
Aggregate Traffic Performance with
Active Queue Management and Drop from Tail

Gianluca Iannaccone
Sprint ATL

1 Adrian Court
Burlingame CA 94010

gianluca@sprintlabs.com

Martin May
Activia Networks

Parc of Sophia Antipolis
06225 Vallauris Cedex, France

martin.may@activia.net

Christophe Diot
Sprint ATL

1 Adrian Court
Burlingame CA 94010

cdiot@sprintlabs.com

ABSTRACT

Active queue management (AQM) refers to a family of packet drop-
ping mechanisms for router queues that has been proposed to sup-
port end-to-end congestion control mechanisms in the Internet. In
this paper, we examine the performance of AQM mechanisms by
varying two parameters: the queue size and the dropping function.
AQM flavors considered include “RED”, the more recently pro-
posed “Gentle RED” and an additional mechanism we call “Gentle
RED with instantaneous queue size”.

We use experimentation to analyze the performance of the AQM
mechanisms identified above on the aggregate traffic going through
a congested router. The metrics used are: TCP goodput, TCP
and UDP loss rate, queueing delay and consecutive loss probabil-
ity. The AQM mechanisms are compared to Drop from Tail, the
buffer management mechanism currently found in most operational
routers.

The major observation is that AQM mechanisms have a minor im-
pact on the aggregate performance metrics we observe. On the
other hand, we observe an important sensitivity of the AQMs con-
sidered to traffic characteristics that may compromise their opera-
tional deployment.

1. INTRODUCTION

Active Queue Management (AQM) refers to a family of packet
dropping mechanisms for router queues. AQM has been designed
to support end-to-end congestion control in packet networks. The
principle of AQM is to pro-actively drop packets in a router in an-
ticipation of congestion. Such packet losses are further interpreted
(through acknowledgements or timeouts) by TCP sources as a re-
quest to reduce their sending rates [18].

The AQM mechanisms that we are studying are purely FIFO based.
Packets are dropped based on the load of the flow aggregate, with
no knowledge of the individual flows that compose that aggregate.

Per-flow queueing is another family of control mechanisms which
provides feedback based on individual flow status [6]. Per-flow
queueing is significantly more complex than FIFO based AQM
mechanisms and is not currently deployed in operational IP net-
works. Until RED was proposed by the ”end-to-end” IRTF group [2],
Drop from Tail (or DT) was the only mechanism used in network
nodes. Drop from Tail remains the most popular mechanism in IP
routers today, mostly because it is robust, and because it is simple
to implement. In DT, all packets are accepted in the FIFO queue
until it is full. Packets arriving to a full queue are dropped. DT has
a number of drawbacks. It may for example result in an unfair treat-
ment of individual flows, and may also cause flow synchronization.

RED has been designed to eliminate some of the DT problems.
RED was initially described and analyzed in [12]. It enhances Drop
from Tail by introducing two new elements in the queue manage-
ment scheme: (i) the average queue size estimation, and (ii) a drop-
ping function.

The average queue size is used to define the probability with which
packets are dropped (instead of the instantaneous queue size as in
Drop from Tail). The average queue size is estimated using an ex-
ponential weighted moving average:
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is the instantaneous queue size. The value of



determines the
responsiveness of the system to variations in the input traffic; the
average queue size is therefore intended to smooth router’s reaction
to traffic fluctuations. Note that the calculation of the average queue
size adds complexity to the buffer management algorithm, since the
new average has to be calculated periodically.

The dropping function is used to anticipate congestion by dropping
packets before the FIFO queue is full, instead of waiting for the
buffer to overflow. The parameters of the dropping function were
first defined in [12]. A first adjustment of the RED parameters was
proposed in [13]. The second modification [14] introduced a new
parameter in the dropping function.

Figure 1 illustrates the evolution of the RED dropping function.
The value ��������� specifies the average queue size below which no
packets are dropped, while �� "!��#� specifies the average queue size
above which all packets are dropped. As the average queue size
varies from ����� ��� and �$ "! ��� , packets are dropped with a prob-
ability that varies linearly from 0 to �� "!&% . The uppermost graph
in figure 1 corresponds to the dropping function used in [12]. Af-



ter further simulations, it was considered necessary to increase the
maximum drop probability from �� "! %�� ��� � � to �� "! %�� ��� �
(2% drop probability was not enough to force multiple TCP sources
to sufficiently reduce their window sizes) [13]. Based on findings
in [24], a modification has been lately introduced in the dropping
function to make the drop probability increase more “smoothly”
between �� "! % and 1 [14] when the average queue size is above
�$ "! ��� .
In this paper we refer to the AQM mechanism described in [12]
and further modified in [13] as “RED”; “Gentle RED” refers to the
mechanism described in [14].
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Figure 1: The evolution of the RED dropping functions.

