. This
principle is based on the assumption that there is an upper
bound on the number of flows a system can serve given the
target performance. Thus, by controlling the number of
flows in the system in response to the measured
performance, it should be possible to achieve the target level
of performance. The algorithm presented here does not
require signaling of traffic parameters of individual flows,

unlike the other MBCAC methods. The only signaling
required is that of new flow arrivals. The algorithm attempts
to control the number of flows in the system by enforcing an
average flow inter-admission delay. The value of the delay is
adjusted as the system’s performance deviates from the
target.
The paper is organized as follows. Section 2 presents the
general structure of the algorithm. Section 3 gives the results
of the simulations of the algorithm and a discussion. The
control plane considerations of the algorithm are described in
section 4, and section 5 contains conclusions and future
work.

2. THE GENERAL STRUCTURE OF
THE ALGORITHM

The CAC algorithm proposed here is assumed to control the
performance of a finite queue system by adjusting the
enforced average flow inter-admission delay given the target
level of the packet loss rate. In this paper the loss rate is
assumed to be the measure of the QoS. The enforcement of
the delay in turn allows controlling the number of flows in
the system. The adjustment of the delay is based on the
measured performance of the system. Thus, the algorithm is
performance-driven. In particular, when the real performance
of the system is poorer than the target, the number of flows is
considered to be too high and the enforced delay value is
adjusted to reduce their population in the system. Similarly,
if the system is under-utilized while flows are being rejected,
the enforced delay value is adjusted to allow a greater
number of flows in the system.
The algorithm has three major blocks: an admission block, a
performance measurement block, and an enforced average
inter-admission delay adjustment block. Figure 1 shows the
relations among the blocks of the algorithm and the system.
The solid lines represent the aggregate traffic flow and the
dashed lines indicate the measurement and the control actions
explained below. Following are detailed descriptions of each
of the blocks.

Admission
Block

S

Performance
Measurement

Block

The Enforced
Delay

Adjustment
Block

Finite queue

Figure 1. Relations among the blocks of the algorithm and

the system

2.1 Admission block

The admission block is responsible for admitting new flows
on the basis of the enforced average flow inter-admission
delay (also denoted Del). To implement this enforcement the

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200232

block uses a counter of admissible flows, denoted C, which
is incremented by one every Del seconds. When the
enforcement is in use the operations on the counter are as
follows: when a new flow arrives and the counter value is
non-zero, the flow is admitted and the counter is reduced by
one. If the counter is zero, the flow is rejected (Figure 2).

C � 1 ?
New flow Yes

No

Admit the flow
and decrease C

by 1

Reject the flow

Increment by 1 every
Del seconds

C

Figure 2. Actions of the admission block

Initialization (done once)
LossQuota = LinkRate*TL*W_time/PacketSize;
ThisLossQuota = 0;
Time = 0;
Initialization complete

if(packet loss){
 ThisLossQuota ++;
 if(ThisLossQuota > LossQuota){
 ThisLossQuota = 0;
 W_work = 0;
 Time = 0;
 C = 0;
 indication(“violation”) ;
 }
}

if(Time == W_time){
 WLossQuota = W_work*TL;
 if(ThisLossQuota <= WLossQuota)
 indication(“underutilization”);
 else{
 C = 0;
 indication(“violation”);
 }
 ThisLossQuota = 0;
 W_work = 0;
 Time = 0;
}
Figure 3. Pseudo-code of the performance measurement

block.

2.2 Performance measurement block

The performance measurement block monitors the actual
loss rate caused by the current value of Del. The monitoring
is done using a measurement window of duration W_time

