Scenario-based Comparison of Source-Tracing and

Dynamic Source Routing Protocols for Ad Hoc Networks

Jyoti Raju
Computer Science Department
University of California
Santa Cruz, CA 95064

jyoti@cse.ucsc.edu

ABSTRACT

We present source tracing as a new viable approach to rout-
ing in ad hoc networks in which routers communicate the
second-to-last hop and distance in preferred paths to des-
tinations. We introduce a table-driven protocol (BEST) in
which routers maintain routing information for all destina-
tions, and an on-demand routing protocol (DST) in which
routers maintain routing information for only those desti-
nations to whom they need to forward data. Simulation
experiments are used to compare these protocols with DSR,
which has been shown to incur less control overhead that
other on-demand routing protocols. The simulations show
that DST requires far less control packets to achieve com-
parable or better average delays and percentage of packet
delivered than DSR, and that BEST achieves comparable
results to DSR while maintaining routing information for
all destinations.

Keywords

On-demand routing, wireless routing, ad hoc networks.

1. INTRODUCTION

Ad hoc networks (or multi-hop packet-radio networks) con-
sist of mobile routers interconnecting hosts. These networks
are useful in tactical and commercial scenarios in which
there is no base-station infrastructure present. The deploy-
ment of such routers is ad hoc and the topology of the net-
work is very dynamic, because of host and router mobility,
signal loss and interference, and power outages. Further-
more, the bandwidth available for the exchange of routing
information in ad hoc networks is far lesser than the band-
width available in a wired internet.

Routing for ad hoc networks can be classified into two main
types: table-driven and on-demand. Table driven routing
attempts to maintain consistent information about the path
from each node to every other node in the network. The
Destination-Sequenced Distance-Vector Routing (DSDV) pro-
tocol is a table driven algorithm that modifies the distributed
Bellman-Ford routing algorithm to include timestamps that
prevent loop-formation [15]. The Wireless Routing Proto-
col (WRP) is a distance vector routing protocol which be-
longs to the class of path-finding algorithms that exchange

*This work was supported in part by the Defense Advanced
Research Projects Agency (DARPA) under grant F30602-
97-2-0338.

J.J. Garcia-Luna-Aceves
Computer Engineering Department
University of California
Santa Cruz, CA 95064

jj@cse.ucsc.edu

second-to-last hop (predecessor) to destinations in addition
to distances to destinations [13]. This extra information
helps remove the “counting-to-infinity” problem that most
distance vector routing algorithms suffer from [1]. It also
speeds up route convergence when a link failure occurs.

On-demand routing protocols have been designed to limit
the amount of bandwidth consumed in maintaining up-to-
date routes to all destinations in a network by maintaining
routes to only those destinations to which the routers need to
forward data traffic. The basic approach consists of allowing
a router that does not know how to reach a destination to
send a flood-search message to obtain the path information
it needs. There are several recent examples of this approach
(e.g., AODV [16], ABR [19], DSR [12], TORA [14], SSA
[6], ZRP [11]) and the routing protocols differ on the spe-
cific mechanisms used to disseminate flood-search packets
and their responses, cache the information heard from other
nodes’ searches, determine the cost of a link, and determine
the existence of a neighbor. However, all the on-demand
routing proposals to date use flood search messages that ei-
ther: (a) give sources the entire paths to destinations, which
are then used in source-routed data packets (e.g., DSR); or
(b) provide only the distances and next hops to destina-
tions, validating them with sequence numbers (e.g., AODV)
or time stamps (e.g., TORA).

The Dynamic Source Tree (DSR) protocol [12] has been
shown to outperform other on-demand routing protocols
such as TORA and AODV [3, 17] from the standpoint of
reducing the number of update packets needed to update
routing tables, and therefore constitutes a good baseline for
comparison. In DSR, the replies to flood search messages
contain the entire route from source to destination, which
are stored in route caches at the senders. One problem with
source routing is that it results in long data-packet headers
as the network size increases; in addition, source routing will
not work with security schemes that encrypt headers.

In this paper, we introduce and analyze two efficient routing
protocols for ad hoc networks using predecessor and distance
information. The first protocol is DST (dynamic source
tree) protocol, which constitutes a new approach for on-
demand distance vector routing for ad hoc networks. Like
other on-demand routing protocols, DST acquires routes to
destinations only when traffic for those destinations exists
and there is no known route to the destination. This implies

that route information is only maintained for destinations
with which a router needs to communicate. It also implies
thatthe routes used are not necessarily optimum; they only
have to be valid and of a finite metric value. DST does not
use source-routed packets or time stamps to validate dis-
tance updates. DST uses a source-tracing algorithm similar
to the one advocated in prior table-driven routing protocols
in which routers maintain routing information for all net-
work destinations [13, 1]. To reduce the number of loops,
the source-tracing algorithm allows for complete paths to be
checked for loops before being added to the routing table.
DST uses information about the length and predecessor of
the shortest path to all known destinations to eliminate the
counting to infinity problem of the distributed Bellman-Ford
algorithm. A node running DST maintains shortest paths in
its routing tables for all the destinations it knows. A node
also maintains the routing tables reported incrementally by
all of its known neighbors. A node uses the routing tables
of known neighbors together with the link costs to known
neighbors to generate its own routing table. A routing mes-
sage broadcast by node ¢ contains a vector of entries in which
each entry corresponds to a route in the routing table; each
entry contains a destination identifier j, the distance to the
destination Dji- and the predecessor to that destination p;

The second protocol, Bandwidth Efficient Source Tracing
(BEST) protocol is also based on source-tracing and is an
extension of WRP [13]. It uses unreliable updates and intro-
duces a conservative approach to table-driven routing, i.e.,
routers send updates only under conditions where routing
table loops are suspected.

There are three key contributions of this paper: (i) introduc-
ing source tracing for on-demand routing and table-driven
routing as a viable approach for ad hoc networks; (ii) pre-
senting the design of efficient protocols that do not use
sequence numbers, internodal synchronization or complete
paths to ensure that no permanent loops are formed; and
(iii) examining the performance of DST, DSR and BEST in
simulation scenarios that mimic real world scenarios and us-
ing these simulations to conclude that source-tracing can be
the basis for a very efficient routing protocol that maintains
routing information either on-demand or for all destinations.