We characterize AQM mechanisms using the two parameters intro-
duced above: the dropping function and the queue size. We propose
an analysis of the AQM design space based on these two parame-
ters. Table 1 represents the AQM design space we have defined. In
this context, we analyze RED, “Gentle RED” (or GRED) as well as
an additional mechanism we call “Gentle RED with instantaneous
queue size”, or GRED-I. Drop from Tail is also part of our frame-
work as a buffer management mechanism characterized by a sharp
dropping function based on the instantaneous queue size.

avg. queue size inst. queue size
sharp dropping RED Drop from Tail
function.
smooth dropping Gentle RED Gentle RED
function. instantaneous

Table 1: Different buffer management algorithms.

We focus our interest on aggregate traffic crossing a router, instead
of analyzing the performance of individual TCP flows, for the fol-
lowing reasons:

� All experimental results we obtained on individual TCP flows

are not different from previous results [5, 19, 20].

� The aggregate traffic behavior in a router represents an im-
portant metric for Internet Service Providers (ISP). ISPs are
interested in maximizing the goodput and minimizing the de-
lay of the traffic traversing their networks. There is no such
evaluation available for RED in the literature.

Note that we do not consider Active Queue Management schemes
for traffic differentiation such as RIO or WRED. In these schemes,
the dropping function plays a completely different role than in RED;
it differentiates between traffic classes rather than being primarily
a congestion control mechanism.

The rest of the paper is organized as follows. Section 2 summa-
rizes related literature. In Section 3, we define the metrics we have
chosen to analyze AQM mechanisms. Then we describe our eval-
uation environment which is based on an experimental testbed. In
Section 4 we compare DT, RED, GRED, and GRED-I using the
parameter values proposed in [13] and [14]. We show that AQM
performances are very similar for the metric considered. On the
other hand, we demonstrate and examine the sensitivity of AQM to
the nature of the traffic (number of flows, and whether it is made
of long-lived or short-lived TCP connections). We conclude this
paper with a summary of findings and discussion of future work.

2. RELATED WORK

Despite the popularity of RED, very few detailed studies of its per-
formance have been published. We are not aware of any operational
large scale IP network relying on RED. One of the few published
measurement studies [7] is limited in scope as it only considers the
router performance (as opposed to the end-to-end performance) and
it does not clearly describe the measurement settings and the exact
information being measured. In most publications, the authors use
simulations to evaluate RED and examine the impact of parameter
choice on end-to-end performance [4, 8, 9, 10, 20]. But, realistic
simulation settings are hard to come up with: they require choos-
ing many parameters (network topology, bandwidth, traffic matrix,
traffic source types, etc.), and, even taking into account recent ad-
vances in traffic analysis and generation.

Extensions or changes to the RED algorithms, such as FRED [19]
or SRED [21], have been proposed to make it more robust or adap-
tive. However these papers do not question or evaluate the perfor-
mance and suitability of the RED algorithm. Consequently, it is
not yet clear how to choose AQM parameters. Recommendation
for choosing parameter values can be found in [13] and [14]. These
values also rely on simple experiments as well as on the authors’
intuition.

More recently, in [11], the authors use an analytical approach to
choose appropriate RED parameters. The analytical approach of
this paper, while providing useful insight into the impact of RED
parameters, may not be able to capture the many interactions that
arise in real networks and realistic experimental settings such as
ours. In [17], a control theoretic approach is used to study RED
stability and tradeoffs involved in various parameter choices, while
in [25], the authors derive a quantitative model for setting RED
parameters in presence of TCP traffic. Both models provide basic
guidelines to set RED parameters in order to guarantee few oscil-
lations of the queue size depending on the traffic characteristics
(namely, round trip time and number of flows).



In [5], Christiansen et al. propose an experimental analysis of RED
when used with web traffic. This study, done with a large number
of short-lived TCP flows questions the performance of RED estab-
lished earlier by simulation. Our study complements [5] by pro-
viding experimental performance analysis with different types of
traffic, and by making observations that are applicable to the entire
AQM space, and not just RED.

3. EVALUATION ENVIRONMENT

Our analysis of AQM is primarily based on experimental results
using routing equipment currently deployed and widely used in op-
erational networks.

3.1 Metrics

In this paper, we do not consider per flow performance or fairness
amongst TCP flows, although these measures might well be impor-
tant for service level agreements or customer satisfaction. Instead,
we are interested in how the aggregate of multiple flows is affected
by an AQM scheme. Consequently, we define specific metrics
to accurately describe the effects of different AQM schemes in a
router on traffic aggregate:

� TCP goodput at a router interface. This metric reflects the
best use of the available router resources. We define TCP
goodput of the traffic aggregate as the bandwidth delivered
to all TCP receivers, excluding duplicate packets. We are
interested in verifying if the use of Drop from Tail or other
AQMs may affect TCP goodput due to suboptimal link uti-
lization.