seconds. Given the total number of packets arrived over a
single measurement window, W_work, the number of packets
that can be lost without violating the target loss rate, TL, is
WLossQuota = W_work*TL. This quota of packets that can
be lost can be found only in the end of the measurement
interval. But a heavy overload can exceed this quota much
ahead of the completion of the measurement window. To
account for such cases the algorithm uses another quota of
lost packets, LossQuota =
LinkRate*TLR*W_time/PacketSize. This quota assumes that
the incoming traffic rate is equal to or greater than the link
rate, which is reasonable in case of an overload. Figure 3
contains a pseudo-code for the measurement block.
In the code ThisLossQuota is an accumulator of lost
packets in the current measurement window. The algorithm
uses LossQuota to identify a violation of the QoS whenever
a packet is lost, and WLossQuota to identify a QoS
violation in the end of a measurement window. Maintenance
of W_work is not shown for simplicity. Time is a timer used
to check boundaries of the measurement window. indication
is an instruction that issues a “violation” or
“underutilization” indication to the delay adjustment block. If
any of the quotas is exceeded the block issues a “violation”
indication to the delay adjustment block. In this case the
measurement process is restarted and the counter of
admissible flows C is set to zero. This is done under the
assumption that the previous history of the system
performance is irrelevant to the new delay value and the high
loss that occurred in the past can trigger a false violation
alarm.

2.3 Delay adjustment block

The delay adjustment block acts on indications received from
the performance measurement block. A “violation” indication
means that flows are admitted too often and the value of Del
must be increased. An “underutilization” indication means
that no loss rate violation has been experienced within the
last measurement window and it is allowed to reduce the
value of Del to admit more flows. The way in which the
delay value is changed upon the indications from the
measurement block defines performance of the system.
Figure 4 shows a pseudo-code for the delay adjustment
block. Let us describe handling of the “violation” indication
first.
If it is the very first “violation” indication, the flow inter-
admission delay is initialized to AD, the measured inter-
arrival delay of candidate flows. The lowest margin of Del,
DelMIN, is set to twice the value of AD. In case where this
“violation” indication is not the first one and the previous
indication was “underutilization”, DelMIN is set to the current
value of Del. This is because the current delay value is too
low to prevent target loss rate violations, and when Del is
adjusted later on, it must not be reduced lower than this value
again. The next step is to increase the value of Del. The
increase of Del is AD/GF, where AD is as before and GF is
the so-called growth factor of Del. Thus, the measured inter-
arrival delay of candidate flows obtained before the very first
violation is also used to increase the inter-admission delay.

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200233

After Del and DelMIN have been set, the algorithm calculates
the step of reduction of Del, DelReduction, which is used
when the adjustment block receives an “underutilization”
indication. The reduction step is calculated as a fraction of
the difference between the updated value of Del and the
lowest margin DelMIN. The reduction factor RF defines the
value of the fraction.
When an “underutilization” indication is received, the
algorithm lowers the value of Del by the previously
calculated value of the reduction step. The max statement
ensures that the delay is not reduced below the lowest
margin. If the constant ExpReduction is true, the reduction
step is recalculated as the RF fraction of the difference
between Del and DelMIN. In this case, subsequent
“underutilization” indications result into exponential
reduction of the value of the inter-admission delay since the
last violation of QoS. If ExpReduction is false, the
reduction of Del is linear.
Let us come back to the point where the lowest margin of
the delay is set. As it was mentioned earlier, DelMIN is set to
Del if the previous indication was “underutilization”. A
heavy overload may require that the number of flows in
progress at the moment of the resulting violation be reduced
so that the overload is eliminated. It is likely that a single
increase in the value of Del is not enough to eliminate the
overload. Thus, the performance measurement block may
issue a number of subsequent “violation” indications. The
resulting increase in the value of Del serves not as an
estimate of the optimal inter-admission delay, but as a
drastic measure to quickly drop the number of flows in the
system. Therefore, setting DelMIN to any of the values of Del
in this sequence would lead to an over-conservative lowest
margin of the delay.

if(indication == “violation”){
 if(first “violation”){
 DelMIN = AD;
 Del = AD*2;
 }
 else{
 if(previous indication == “underutilization”)
 DelMIN=Del;

 Del = Del + AD/GF;
 }
 DelReduction = (Del - DelMIN)/RF
}

if(indication == “underutilization”){
 Del = max(DelMIN, Del - DelReduction)
 if(ExpReduction)
 DelReduction = (Del - DelMIN)/RF;
}