Section 2 presents the network model used throughout the
paper. Section 3 gives a detailed description of DST and
presents an example of how it eliminates long-term loop-
ing. Section 4 gives a brief description of BEST. Section 5
uses simulations to compare the performance of DSR, DST
and BEST using the same movement model used in [3, 4] to
compare DSR with other on-demand and table-driven rout-
ing protocols.

2. NETWORK MODEL

To describe DST, a network is modelled as an undirected
graph with V' nodes and E links. Instead of having inter-
face identifiers, a router has a single node identifier, which
helps the routing and other application protocols identify
it. It is assumed that a node has radio connectivity with
multiple nodes using a single physical radio link. Accord-
ingly, we map a physical broadcast link connecting a node
and its multiple neighbors into point-to-point links between
the node and its neighbors. Each link has a positive cost

associated with it. If a link fails, its cost is set to infinity.
A node failure is modelled as all links incident on the node
being set to infinity.

For the purpose of routing-table updating, a node A consid-
ers another node B as its neighbor if A receives an update
from neighbor B. Node B is no longer node A’s neighbor
when the medium access protocol at node A sends a signal
to DST indicating that data packets can no longer be sent
successfully to node B.

DST is designed to run on top of any wireless medium-access
protocol. Routing messages are broadcast unreliably and
the protocol assumes that routing packets may be lost due
to changes in link connectivity, fading or jamming. Since
DST only requires a MAC indication that data packets can
no longer be sent to a neighbor, the need for a link-layer
protocol for monitoring link connectivity with neighbors or
transmitting reliable updates is eliminated, thus reducing
control overhead. If such a layer can be provided with no
extra MAC overhead, then DST can be made more proactive
by identifying lost neighbors before data for them arrives,
resulting in faster convergence and decreased data packet
loss.

3. THE DST PROTOCOL
3.1 Routing Information Maintained in DST

A router in DST maintains a routing table, a distance table,
a data buffer and a query table.

The set of known destinations is denoted bys N and N;
denotes the list of known neighbors.

The routing table at router ¢ contains entries for all known
destinations. Each entry consists of the destination identifier
j, the successor to that destination sj-, the second-to-last-
hop to the destination pj-, the distance to the destination
Dji- and a route tag tag]i-. When the element tagji- is set to
correct, it implies a loop-free finite value route. When it is
set to null, it implies that the route still has to be checked
and when it is set to error, an infinite metric route or a
route with a potential loop is implied.

The distance table at router ¢ is a matrix containing, for
each k € N; and each destination j, the distance value of
the route from ¢ to j through k, Dji-k and the second-to-last
hop p;-k on that route. Dji-k is always set equal to RDJ'-c +1L,
where RD}“ is the distance reported by k to j in the last
routing message and I}, is the link cost of link (i, k). The link
cost may be set to one to support minimum-hop routing, or

it may be set to some other link parameter like latency or
bandwidth.

The data buffer is a queue that holds all the data packets
waiting for routes to destinations. There are various ap-
proaches for buffer management. However, we chose to use
the scheme used by most existing on-demand routing pro-
tocols. The buffer has a limited size and if it fills up, the
packet at the head of the buffer is dropped to make room for
the incoming data packet. Each data packet also has a time
value, which is set to the time when the packet is put into
the buffer. A packet that has been in the buffer for more

than data_pkt_timeout seconds is dropped. The data buffer
is checked periodically for any packets that may be sent or
dropped.

The query table is used to prevent queries from being for-
warded indefinitely. We use a scheme similar to the one used
in DSR, which allows for two kinds of queries: (a) queries
with a zero hop count, which are propagated to neighbors
only; and (b) queries with maximum hop count, which are
forwarded to a maximum distance of MAX_HOPS hops
from the sender. For each destination j, the query table
contains the last time a maximum hop query was sent qu-,
the last time a zero hop query was sent zqu—, the hop count
of the last query sent hqs;-7 the last time a query was received
qr;. At the source of the flood search, two maximum hop
count queries are always separated by query_send_timeout
seconds. A query is forwarded by a receiver only if the dif-
ference between the time it is received and qrji- is greater
than query_receive_timeout, where query_receive_timeout
is slightly lesser than query-send_timeout. The reasoning
for this can be explained using Fig. 1. In the figure, times
t1 and t3 correspond to times when the querying is started
at the source and t3 — t1 > query_send_timeout. Since it
is possible for the queries to travel different paths, we can
have a condition where the first flood took a longer time
to reach the forwarding node than the second flood, i.e.,
(t2 — t1) > (t4 — t3). If query-_receive_timeout were equal
to query_send_timeout, the second flood will not be prop-
agated. However, we require the query_receive_timeout to
be large enough to prevent propagation of queries from the
same flood search. This is the first protocol to use only lo-
cal clocks to separate flood searches and this is an important
advantage over using sequence numbers, because this makes
the protocol impervious to node failures.

Timeat Timeat

source node forwarding node
t1
t3

Figure 1: Querying timeline at source and forward-
ing nodes

3.2 Routing Information exchanged in DST
There are two types of control packets in DST - queries and
updates. All control packets headers have the source of the
packet (pkt.src), the destination of the packet (pkt.dst), the
number of hops (pkt.hops) and an identifier pkt.type that
can be set to QUERY or UPDATE. Each packet has a list
of routing entries, where each entry specifies a destination
j, a distance to the destination RDJi- and a predecessor to
the destination rp;'-.

If the MAC layer allowed for transmission of reliable updates
with no retransmission overhead (which is the case of wire-
less MAC protocols presented in [18, 20]), incremental rout-
ing updates would suffice to update routing tables among
neighbors. In this paper, however, we assume a MAC proto-
col based on collision avoidance. In order to avoid collisions
of data packets with other packets in the presence of hidden
terminals , such protocols require nodes to defer for fixed
periods of time after detecting carrier [7, 10]. Accordingly,
sending larger control packets does not decrease throughput
at the MAC layer, because the overhead (RT'S — CTS ex-
change) for the MAC protocol to acquire the channel does
not depend on packet size. Therefore, in the rest of this
paper, we assume that routers transmit their entire rout-
ing tables when they send control messages. Control packet
size may affect the delay experienced by packets in the MAC
layer. However, as our simulations show, this does not affect
data packet delays because the number of control packets we
generate is substantially low.