� TCP and UDP loss rate. Loss rate is defined as the number
of dropped packets divided by the total number of packets
arrived at the router’s input ports. While TCP goodput and
loss rate are somewhat redundant metrics, loss rate covers a
very important role for applications using UDP. We choose
to differentiate between TCP and UDP loss rates to verify
AQM mechanisms’ behavior against different kind of traffic
sources.

� Queueing delay. We examine the variation of the router out-
put queue size over time, in order to measure the average
queueing delay and its standard deviation. Minimizing av-
erage queueing delay is an important goal for real-time ap-
plications. On the other hand, the standard deviation gives a
measure of the jitter at the destination hosts. Jitter degrades
performance for (i) TCP flows, as TCP calculates the vari-
ance to determine the spacing of the TCP ACKS and (ii)
audio/video flows, as those applications have to use a large
playout buffer at the receiver to compensate for high jitter.

� The number of consecutive losses. The interaction of TCP
congestion control mechanism with many small file trans-
fers results in bursty traffic. Loss patterns with DT follow
the burstiness of input traffic, as all incoming packets are
dropped until the packet at the head of the queue is served.
On the other hand, RED is expected to spread out packet
drops, since it randomly drops packets to anticipate conges-
tion. This metric measures the probability of having consec-
utive packet drops at a single router interface.

3.2 Experimental environment

The testbed topology (Figure 2) represents a gateway where many
networks are merged into one outgoing link, hence creating a po-
tential congestion point. Routers used on the testbed are CISCO
7500 routers running IOS 12.0. In this configuration the bottleneck
link is between the two routers. At the egress router, no packet
will be dropped as the maximum arrival rate is 10MBit/s and the
links between the second router and the traffic sinks have sufficient
capacity to handle the arriving traffic.
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Figure 2: Testbed setup for measurements with two routers.

This is a common configuration on edge routers, where ISPs can
practice over-subscription: the cumulative bandwidth of customer
links entering an edge router is greater than the bandwidth of the
link going to the backbone router. This is typical in xDSL net-
works, for example. Over-subscription relies on the observation
that all customers do not use 100% of their bandwidth at the same
time. If, for some reason, the total bandwidth of the ingress links is
higher than the bandwidth of the egress link, congestion occurs. On
the other hand, backbone links are over-provisioned and congestion
does not happen on the backbone.

Thus, we are basically studying the performance of AQM at a con-
gested gateway between a backbone and an enterprise network.

Although the type of router we use in this testbed is among the most
commonly used ones in the Internet, there are two major drawbacks
in using commercial equipment. First, results obtained from the
testbed are dependent on the vendor implementation of RED. This
makes it difficult to generalize our observations. Second, it lim-
its the kind of metric we can study to those provided by the router
vendor. Therefore, we have designed a second testbed where AQM
mechanisms are implemented in the Dummynet link emulator [23]
(Figure 3). In this testbed, the point of congestion is not the first
router, but the Dummynet box located between the two routers.
AQMs implementations in Dummynet follow the exact specifica-
tions found in [13] and [14]. Dummynet is also a flexible environ-
ment where it is possible to study a wider variety of metrics than
in a commercial router (e.g. queueing delay and consecutive loss
distribution).

Traffic is injected by high-end PCs running Linux (kernel version
2.2.x). Linux implements the TCP SACK congestion control mech-
anism. In both testbeds, data sources are the PCs to the left side,
while data sinks are the hosts on the right side. Network links are
10Mbps Ethernet links. Between the two routers, we have two half-
duplex Ethernet links to ensure that Ethernet collisions do not de-
grade performance. In the router testbed, these Ethernet links are
10Mbps. In the Dummynet testbed, the link going from the ingress
router to the Dummynet box is a 100 Mbps Ethernet. The Dum-
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Figure 3: Testbed setup with Dummynet.

mynet box emulates thus a 10 Mbps bottleneck link. Other links
are the same for both testbeds.

We examine the AQM schemes and DT in the ingress router and
Dummynet, respectively. The AQM mechanism in the egress router
is Drop from Tail with a very large FIFO buffer.

We also introduced additional propagation delay on some of the
Ethernet links between the sources and the first router. Hence, dif-
ferent connections experience different transmission delays, vary-
ing between 120ms and 200ms1.

For all experiments, we used a router buffer size of 200 packets.
This corresponds approximately to the bandwidth-delay product of
our testbed2. For all experiments with RED we used the parameter
values recommended in the CISCO IOS online documentation [3]
which are the same as those proposed in [13]:

� minimum threshold �$� ����� ��� � ,
� maximum threshold �� "! ��� � �

� � , and

� maximum drop probability �� "! % � ��� � .

It is straightforward to verify that the set of RED parameters shown
above, given the network traffic described in Section 3.3, also fol-
lows the guidelines proposed by Hollot et al. [17] (see Appendix A).