Figure 4. Pseudo-code of the delay adjustment block

3. SIMULATION SETUP, RESULTS,
AND DISCUSSION

3.1 Simulation Setup

The goal of the simulation is twofold. First, it is necessary to
identify what impact different values of the algorithm’s
parameters have on the performance of the algorithm.
Second, the performance of the algorithm must be compared
with the performance of other connection admission control
algorithms.
Some traffic models used in the simulations are chosen
because they are similar to those used in other work on
admission control algorithms. EXP1 model is an ON-OFF
traffic source with exponentially distributed ON and OFF
periods. The average duration of the ON periods is 312 msec
and is 325 msec for the OFF periods. This model was used in
[5] to compare various measurement-based CAC algorithms.
The source generates 64 packets per second during each ON
period. All the packets are 1 Kb long. The POO1 traffic
model is the same as EXP1, but the ON and OFF periods are
Pareto distributed. A traffic model similar to POO1
represents the toughest challenge for measurement-based
CAC algorithms in terms of matching the target and actual
performance [5]. For heterogeneous traffic scenarios, the
POO1 model was modified to generate data at 128 Kbit/sec
and 1 Mbit/sec rates. In the latter case, the ON intervals were
50 msec on average. All the flows generated have
exponentially distributed lifetimes with the average being
300 seconds. The flow inter-arrival delay is exponentially
distributed with 400 msec average.
All the simulations were carried out in a single hop
environment where the network node represents a 10
Mbit/sec server and a 160-packet long, tail-drop queue. Each
set of simulations was repeated with ten random seeds.

3.2 Performance of the algorithm versus
the values of its parameters

The algorithm has the following parameters:

Length of the measurement window, W_time;
Target loss rate, TL;
Del growth factor, GF;
Del reduction factor, RF.

In addition, the algorithm can employ different ways of
updating the value of Del. For example, the delay can be
increased and/or decreased in an exponential or linear
fashion.
Before presenting particular simulation results, we will
discuss what can be an appropriate value of W_time. The
measurement window is used to detect violations of the target
performance and underutilization of the system. Therefore,
the window must be long enough to capture changes caused
by the growth or decrease in the number of flows. However, a

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200234

value of W_time that is too long forces the algorithm to
underutilize the system when Del is too high, and a too short
measurement window may take burstiness of the flows for a
performance trend presumably produced by the changing
number of flows.
To summarize, the length of W_time must be chosen as
following: W_time = max(cell-level dynamics, min(Del,
flow inter-departure delay)). The minimum is needed to
avoid underutilization when no flows are admitted. Only one
out of three components that must be used to find W_time is
known.

W_time
(seconds)

GF RF Loss target

10 1 2 10-6

30 2 10 10-4

100 4 20 10-2

300 5 50
Table 1. Values of some parameters in the algorithm

While finding the flow inter-departure delay can be
facilitated by SIP or H.323 signaling (see the section on the
control plane of the algorithm), discovery of the shortest
interval that captures burstiness of the flows is not an easy
task.

Target

loss rate
Actual loss rate Actual utilization

10-2 0.48*10-2;
0.65*10-2

0.910;
0.930

10-4 0.92*10-4;
1.2*10-4

0.853;
0.863

10-6 1.5*10-5;
2.4*10-5

0.841;
0.852

Table 2. Actual system performance versus target loss
rate

This question is left for further studies. The values of
W_time used in the simulations are shown in Table 1
together with values of other parameters of the algorithm.
The effect of the target loss rate on the performance of the
algorithm is first studied. In this set of simulations, the
measurement window is 300 seconds, GF is 1 and RF is 2.
The exponential reduction of Del is used.
The performance metrics are the actual utilization and loss
rate. Table 2 shows results of the simulations. Each value is
shown as a 95% confidence interval. The results in the table
indicate that the target loss rate value has a direct impact on
the actual loss rate. This parameter defines the number of
packets that can be lost within a measurement window. As a
consequence, the algorithm signals a violation at different
population levels in the system. Figures 5 and 6 show this
effect on examples of some of the simulation runs for target
loss rates set to 10-2 (Figure 5) and 10-6 (Figure 6). In these
and the other examples of the simulation runs, the top line is
the number of flows in the system, the step line is Del in 10
msec units, and the spikes are the number of lost packets.
The impact of different values of W_time, GF, and RF is
explored next. In this case, both linear and exponential
reduction methods were used for the delay. The target loss

level was set to 10-4. In the exponential reduction GF and RF
pairs chosen were (1, 2), and (4, 10).