Data Packets in DST only need to have the source and des-
tination in the header.

3.3 Creating Routes

When a network is brought up, each node (i) adds a route
to itself into its routing table with a distance metric (D}) of
zero, the successor equal to itself (i) and the tag (tag!) set
to correct. To differentiate a route to itself from all other
routes, a node sets the local host address (127.0.0.1) as the
predecessor to itself.

When a data packet is sent by an upper layer to the forward-
ing layer, the forwarding layer checks to see if it has a correct
path to the destination. If it does not, then the packet is
queued in the buffer and the router starts a route discovery
by broadcasting queries. Route discovery cycles are sepa-
rated by query_receive_timeout seconds. One zero hop query
and one maximum hop query are sent in every cycle. A zero
hop query allows the sender to query neighboring routing
tables with one broadcast. If the zero hop query times out
((present time - zgs}) > zeroqry-send_timeout), then an
unlimited hop query (with pkt.hops set to MAX_HOPS) is
sent out. Consider the six-node network in Fig. 2.a where
all link costs are of unit value and where node d broadcasts
a query for destination a , with the pkt.src set to d, pkt.dst
set to a, and pkt.hops set to MAX_HOPS. The parenthesis
next to each node in the example depicts the routing table
entry (distance, predecessor) for destination a. The symbol
lh stands for local host address (127.0.01). The query packet
contains a list of all the routing table entries of the sender
d. The entries are shown within the square brackets, each
entry in the (destination, distance, predecessor) form. The
entries are in a increasing-distance order, such that a node
i receiving a query from an unknown neighbor k, adds the
neighbor k to its distance tables on reading the first entry in
the query and proceeds to consider all other entries as the
distances reported by k.

Consider node e, where the query from d is received. To
process the query, each entry (7, RD?,erd-) is read (pro-
cedure Query in Fig. 3). If the entry is for an unknown
destination, then the destination is initialized (DJ’ — 00,
pi,si = NULL_ADDR; D}, — oo, p;, - NULL_ADDR

[(d,0,Ih)]

\ WH

e,

(a)
[(b,0,Ih).(a1,b)
(c.1,0),(d2,0)]

b(1,b) e,

a(0,h) /
5 (@) dC))

[(a,o,lh)m /
(b,1,8),(d,2,€)]

eL)
()

a(0,lh) /

daC.)

b(1,b) o)
(€0 (dLO]

[(c,0h),(d,1,0)]
[(,0.h),(d,1.)

O (@) S
[(e,0,Ih),(d,1,e)] [(e,0,lh),(d,1,e)]
e

(b)

[(c0h).(b.1,c),
(d.1,0).(a2b)]

b(1.0) C(Z’b)[(c,o,lh),(b,l,c),

(A10,a2b)]
a(0lh)
o))
[(e,o,lh>,(a1,e:m\ Mlh),(al,e),(f,l,e),
(d,1,e),(b,2,3)] (d,1,e),(b,2,3)]
o(1e)
(d)

Figure 2: Example of the Query-Reply process in DST. Node d is searching for destination a. The parenthesis

contains the distance and predecessor values for a.

Vk € N;. Then, the distance table entry for neighbor d is
updated in the procedure DT_Update (Fig. 3). Since the
distance RD? is equal to zero, d is marked as a neighbor.
The procedure DT_Update (Fig. 3) also updates the value
for j reported by other neighbors whose path contains d.
This step helps prevent permanent loops by preemptively
removing stale information.

Finally, procedure RT_Update(Fig. 3) is called to update
routing table entries; this procedure iterates through each
known destination and picks the neighbor k as a successor
to destination j if both the following conditions are true

1. k offers the shortest distance to all nodes in the path
from j to i.

2. the path from j to k& does not contain ¢ and does not
contain any repeated nodes.

If either of the two conditions are not satisfied, then tagji-
is set to error. Else, it is set to correct and neighbor k is
designated the successor and the distance value to j is set
to Dji-k and the predecessor is set to p;k

After processing all entries and updating the routing ta-
ble, node e checks to see if it has a route to a. Since
there is no route, a query packet is broadcast with the same
header fields as the processed query, besides pkt.hops which
is decremented by one if all of the following conditions are
met

1. Node does not have a route to pkt.dst

2. pkt.hops is greater than one

3. the time elapsed since the last query was received is
greater than query_receive_timeout

The routing entries added to the forwarded query reflect
the routing table entries of current node e. The packet is
then broadcast to the limited broadcast address. In Fig. 2.b,
nodes e, f and c broadcast queries.

In Fig. 2.c, we see that nodes e, f, and a do not send any
more queries, because the time elapsed since the last query
sent is shorter than query_receive_timeout. On the other
hand, at nodes a and b, a finite and valid route to a is found
and a reply update is sent. A reply update sent by a node
i has a different structure than a regular update, which has
pkt.dst set to the limited broadcast address and pkt.src set
to i. The reply update sent by b has field pkt.dst set to
the pkt.src = d of the query and the field pkt.src set to the
pkt.dst = a of the query. All updates are broadcast to the
limited broadcast address.

When node i receives an update, it checks the value of
pkt.dst. If the value is other than the limited broadcast
address, then the update being sent is a reply update, else
it is a regular update. As shown in procedure Update of
Fig. 3, the entries are processed in a manner similar to the
entries of the query. A regular update is broadcast in re-
sponse to a regular update, with pkt.dst set to the limited
broadcast address and pkt.src set to i if any of the two fol-
lowing conditions is satisfied

1. Distance to a known destination increases.

2. A node loses the last finite route to a destination.

The reply update has different rules for propagation. In
Fig 2.d , a reply update is rebroadcast by e with the original

pkt.dst and pkt.src, because the following two conditions are
met

1. A finite path to pkt.dst = d exists.

2. Distance to pkt.src = a changes from infinite to finite
after processing the reply update.

Nodes a and b do not rebroadcast reply updates, because
the second condition is not satisfied. Node d obtains a reply
update from node e and sets its successor to node e after
processing the entries in the query. Node d does not send
any more reply updates. However, a regular update is sent
if any of the two conditions for regular updates are satisfied.

Using the above procedure, DST allows a source to obtain
multiple paths to a required destination. By forwarding a
reply update only when the route to the required destina-
tion changes from infinite to finite, the number of updates
is reduced at the expense of non-optimal routes. The same
reasoning motivates not sending regular updates when a new
destination is found or when a distance to a destination re-
duces. However, distance increases prompt updates because
a loop can occur only when a node picks as successor a neigh-
bor that has a distance greater than itself.

3.4 Maintaining Routes

DST does not poll neighbors constantly to figure out link
connectivity changes, which avoids control overhead due to
periodic update messages, but may result in sub-optimal
routes and longer convergence time. A link to a neighbor is
discovered only when a update or a query is received from
that neighbor. On finding a new neighbor k the neighbor is
added to the distance table. (procedure Add_Nbr (Fig. 3))
An infinite distance to all destinations through k is assumed,
with the exception of node k itself and any destinations re-
ported in the received routing message.

A failure of a link is detected when a lower level protocol
sends an indication that a data packet can no longer be sent
to a neighbor. The procedure Rmuv_Nbr (Fig. 3) is called
to remove the neighbor from the distance tables. Then, the
procedure RT_Update is called to recompute distances to
all destinations. Consider the six-node network in Fig. 4.a
which is the same as that in Fig. 2 after the route discovery
cycle started by node d for node a is done.

Consider Fig. 4.b, in which the link between a and e fails.
Node e does not pick any of its neighbors f and d as succes-
sors because tracing the path in RT_Update allows node e to
conclude that it lies in the paths of both f and d towards a.
Thus, counting to infinity is avoided by the source tracing
algorithm. Since there has been a distance increase, node e
broadcasts an update. In Fig. 4.c, node d picks node c as its
successor and changes its distance to 3 and predecessor to
b. Node d sends out a regular update because it increased
its distance. Node f also sends an update, which we do not
show for the sake of brevity.

Let us assume that, due to some outside interference or fad-
ing, node ¢ does not receive node d’s update. Meanwhile,
in Fig. 4.d, the link between ¢ and b fails. Because node ¢’s

distance tables reflect a path through node d with prede-
cessor e, node c increases its distance to 3 and changes its
predecessor to e. Node ¢ then sends an update. We consider
two different sets of events that could happen. In Fig. 4.e,
the update from b reaches d and d changes its distance to
infinity and send out updates which cause e, f and c to reset
their distance to a to infinity. In Fig. 4.f, we consider the
case where the update from node ¢ to node d is lost. This
results in node d picking c as successor and node c picking d
as its successor, which implies a 2-hop loop in the tables of
c and d. To prevent such situations, we provide two condi-
tions that prevent data packets from looping. A data packet
is dropped and a regular update is sent if

A. The data packet is sent by a neighbor that is in the path
from the present node to the destination of the data
packet.

B. The path implied by the neighbor’s distance table entry
is different from the path implied in the routing table.

If node c receives a data packet from node d for destination
7, it drops the data packet, because node d is in it’s path
to j and sends a regular update. Node d eventually receives
and update from c and resets its tables. Thus, DST avoids
long-term loops.

3.5 Packet Forwarding

The data packet header contains only the source and the
destination of the data packet. When a data packet origi-
nated at a node arrives at its forwarding layer, the packet
is buffered if there is no finite route to the destination. The
node then starts the route discovery process. If a finite and
correct route is found, then the packet is forwarded to the
successor as specified by the routing table.

If a data packet is not originated at a node, then the data
packet is only buffered if there is no entry in the routing
table for pkt.dst. In this case, route discovery is started
by the intermediate node. If there is a correct and finite
route then the data packet is first checked for conditions
A and B described in Section 3.4. If the two conditions
are satisfied, the data packet is forwarded to the successor
S;kt.dst- If there is route with infinite distance, then the
packet is dropped and a regular update is broadcast to all
neighbors. Eventually, the source of the data will learn of the
loss of routes and it will restart the route discovery process.

4. THE BEST PROTOCOL

BEST assumes the same network model introduced for DST
in Section 2.

BEST is a table-driven routing protocol that reacts to changes
in link states proactively. It uses a routing table and distance
table with the same functionality as the tables introduced
for DST.

BEST does not require a data buffer or a query table as it is
a table-driven routing protocol; data packets are dropped if
no path exists. The only type of packets used in BEST are
updates which have functionality similar to the regular up-
dates in DST, i.e., they are unreliably broadcast to the lim-
ited broadcast address and contain (distance,predecessor)

Procedure Update(pkt,nbr)
called for processing update

begin
newpath <+ FALSE
Procedure Recv_Ctl_Packet(pkt, nbr) if (pkt.dst # BDCAST.ADDR)
when node i receives a control packet from nbr X i
begin if (pkt.sre @ N or tagly, ... # correct)
if (pkt.type = QRY) newpath < TRUE .
Query(pkt,nbr) for each entry (j, RD;., T‘p;-) in pkt
else if (j € N)
if (phkt.dst = BDCAST_ADDR) if (RDE = o)
Update (pht,nbr) ' j =
clse continue
i 3 i - else
ﬂ;:t:sz e(I:Tta.ll:d) tagy s dst = correct) imitialize
pdate (pkt,nbr : i
end else if (RD; =0))
end Add_Nbr(j)
end else
end if
Procedure Add_-Nbr(k) else
cba.el;s;i when node i learns of new neighbor k if (RD;: =0andj g N;)
N, « N; Uk Add_Nbr(j)
for all (j € N) end else) D
Di,k — oo DT_Update(pkt.sre, j, RD;- L 7Py)
I a end for each
pjp < NULL-ADDR send « FALSE

end for all RT_Update(send)

end if (pkt.dst = BDCAST_ADDR)
if (send = TRUE) then send update source(i) and
Procedure Rmv_Nbr(k) and destination(BDCAST_ADDR)
called when node i learns of loss of neighbor k else)
begin if (pkt.dst = i)
N — Ni — k if (send = TRUE) then send update source(i) and
for all (j € N) and destination(BDCAST_ADDR)
i 1
tagh « null eise i
4l FALSE if (newpath = TRUE and (pkt.sre @ N or tagly, .. # correct))
send & .
RT_Update(send) newpath « FALSE

if (send = TRUE)

if (tag;kt dst = correct and newpath = TRUE
send update with source(i) and destination(BDCAST_ADDR)

and pkt.src is not in the path to pkt.dst)