Figure 5. Target loss rate = 10-2

Figure 6. Target loss rate = 10-6

Figure 7. Linear reduction, GF = 1, RF = 2, W_time =

100 seconds

The pairs in the linear reduction were set to (1, 2) and (4, 20).
The highest utilization (0.88) and loss rate (1.4*10-4) were
achieved with the linear reduction where GF was set to 1, RF
was set to 2, and W_time was set to 100 seconds. The lowest
utilization and loss rate (0.83 and 0.6*10-4, respectively)
were observed in the case of the exponential reduction with
GF = 4, RF = 20, and W_time = 300 seconds.

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200235

Figure 8. Exponential reduction, GF = 4, RF = 20,

W_time = 300 seconds

Figures 7 and 8 give examples of simulation runs for each of
the two extremes.
In general, the following patterns can be identified through
this set of simulations. With GF = 1 and RF = 2 utilization
and loss are lowest with W_time equal to 10 and 300
seconds and highest with W_time set to 30 and 100. This is
true both for linear and exponential reductions. The
difference between the utilization values is about 1%. This
behavior can be explained by the following factors. When
W_time is 10 seconds, the number of packets that can be
lost before the violation is triggered is the smallest as
compared with the other cases. Thus, the algorithm starts to
react at a smaller flow population size. With W_time = 300
seconds, it takes longer to move from an excessive value of
Del to a lower one that allows more flows to be admitted.
This leads to long periods of underutilization, as is seen in
Figure 8.
In simulations with higher GF and RF values, the difference
between the utilization and loss rate performance is less
significant. There is a slight increase in loss and utilization
as the measurement window becomes longer. As before, this
is caused by the increasing number of packets that can be
lost before the violation is signaled.

Figure 9. Exponential reduction, GF = 1, RF = 2, W_time

= 100 seconds

The way in which the Del value is reduced also has its
impact on the algorithm’s performance. Figure 9 shows the
same case as is shown in Figure 7 but with the exponential
reduction. Since Del is reduced here at a finer granularity

than in the linear reduction case, the algorithm can better
match the estimate of the inter-admission delay against the
optimal value. This reduces the thrashing of Del, which can
be seen in Figure 7. A reduction in thrashing in turn reduces
the number of violations and consequently the loss rate. So,
the loss rate of the simulation run depicted in Figure 9 is
0.53*10-4 (as opposed to 1.4*10-4 in the linear reduction
case).

Tuning performance of the algorithm in term of
its parameters

The results given in Table 2 were achieved by varying the
target loss rate. They indicate that this algorithm parameter
has the most pronounced effect on the actual performance. It
can be argued that the range of values used for the target loss
rate is the widest in comparison with the values of the other
parameters. Hence, the influence on the performance. While
this is generally true, such values would not reflect the
possible real life values of these parameters.
The requirement in choosing GF and RF values is that RF
must be several times larger than GF, while GF should be
more than 1. The latter recommendation helps avoid
overshooting of the delay value when it is near the optimal
level. A gradual reduction in Del provided by relatively large
RF sets the violation instances further apart. This is
especially valid when Del has reached a near-optimal level
while the granularity of steps at which Del is changed does
not allow a closer match with the optimal value. The
simulations have shown that small growth steps in Del cope
well with reaching a proximity to the optimal Del value.
Special care must be taken when the exponential reduction is
used. In this case, too high RF means a reduction with long
tail, which may lead to underutilization.
The choice of W_time affects the speed of Del convergence
to the optimal value and also affects the actual loss rate. It
should be noted that the convergence of Del takes place only
once after the flow aggregate controlled by the algorithm has
been initiated. If Del has succeeded in converging to a near
optimal value during, say, the first busy hour period, the next
busy hour will be served without the convergence phase.