end send update with source(pkt.src) and destination(pkt.dst)
else
.] if (send) then send update source(i) and
Procedure DT_Update(k,j,RD},p})

and destination(BDCAST_-ADDR)
end else
end else

updating distance table entry
begin

if(RD;'. < o0) end
D;',k - RD;. +1
clse DI co Procedure RT_Update(send)
. Jk updating routing table entries
Pl < TP begin
for all (b€ Nj) for all (j € N)
if k is in path from i to j via b if (j = 1)
i i i continue
Pjb 4= Php + 7D; DTMin « Min{D% Vb € N;}
end for all] ib i)
end if (D* . = DTMin) then ns + s’
jst J
Procedure Query(pkt,nbr) else ns « b|{b € N; and D}, = DTMin}
called for processing query ® g
begin loop «— FALSE
for each entry (j, RD%, rpt) in pkt for (m = 0;m < |[N|[;m + +)
G N) (. BDj. rpy) visited[m] « NULL_ADDR
! Jf ; num_visited « 0
if (RDj = o) while (D%, ,,; = Min{D%,vb € N;})
el:;““““e and D} | < co and tagl, + null and loop = FALSE)
initialize j m 0
X T while (m < num_visited)
if (RD; = 0) if (visitedm] = = or @ = i)
Add-Nbr(j) loop + TRUE
end else end while
e;.d if oo pb
eise i . end while))
if (RD; =0 and j & Ny) if (loop = FALSE and (pl, , = IP.LOCALHOST or tagl = correct))
Add-Nbr(j) tagl « correct
end else G
DT_Update(pkt.src, j, RD%, rpt) see
J J tag® + error
end for each . A
send « FALSE if (tag; = correct)
RT_Update(send) if (Dj < DTMin) then send < TRUE
K i _ h
W (tag by go = cOTTECE) Di < DTMin
send update with source(pkt.dst) and destination(pkt.src) i
else . s (—.ns)
if (present time - q";kt.dst > query-receive-timeout) if (D;. =1) then p;— — i

if (pkt.hops > 1)
send query with destination(pkt.dst), hops (pkt.hops — 1))
and source(pkt.src)

if (pkt.hops > 1)
q";kt.dst +— present time

A A
else p]- — p]- ns
end if
else

if (D;'. # co) then send + TRUE

i
ond if p; & NULL.ADDR
end else .s;- «— NULL_ADDR
end D;’. +— oo
end else
end for all
end

Figure 3: Specification of selected procedures in DST

b(1,b) c(2,b) b(1b)

a(olh) / f(2.€) d2e)
O\ /

e(le)

(a)
b(1,b) (38 (L)

/ O

(d)

a(o,h) / f29)
O /

e(infty,)

c(3,e)

O o) !
a(o,l%/ f(4,b) d3b) a(O,Ih)/ fap) d(infty,)

e(4,b) e(4,b)

c(2,b) b(1,b) c(2,b)
O——O\

d2e) 4oh) / f(infty,) . d@b)
@] /

e(infty,)

()

b(1,b) c(3.€)

O
a(0,lh) / f(4,b) d(3.b)
o

Figure 4: Maintaining routes in DST. The parenthesis contain the distance and predecessor values for desti-

nation a

tuples for all the destinations. BEST differs from WRP in
allowing unreliable updates and in specifying different con-
ditions to send updates. We focus our description of BEST
on how updates are sent, because source tracing has been

used extensively in the past in table-driven protocols [1, 13,
8]

The processing of an update in BEST is done in the same
manner as in DST. When an update from neighbor k is
received, the entries in the distance table corresponding to
neighbor k are updated. The paths to each destination are
then recomputed. BEST sends updates only if any of the
following conditions have been met.

1. A node discovers a new destination with a finite and valid
path to the destination.

2. A node loses the last path to a destination.

3. A node suffers a distance increase to a destination.

Two more conditions are added to prevent permanent loop-
ing due to unreliable broadcasts. These conditions are the
same as conditions A and B in Section 3.4. When either of
these conditions are satisfied, the data packets are dropped.

Permanent looping can occur when nodes are unaware of the
latest changes in their neighbor’s routing tables. The use of
conditions A and B can be explained with the help of the
example shown in Fig. 5.a. The node addresses are marked
in bold font. Node j is the required destination. The path
to j implied by traversing predecessors from j is marked in
italics. Initially, all nodes have loop-free routes. The loss of
links (i,7) and (m,j) and the loss of update packets from
¢ and m can result in a loop shown in Fig. 5.b. When 1
gets a data packet from k, it finds that its distance table
entry for k implies the path ¢j, while i’s own path implies
ilmj which is different from ij. Therefore due to condition
B, the data packet is dropped and a unicast routing update
is sent resulting in k setting its path to kmj. Now, when
k gets a data packet from m, it sends a unicast update to
m because m is its successor on the path to j. This follows

from condition A. When m gets the update, it detects a loop
and resets its distance to infinity, thus breaking the loop.

The rules used in BEST to avoid permanent loops are much
simpler than those introduced in STAR [9] which uses the
link-state information in source trees, rather than distance
and second-to-last-hop information to a destination in the
tree.

5. PERFORMANCE EVALUATION

We ran simulations for two different experimental scenarios
to compare DST’s average performance against the perfor-
mance of DSR and BEST. These simulations allowed us to
change input parameters independently and check the pro-
tocol’s sensitivity to these parameters. All three protocols
are implemented in CPT, which is a C++ based toolkit
that provides a wireless protocol stack and extensive features
for accurately simulating the physical aspects of a wireless
multi-hop network. The protocol stack in the simulator can
be transferred with a minimal amount of changes to a real
embedded wireless router. The stack uses IP as the network
protocol. The routing protocols directly use UDP to transfer
packets. The link layer implements the IEEE 802.11 stan-
dard [2] and the physical layer is based on a direct sequence
spread spectrum radio with a link bandwidth of 1 Mbit/sec.

To run DSR in CPT, we ported the DSR code available in
the ns2 wireless release [6]. There are two differences in our
DSR implementation as compared to the implementation
used in [3]. Firstly, we do not use the promiscuous listen-
ing mode in DSR. We, however, implement the promiscuous
learning of source routes from data packets. This follows the
specification given in the Internet Draft of DSR. Our reason
for not allowing promiscuous listening is that, besides intro-
ducing security problems, it cannot be supported in any IP
stack where the routing protocol is in the application layer
and the MAC protocol uses multiple channels to transmit
data. The second difference in our implementation is that
since the routing protocol in our stack does not have access
to the MAC and link queues, we cannot reschedule pack-
ets that have already been scheduled over a link (for either
DSR, DST or BEST). Tables 1 and 2 show the constants
used in the implementation of DSR and DST, respectively.

I (Imj)

i @)
(a)

| (Im)

i@
(b)

Figure 5: Creation of a permanent loop in BEST due to unreliable updates

Table 1: Constants used in DSR simulation

Time between ROUTE REQUESTS 500(msecs)
(exponentially backed off)

Size of source route header carrying | 4n+4(bytes)
carrying n addresses

Timeout for Ring 0 search 30(msecs)
Time to hold packets awaiting routes 30 secs
Max number of pending packets 50

Table 2: Constants used in DST simulation

Query send timeout 5(secs)
Zero query send timeout 30(msecs)
Data packet timeout 30 secs
Max number of pending packets 50
Query receive timeout 4.5 (secs)
MAX_HOPS 17

5.1 Scenarios used in comparison

We compared DSR, DST and BEST using two types of sce-
narios. In both scenarios, we used the “random waypoint”
model described in [3]. In this model, each node begins the
simulation by remaining stationary for pause time seconds
and then selects a random destination and moves to that
destination at a speed of 20 m/s. Upon reaching the des-
tination, the node pauses again for pause time seconds, se-
lects another destination, and proceeds there as previously
described, repeating this behavior for the duration of the
simulation. We used the speed of 20m/s (72 km/hr), which
is the speed of a vehicle, because it has been used in simu-
lations in earlier papers [3, 4] and thus provides a basis for
comparison with other protocols. All simulations are run for
900 seconds. In both scenarios, we used a 50 node ad hoc
network, moving over a flat space of dimensions 7 X 6 miles
(11.2 X 9.7 km) and initially randomly distributed with a
density of approximately one node per square mile.

Two nodes can hear each other if the attenuation value of
the link between them is such that packets can be exchanged
with a probability p, where p > 0. Attenuation values are
recalculated every time a node moves. Using our attenuation
calculations, radios have a range of approximately 4 miles

(135 db).

5.2 Metrics used
In comparing the protocols, we used the following metrics:

o Packet delivery ratio: The ratio between the number of
packets received by an application and the number of
packets sent out by the corresponding peer application
at the sender.

e Control Packet Overhead: The total number of routing
packets sent out during the simulation. Each broad-
cast packet/unicast packet is counted as a single packet.

e Hop Count: The number of hops a data packet took
from the sender to the receiver.

e End to End Delay: The delay a packet suffers from
leaving the sender application to arriving at the re-
ceiver application. Since dropped packets are not con-
sidered, this metric should be taken in context with
the metric of packet delivery ratio.

Packet delivery ratio gives us an idea about the effect of
routing policy on the throughput that a network can sup-
port. It also is a reflection of the correctness of a protocol.

Control packet overhead has an effect on the congestion seen
in the network and also helps evaluate the efficiency of a
protocol. Low control packet overhead is desirable in low-
bandwidth environments and environments where battery
power is an issue.

In ad hoc networks it is sometimes desirable to reduce the
transmitting power to prevent collisions. This will result in
packets taking more number of hops to reach destinations.
However, if the power is kept constant, the distribution of
the number of hops data packets travel through is a good
measure of routing protocol efficiency.

Average end-to-end delay is not an adequate reflection of
the delays suffered by data packets. A few data packets
with high delays may skew results. Therefore, we plot the

cumulative distribution function of the delays. This plot
gives us a clear understanding of the delays suffered by the
bulk of the data packets. Delay also has an effect on the
throughput seen by reliable transport protocols like TCP.

5.3 Performance results
5.3.1 Scenariol

Scenario 1 mimics the behavior of an emergency network
or a network set up for military purposes. Scenario 1 is
almost identical to to the one presented in [3], barring any
differences due to implementation of the MAC protocols.

We have 20 random data flows, where each flow is a peer-to-
peer constant bit rate (CBR) flow with a randomly picked
destination and the data packet size is kept constant at
64 bytes. Data flows were started at times uniformly dis-
tributed between 20 and 120 seconds and they go on till
the end of the simulation at 900 seconds. We did 7 runs of
the simulation where each run had different sets of source-
destination pairs. The total load on the network is kept con-
stant at 80 data packets per second (40.96 kbps) to reduce
congestion. Our rationale for doing this is that increasing
the packet rate of each data flow does not test the routing
protocol. On the other hand, having flows with varying des-
tinations does so. We also vary the pause times: 0, 30, 60,
120, 300, 600 and 900 seconds as done in [3].

Fig. 6.a shows the control packet overhead for varying pause
times. An obvious result is that the control packet over-
head for all the three protocols reduces as the pause time
increases. BEST and DST are about 34 % better than DSR,
at pause time zero. At low rates of movement, DST is a
clear winner with one third the control packet overhead of
BEST and one tenth the control packet overhead of DSR.
Clearly, the fact that the updates in DST contain the en-
tire routing table, means that nodes running DST have a
higher chance of knowing paths to destinations for whom
no route discovery has been performed in the past. We are
able to mimic the behavior of table-driven routing protocols
in low topology change scenarios, in that we almost have
information about the entire topology with very few flood
searches.

As shown in Fig. 6.b, the percentage of data packets deliv-
ered is almost the same for DST and BEST. At lower pause
times, DSR has the same packet delivery ratio as DST and
BEST. However, as the pause time decreases, DSR suffers
due to data packets getting dropped at the link layer, indi-
cating that the routes provided in the source routes are not
correct any more. At lower pause times, links get broken
faster. Even though this results in higher control overhead,
the routes obtained are relatively new. As mentioned earlier,
we keep the load on the network constant. Since this load
is divided among a large number of flows, we see very little
congestion and therefore most packets get through at higher
pause times during which the topology is close to static.