Number of packets

time

Queue limit

Proactive
threshold

Target loss

Queue
threshold

Figure 10. Queue threshold concept

Achieving tight loss rate targets requires a special care. In
this case, it takes fewer packet losses to cross the violation
threshold, and thus less time. To avoid the problem of the
tight loss rate targets, it may be reasonable to introduce a

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200236

proactive threshold for the queue occupancy. Combined
with the detection of the lost packets, the threshold would
then trigger the adjustment block actions. This idea is
illustrated in Figure 10.

Comparison with the measured-sum
measurement-based connection
admission control algorithm

Results reported in [5] demonstrate that there is a rather
insignificant difference between various types of
measurement-based CAC algorithms. Hence, the
performance of the algorithm presented here is compared
with only one of these algorithms.
The measured-sum algorithm was chosen for this purpose
[1]. The algorithm has two measurement windows of T and
S packet transmission times. The S window is used to
measure the link load. S is smaller than T. At the end of
each T window, the algorithm selects the maximum load
value (�) and the maximum observed delay (D). These
values are used in admission decisions in the next T
window. If a higher delay or utilization value is observed
during the next T window, this value replaces the one set at
the beginning of the window. The admission decision is
based on the target utilization (�t) and delay (Dt) values. If
the sum of � + r, where r is the peak rate of the candidate
flow, is more than �t or D + d > Dt (d is the delay incurred
by the candidate flow), the candidate flow is rejected. This
paper does not use leaky buckets to shape the flows, and
thus d is set to 1024/(� - �). � stands for the link capacity. If
a candidate flow is admitted, � and D are updated with the
values of the sums in the admission decision inequalities.
The MBCAC algorithm is applied to the same node model
as the enforced flow inter-admission delay algorithm. The
size of the T window is varied from 500 to 3000 packet slots
while the S window is kept 100 packet slots. Dt is set to 16
msec and �t is 1.
The enforced inter-admission delay algorithm is simulated
using the following parameters: GF = 5, RF = 50, W_time =
100 seconds, linear reduction.

Loss versus utilization performance

In this set of simulations the EXP1 traffic model was used
for both algorithms in order to make a comparison similar to
that made in [5]. Figure 11 contains the loss versus
utilization curves for the measured-sum MBCAC algorithm
(dashed line) and the enforced inter-admission delay
algorithm (solid line).
It can easily be seen that the measured sum algorithm has
about a 6 % higher utilization at the same loss rate than the
other algorithm. This is because of the following two
factors. The first factor is the back-off done by the enforced
inter-admission delay algorithm when the value of Del is
increased. The second factor is the difference between the
average inter-admission delay value and its instantaneous

optimal value, which creates additional variations in the
number of flows, seen in Figure 8.

Figure 11. Loss rate versus utilization comparison

Figures 12 and 13 give examples of the actual loss rate on a
one-minute time scale for the two algorithms. The loss rate
over the entire simulation run is about 10-3 for both cases. It
can be seen that the measured-sum algorithm provides a more
uniform loss rate pattern than the enforced flow inter-
admission algorithm.
It should be noted that the measured-sum MBCAC algorithm
requires that the network and the end nodes support RSVP
and thus has much more information than the inter-admission
delay algorithm that requires neither RSVP nor any other
QoS protocol or framework. Therefore, the somewhat lower
performance of the inter-admission delay algorithm is traded
for independence from the QoS architecture of the network.

Performance in heterogeneous flow scenarios

Three flow models were used in the simulations presented
here. One is the POO1 model and the two others are also
ON-OFF sources with Pareto-distributed ON and OFF
periods but with 128 Kbit/sec and 1 Mbit/sec peak rates,
respectively. The average duration of the ON periods in the 1
Mbit/sec model is set to 50 msec to reduce the average rate of
these flows and allow a reasonable statistical gain on the 10
Mbit/sec link.