For Fig. 6.c we collated the hop count values for data pack-
ets during all pause times and plotted the hop distribution.
All three protocols have almost the same number of one hop
packets, indicating that the zero hop query is very effective
in getting routes to neighbors. However, for the number
of hops greater than one, we see that BEST performs the

best. This is expected of a table driven routing protocol
that tries to maintain valid routes at most times. DST’s be-
havior is slightly worse than BEST. DSR on the other hand
sends packets through longer routes. This is a direct conse-
quence of the fact that after the initial query-reply process
DSR pretty much uses the route it caches, without trying
to better them.

Fig. 6.d shows the cumulative delay of all the protocols.
The graphs shown are logarithmic in time to accommodate
the wide variation. We see that BEST performs better than
DSR or DST, with DST being very close. Almost all packets
are sent within 4 seconds in BEST and within 8 seconds in
DST. Some packets in DSR take almost 30 seconds. This is
because a packet is allowed to stay in a buffer for a maximum
of 30 seconds before it is dropped. These are packets that
found the path just in time.

5.3.2 Scenario 2

To Internet

Figure 7: Scenario 2

Scenario 2 mimics the applications of ad hoc networks as
wireless extensions to the Internet. In this case, one or two
nodes act as points of attachment of the ad hoc network to
the Internet. Accordingly, all Internet traffic travels to and
from the attachment points as shown in Fig. 7. To model
this situation, we pick one node as the point-of-attachment
to the Internet for a simulation run of 900 seconds and we
do five such runs and plot our results. During each run,
the sender node first establishes a low rate connection (5.85
kbps) with the point-of-attachment. Immediately after the
forward connection is established, the backward connection
is started from the point-of-attachment to the sender. This
connection has a higher rate of 40.96 kbps. Each pair of con-
nections lasts for 300 seconds. In each epoch of 300 seconds,
we start seven pairs at random times. This setup closely
resembles number of nodes accessing the Web through the
point-of-attachment. We run our simulations for two pause
times, 0 (continuous movement) and 900 (no movement).

Fig. 8.a and Fig. 8.b show the results for the case of contin-
uous movement. We see that BEST has almost double the
control packet overhead of DST or DSR. The protocol is es-
sentially reacting to the high rate of topology changes. The
traffic does not seem to influence the behavior of BEST,
because the same information needs to be maintained no
matter what point-of-attachment is used. DSR and DST
have almost the same behavior in terms of control overhead.
DSR performs well in this traffic pattern, because with every
flood search towards the point-of-attachment, the point-of-
attachment learns the reverse path to the source from the
source route accumulated in the queries. Another reason is
that the fast changing topology forces out stale routes from

Control packets for varying mobility
T T

16000 T T
14000
12000
P
] |
% 10000 f
< &
Q H
s |
S 8000
3
5
z
£ 6000
5
z
4000
2000 \ s
e e e
0 Il Il ;.;\ Il Il Il Il Il
0 100 200 300 400 500 600 700 800 900
Pause time in seconds
(a)
Number of control packets sent
Hop distribution
0.4 . T
DSR —
DST
035 - BEST -
03 |]
@
] 0.25 - i : q
g |
s o
© : : :
=l B i H —
5 02 : | [k
) i) H
S
<
<
g 015 g
[
a
01 i i i i]
0.05 | | i 3 :]
: : ; i
0 R L . ‘ |
0 1 4 5

3
Number of hops

()

Hop count distribution

Percentage of data packets received for varying mobility
100 T 5 = C T

P e A —

Percentage of data packets received

300 4

0 100 200 300 400 500 600 700 800 900
Pause time in seconds

(b)
Percentage of data packets received
Cumulative distribution of delay

1 T -
DSR —
DST
BEST -----
0.8 4
P
I
S
g 0.6 - 1
<
k]
=l
k=
P
<3
<
H 04 1
S
[
a
0.2+ 4
0 L L L L
0.1 1 10 100

Delay in seconds

(d)

Cumulative delay distribution

Figure 6: Results for 20 sources picking random destinations for peer-to-peer flow

DSR caches. This also results in DSR sending about 10 %
more data packets than DST or BEST as shown in Fig 8.b.

Fig. 8.c and Fig. 8.d show us the results for the static case.
This scenario is important because it resembles a static com-
munity network, e.g., households with wireless routers used
to reach the Internet through an access point. In this case,
BEST incurs about 3 times more control overhead than
DST, whereas DSR incurs 14 times more control overhead
than DST. DST performs this well because the entire net-
work knows the path to the point of attachment with a sin-
gle flood search. Since there are no topology changes, there
is no need for another flood search. BEST also performs
much better for a static network than for a dynamic one.
No topology changes mean no table driven updates after
the initial updates sent when the network comes up. The
surprising result is the really bad behavior by DSR, most
of which seems to be driven by increase in flood searches
caused by old routes. A similar behavior is seen in terms of
the ratio of data packets received. DST and BEST lose very
few packets, while DSR, seems to lose about 50% of them.

As congestion due to control packets increases, we observe
more and more data packets being dropped.

6. CONCLUSIONS

We presented source tracing as a new approach to achieve
efficient routing in ad hoc networks using either on-demand
routing or table-driven routing protocols. Simple rules were
introduced in DST for the use of source tracing on demand,
and simple rules were introduced in BEST for the efficient
use of source tracing within the context of table-driven rout-
ing. The rules used in BEST are simpler than those intro-
duced for STAR [9], which is the only other table-driven
routing protocol that has been shown to be as efficient as
on-demand routing protocols.

Simulations were used to compare DST and BEST with
DSR, which is one of the most efficient on-demand routing
protocols. The results showed that DST provides compara-
ble average delays and packet delivery ratios while incurring
far less control overhead than DSR or BEST. In our first sce-
nario, which closely resembled an ad hoc scenario for a bat-

Number of control packets

All nodes

T
DSR —
,,,,,,,,,,,,,,,,,, B . DST =,
10000 g --------- R ERT RSN, [ER—— BEST 5
8000 | b
@
T
2
S
<
8
S 6000 - b
2
o
8
S
o}
)
E 4000
z
2000
0 I I I
1 2 3 4 5
Run number
(a)
Number of control packets sent
Number of control packets
16000 T
14000
12000
@
T
& 10000
<
8
g
§ 8000
3
S
5
£ 6000
E
z
4000 4
2000 |- 9
,,,,,,,,,,,,,,,,,,,,,,,,,,,,, T R RSOSSN
,,,,,,,,,,,,,,,,,,,,,,,, 4777-*""””‘"’7‘77-774'”‘7;7""”’*-——7»-—~,,,+,,,,__,,,,,,,,,,,_.,,,,7
0 | I I
1 2 3 4 5
Run number

()

Percentage of data packets received
T

60

DSR —
DST -
55 | BEST -g-- |
2
]
&
&
g
<
<
k]
@
<)
g
=
3
5
o
25 E
20 I I I
1 2 3 4 5
Run number
(b)
moving
Percentage of data packets received
Percentage of data packets received
100 — — —————— —
B R DSR..~o—=
8 DST -+
& BEST -8
90 b
80 E
2
]
S
g 70 b
g
<
<
k]
Q
<)
g
=
3
o
o
I I I

3
Run number

(d)

Static topology

Number of control packets sent

Percentage of data packets received

Figure 8: Results for single point of attachment

tlefield or an emergency situation, DST had about one-tenth
the control overhead of DSR while delivering packets with
the same efficiency as BEST, which is table-driven. BEST,
has about one-third the control overhead of DST while hav-
ing the best results for hop count and delay. For the second
scenario, which is comparable to community networks ac-
cessing the Internet via wireless links, DSR had almost 14
times more overhead than DST, which suggests that DST is
an ideal solution for static community networks. In static
networks, the poor performance of DSR in terms of delay
and throughput suggests that it needs a mechanism to flush
out stale routes in static scenarios. In scenario 2, BEST
incurs twice the overhead of DSR and DST when all the
nodes are moving. This suggests that a table-driven routing
protocol is a wrong choice for scenarios with many topology
changes and only a few destinations. On the other hand,
BEST delivers almost all the packets and has one fourth
the control overhead of DSR for the static version of sce-
nario 2, which implies that it may be used as a solution for

community networks, though DST is a better option.

Given that BEST provided good results for application-
oriented metrics like hop count and delays, which are of vital
significance for QoS sensitive flows, it appears that an ideal
routing protocol would have to use table-driven updates for
certain sources and on-demand approach for others. This
can be achieved with the proper combination of source trac-
ing rules.

7. REFERENCES
[1] S.P.R. Kumar C. Cheng, R. Reley and J.J.
Garcia-Luna-Aceves. A Loop-Free Extended
Bellman-Ford Routing Protocol without Boumcing
Effect. ACM Computer Communications Review,
19(4):224-236, 1989.

[2] IEEE Computer Society LAN MAN Standards
Committee. Wireless LAN Medium Access Control

(3]

[4]

[5]

[8]

[9]

[10]

(MAC) and Physical Layer (PHY) Specifications. The
Institute of Electrical and Electronics Engineers, 1997.
IEEE Std 802.11.

J. Broch et. al. A Performance Comparison of
Multi-Hop Wireless Ad Hoc Network Routing
Protocols. In Proc. ACM MOBICOM 98, Dallas, TX,
October 1998.

Per Johansson et. al. Scenario Based Performance
Analysis of Routing Protocols for Mobile Ad hoc
Networks. In Proc. ACM Mobicom’99, Seattle,
Washington, August 1999.

R. Dube et. al. Signal Stability-Based Adaptive
Routing (SSA) for Ad hoc Mobile Networks. IEEE
Pers. Commun., February 1997.

Kevin Fall and Kannan Varadhan. ns notes and
documentation. The VINT Project, UC Berkeley,
LBL, USC/ISI and Xerox PARC, 1999. Available from
http://www-mash.cs.berkeley.edu.

C.L. Fullmer and J.J. Garcia-Luna-Aceves. Solutions
to Hidden Terminal Problems in Wireless Networks.
In Proc. ACM SIGCOMM’9%7, Cannes, France,
September 1997.

J.J. Garcia-Luna-Aceves and S. Murthy. A Path
Finding Algorithm for Loop-Free Routing.
IEEE/ACM Trans. Networking, February 1997.

J.J. Garcia-Luna-Aceves and M. Spohn. Source-Tree
Routing in Wireless Networks. In Proc. IEEE ICNP
99, Tth International Conference on Network
Protocols, Toronto, Canada, 1999.

J.J. Garcia-Luna-Aceves and A. Tzamaloukas.
Reversing The Collision-Avoidance Handshake in
Wireless Networks. In Proc. ACM/IEEE Mobicom’99,
Seattle, Washington, August 1999.

[11]

18]

[19]

[20]

Z. Haas and M. Pearlman. The Performance of Query
Control Schemes for the Zone Routing Protocol. In
Proc. ACM SIGCOMM ‘98, Vancouver, British
Columbia, August 1998.

D. B. Johnson and D. A. Maltz. Dynamic Source
Routing in Ad hoc Wireless Networks. Mobile
Computing, 1994.

S. Murthy and J.J Garcia-Luna-Aceves. An Efficient
Routing Protocol for Wireless Networks. ACM Mobile
Networks and Applications Journal, 1996.

V. D. Park and M. S. Corson. A Highly Adaptive
Distributed Routing Algorithm for Mobile Wireless
Networks. In Proc. IEEE INFOCOM’97, Kobe, Japan,
April 1997.

C. E. Perkins and P. Bhagwat. Highly Dynamic
Distance-Sequenced Distance-Vector(DSDV) for
mobile computers. Computer Communication Review,
24(4):234-244, October 1994.

C. E. Perkins and E. M. Royer. Ad Hoc On-Demand
Distance Vector Routing. In Proc. of IEEE
WMCSA’99, New Orleans, LA, 1999.

C. E. Perkins S. R. Das and E. M. Royer. Performance
Comparison of Two On-Demand Routing Protocols
for Ad hoc Networks. In Proc. of IEEE Infocom 2000,
Tel Aviv, Israel, Mar 2000.

Z. Tang and J.J. Garcia-Luna-Aceves.
Hop-Reservation Multiple Access (HRMA) for Ad hoc
Networks. In Proc. IEEE INFOCOM’99, March 1999.

C.K. Toh. Associativity-Based Routing for Ad hoc
Mobile Networks. Wireless Personal Communications
Journal, Special Issue on Mobile Networking and

Computing Systems, Kluwer Academic Publishers,
4(2):103-109, Mar. 1997.

C. Zhu and S. Corson. A Five-Phase Reservation
Protocol (FPRP) for Mobile Ad Hoc Networks. In
Proc. IEEE Infocom, 98.