Figure 12. One-minute loss rate samples for the measured

sum algorithm

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200237

Figure 13. One-minute loss rate samples for the enforced

inter-admission delay algorithm

The simulations show that the enforced inter-admission
delay algorithm does not favor smaller flows over flows with
a higher peak rate, as does the measured-sum MBCAC
algorithm.

Figure 14. Enforced inter-admission delay algorithm,

POO1 and 1 Mbit/sec flows, 50/50 mix

Figures 14 and 15 show some simulation runs with POO1
and 1 Mbit/sec flow mixes for each of the algorithms.
Admission requests for each of the flow types are generated
with equal probability. The number of 1 Mbit/sec flows is
shown as a bold line. The measured-sum algorithm shows
similar biased behavior even when the difference between
the peak rates of the candidate flows is not very significant.
Figure 16 shows a simulation run for the measured-sum
algorithm with POO1 and the 128 Kbit/sec flow mix. Again,
the algorithm heavily discriminates against the faster flows
in favor of the slower ones. This is because the algorithm,
like many other MBCAC algorithms, bases the admission
decision on the traffic descriptor of the candidate flow. It is
more likely that a smaller bandwidth is available when a
candidate flow arrives, smaller flows are thus more
frequently admitted because they are less demanding. On the
other hand, the enforced inter-admission delay algorithm
admits flows with various patterns as often as they appear
among the candidate flows. As additional evidence of the
unbiased behavior of the algorithm, Figure 17 shows the
number of admitted flows when the 1 Mbit/sec flow requests
are generated with probability 0.7. The average number of
POO1 flows in this case is 17, and the average number of

the 1 Mbit/sec flows is 40. This fair treatment of flows with
different peak rates is observed in all the simulations of the
heterogeneous scenarios of the algorithm.

Figure 15. Measured sum MBCAC algorithm, POO1 and

1 Mbit/sec flows, 50/50 mix

Figure 16. Measured sum MBCAC algorithm, POO1 and

128 Kbit/sec flows, 50/50 mix

Figure 17. Enforced inter-admission delay algorithm,

POO1 and 1 Mbit/sec flows, 30/70 mix

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200238

4. CONTROL PLANE OF THE
ALGORITHM

In general, from the moment a candidate flow is admitted on
a particular link or traffic aggregate, the network node must
distinguish this flow from those that did not gain admission.
The differentiation can be done in several ways depending
on the protocol environment assumed.
Frameworks such as IntServ and ATM assume that the end
nodes comply with control messages from the network. For
example, if a call setup has failed, the network returns a
“tear-down” or a “setup failure” message to the source end
node. In this case the end node refrains from sending the
flow or attempts to re-establish the connection. In this way
the network nodes explicitly know which flows or calls are
admitted. If a network node observes a successful exchange
of flow setup messages, the node allows the flow through.
Otherwise, if the flow setup fails, the node deletes any
partial state associated with the flow.
The algorithm described in this paper does not require
presence of ATM or RSVP signaling messages and can
operate without these or any other QoS frameworks. To
enforce the admission decision, a network node would need
to filter on header fields of arriving packets to identify
whether they belong to a new or an already established flow.
The filtering rule can be based, for example, on the source-
destination IP address pair, IPv6 flow identifier, or MPLS
label. The latter is possible only if the labels of individual
flows are not merged upstream. Thus, the network node
keeps a table of flow IDs that contains identifiers of
admitted flows. Packets with header field values that match
any of the table entries are forwarded, while the other
packets are dropped. Figure 18 shows the processing
required to identify the new flows and connection of the
processing with the admission decision. Besides being
added to the table, flows that are admitted must be removed
from it when they terminate. Since no tear-down messages
are assumed, the only possibility to remove a flow from the
table is based on the activity of the flow. In other words, a
timer is used that is updated whenever a packet of the flow
is observed. If the timer expires, the flow is considered
terminated and is removed from the table.
Another way to maintain the table of admitted flows is to
use H.323 suite [9] or SIP [10] messages. SIP is an end-to-
end signaling protocol used for establishing, maintaining,
and tearing down end-to-end flows. These functions are also
available in the H.323 protocol suite. In this case there is no
need to detect new flows by comparing the header field
values of each arriving packet with the table entries.
Furthermore, the identification of flow termination does not
require a timer on each table element. Figure 19 shows a
diagram of actions for flow admission in this case.
We will now briefly discuss what can go wrong in the
control plane. First, assume the case in which a downstream
router rejects a flow. This means that the flow is admitted on
only a part of the path to the destination. Ideally, the router
that rejected the flow would send an upstream tear-down
control message. The message would instruct the upstream
routers to remove the flow ID from the tables. It is easy to
identify two problems here, the stemming from the

possibility that the upstream and downstream routes may not
be symmetric. The second problem is related to the message
getting lost. Together this means that the control message
does not reach some or all of the network nodes. There are
two possible outcomes of this situation. The one assumes that
the rejection of the flow means dropping the flow setup
message. Consequently, the end-to-end flow setup fails and
the compliant end nodes do not initiate the flow itself.
Alternatively, in the case of the absence of end-to-end control
messages, the end nodes observe no connectivity. In both
cases, no further packets appear in this flow and the upstream
nodes remove the flow ID after the inactivity time-out. On
the other hand, an end node that starts sending data without
waiting for the flow to be admitted on the entire path to the
destination may still generate the flow despite an incomplete
setup or the absence of the receiver response.

Packet
arrival

Match with
any element
in the table?

Forward

New
Flow

Admission
decision
success?

Enter
into the

table

Drop

YES

YES

NO

NO

Figure 18. Actions taken per packet in absence of flow set-

up signaling

Packet
arrival

Match with
any element
in the table?

Forward

Contains flow set -
up message?

Admission
decision
success?

Enter
into the

table

Drop

YES

YES

NO

NO
NO

YES

Figure 19. Actions taken per packet in the presence of

flow set-up signaling

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200239

The flow ID will not be timed out in this case and the flow
may eventually be admitted on the entire path to the
destination. The down side of a persistent end node behavior
of this kind is the wasted work that the upstream nodes
spend on forwarding the flow while it is being discarded
downstream.

5. CONCLUSIONS AND FURTHER
WORK

To summarize, this paper showed what kind of QoS
guarantees in terms of packet loss rate can be achieved in a
network that does not implement any QoS framework by
using a per-hop MBCAC algorithm. The algorithm bases
admission decisions on the performance-adjusted average
flow inter-admission delay. This feature makes the algorithm
different from the Measurement-Based CAC (MBCAC)
algorithms, which make their admission decision on the
basis of the estimated or predicted resources available and
the traffic parameters of the candidate flows. This difference
makes the algorithm presented here independent of the QoS
architecture of the Internet because it neither requires
signaling of the traffic parameters of the individual flows
nor it demands any additional signaling over the one that
exists today. The only signaling the algorithm needs is the
arrival of the new flows, which is basic for any connection
admission control. The simulation results reported
demonstrate that the algorithm performs well in the heavy-
tailed traffic environment. The simulations showed that the
actual performance of the algorithm in terms of the loss rate
is easily tuned by changing the target loss rate parameter. A
comparative study was made of the enforced inter-admission
delay algorithm and the measured-sum MBCAC algorithm.
This showed that the enforced inter-admission algorithm
does not achieve as high a utilization as the simulated
MBCAC algorithm. At the same time, the inter-admission
algorithm does not require as much information as is needed
in the MBCAC algorithm. The inter-admission delay
algorithm also showed an unbiased behavior in the
heterogeneous flow scenarios, because it does not use the
traffic parameters of the candidate flows in its admission
decisions. Still, unawareness of the traffic parameters of the
candidate flows has its shortcomings. Consider a case where
the aggregate flow mix is heterogeneous and proportions of
flows with different rates are not constant. In this case, the
algorithm will adjust the value of Del to the traffic mix with
the lowest number of flows. At the same time, the lowest
margin of the delay, DelMIN, will not let the algorithm adapt
to a mix with smaller flows. Similarly, if the system is highly
utilized and the algorithm admits a flow with rate that
exceeds the spare bandwidth, a loss rate violation will
follow, forcing the algorithm to re-adjust the value of Del.
Despite the fact that the algorithm maintains a per-flow
state, the traffic parameter unawareness prohibits the use of
traffic shapers and packet schedulers together with the
algorithm. For example, in case of a heterogeneous traffic
mix, a packet scheduler would distribute the link capacity
evenly among the flows, which is wrong, since different
flows have different rates. However, the question of traffic

policing is not the same as the question of the admission
control. Considering a network domain, the policing could be
done at the edge of the domain while the core would be
unaware of the traffic parameters of the individual flows.
Combining the admission algorithm with a traffic policing
algorithm as well as extending the algorithm to support
traffic descriptors is a subject of future research.
It was also found that the algorithm did not succeed in
exactly matching the 10-6 target loss rate. Future work will
include an implementation of the mechanism described in the
discussion of the simulation results to achieve a better match
between the actual and the target loss rates in the cases of
tight target loss rate values. Another question is an
integration of the buffer and the link utilization
measurements with those of the actual loss rate to enable a
faster discovery of the target loss violation and violation
elimination instants. In addition, it would be interesting to
investigate whether the algorithm can be tuned with respect
to the time scale of the target loss rate definition.
In its present state the algorithm requires manual
configuration. Making the algorithm more viable in a real life
situation requires self-tuning of such parameters as the
measurement window size and the steps of adjustment of the
delay.
Attention should also be given to the various effects of the
control plane on the performance of the algorithm,
particularly to how different flow ID timeout intervals affect
the overall treatment of the flows.

6. ACKNOWLEDGEMENTS

The author thanks his colleagues Vishaka Nanayakkara,
Doctor Olov Schelén at Luleå University of Technology, and
Professor Gunnar Karlsson at The Royal Institute of
Technology, Stockholm, for their helpful discussions and
comments on the paper. The author would like to thank the
anonymous reviewers whose helpful comments significantly
improved readability of this paper.

7. REFERENCES

[1] Jamin S., Danzig P. B., Shenker S. J., Zhang L. A

Measurement-Based Admission Control Algorithm
for Integrated Service Packet Networks.
IEEE/ACM Transactions on Networking, vol. 5,
no. 1, February 1997.

[2] Grossglausser M., Tse D. N. C. A Framework For

Robust Measurement Based Admission Control.
IEEE/ACM Transactions on Networking, vol. 7,
no. 3, June 1999.

[3] Gibbens R. J., Kelly F. Measurement-Based

Connection Admission Control. 15th International
Teletraffic Congress, June 1997.

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200240

[4] Gibbens, R. J., Kelly, F. P., Key, P. B. A

Decision-Theoretic Approach to Call Admission
Control in ATM Networks. IEEE/ACM
Transactions on Networking, vol. 13, no. 6,
August 1995.

[5] Breslau, L., Jamin, S., Shenker, S. Comments on

the Performance of Measurement-Based
Admission Control Algorithms. In Proceedings of
INFOCOM 2000, vol. 3.

[6] Differential Services (DiffServ) Workgroup.

http://www.ietf.org/html.charters/diffserv-
charter.html

[7] Elek, V., Karlsson, G., Ronngren, R. Admission

Control Based On End-To-End Measurements. In
Proceedings of INFOCOM 2000, vol. 2.

[8] Multiprotocol Label Switching (MPLS)

Workgroup.
http://www.ietf.org/html.charters/mpls-charter.html

[9] H.323 - Framework and wire-protocol for

multiplexed call signalling transport.
http://www.itu.int/rec/recommendation.asp?type=fo
lders&lang=e&parent=T-REC-H.323

[10] Session Initiation Protocol (sip) Charter.

http://www.ietf.org/html.charters/sip-charter.html

ACM SIGCOMM Computer Communications Review Volume 32, Number 2: April 200241