For GRED and GRED-I, we use parameters defined in [14]. Since
GRED is not yet implemented in commercial routers, we used an
approximation of GRED to evaluate its performance on the router
testbed. Figure 4 shows the shape of the drop function for GRED
and our approximation. On the Dummynet testbed, we use an exact
implementation of GRED and GRED-I.

Note that our goal is to study aggregate traffic performance of dif-
ferent AQMs from the point of view of an Internet Service Provides
(ISP). Therefore, we do not use different RED parameters for dif-
ferent traffic scenarios, as it would be unrealistic in the case of the
deployment of AQM in an operational network.

3.3 The traffic
�
Note that we could only vary the delays of a complete link, not of

individual flows. Therefore all flows using a specific link suffer the
same artificial propagation delay.�

TCP packets are 1500 bytes long, while UDP packets are 573
bytes long.
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Figure 4: The shape of the GRED drop function (plain lines)
and our approximation (dashed lines) on the router testbed.

We use the Chariot 3.2 [16] tool to generate the traffic. Chariot is an
application emulator that can generate various applications’ traffic
(HTTP, FTP, audio streaming, etc.) using the host protocol stack
implementation. Each individual flow can have specific parameters
(file size, packet size, starting and ending time) in order to compose
complex traffic sources.

In this paper we analyze two types of network traffic:

� A traffic mix made of a set of long-lived TCP connections
with a fixed amount of UDP traffic (1Mbps, 10% of the bot-
tleneck bandwidth). A long-lived TCP connection is a large
FTP transfer that starts at the beginning of the experiment
and persists for the entire duration of the experiment. We run
a set of experiments varying the number of TCP connections
(from 16 to 256 active connections), to study the behavior of
the AQMs and DT for different average offered loads. Al-
though this type of traffic is very unrealistic, it makes it easy
to vary the number of TCP connections in the traffic aggre-
gate and to compare our results to simulation studies found
in literature.

� A more realistic traffic mix made of many short-lived TCP
flows (to model, for example, HTTP responses), and a few
long-lived ones (e.g. large file transfers, MP3 files). Non-
responsive UDP traffic (e.g. audio/video applications) still
represent 10% of the bottleneck link bandwidth. In these
experiments, the number of active TCP connections is 256,
with 32 connections being long-lived and the remaining be-
ing short-lived. Given that the number of active TCP con-
nections is fixed, a short-lived connection that ends is imme-
diately replaced by a new one between the same pair of end-
systems. Short-lived TCP connections transfer 20Kb files.
Note that the number of concurrent flows is consistent (ap-
propriately scaled down) with the number of flows observed
on an OC-3 link on the Sprint IP backbone [15]. Moreover,
the ratio between long-lived and short-lived flows is also con-
sistent with the figures given in [15] where approximately
90% of the flows are made of less than 20 packets.

The main benefit of using an experimental testbed instead of a sim-
ulated environment is that we can evaluate the impact of AQMs us-
ing real equipment and actual implementations of the algorithms,
avoiding any assumptions or simplifications on network behavior.
In addition, we can avoid undesirable phenomena typical of simula-
tions, such as synchronization and phase effects, due, for example,
to inaccuracies in service time models, or to the absence of asyn-
chronous events in the end-systems and routers.



4. EVALUATION OF AQM MECHANISMS

In this section, we study the performance of DT, RED, GRED, and
GRED-I. As shown in Table 1, these four mechanisms cover the
spectrum defined by the two parameters we have chosen to describe
AQMs. GRED-I (Gentle RED with instantaneous queue size) is a
mechanism that combines the dropping curve of GRED with an
instantaneous measure of the queue size such as in DT.

We run each experiment for 10 minutes and repeat each experiment
at least 20 times (10 with the router testbed, and 10 with the Dum-
mynet testbed). All TCP connections are started at random times
uniformly distributed in the first 10 seconds. Then, short-lived TCP
connections are restarted as soon as they finish, while long-lived
ones last for the entire duration of the experiment.

The difference between the two testbeds in the metrics observed
is always minimal and contained within the 95% confidence inter-
vals. Unless explicitly specified, all graphs in the following sec-
tions show the average of 10 runs on the Dummynet testbed.

4.1 Goodput and packet loss rates

Figure 5 plots the goodput of all TCP connections with the conges-
tion point (i.e. the ingress router or the Dummynet box) running
the three AQM mechanisms and DT by turn. Figure 6 shows the
average loss rates at the bottleneck link for the same set of exper-
iments3. The traffic is made of 16 to 256 long-lived TCP connec-
tions with 1Mbps of UDP traffic.

As we can see from the graphs, it is difficult to differentiate AQM
mechanisms based on their aggregate goodput or packet loss rates.
Goodput is comparable for AQMs and DT in all traffic scenarios,
except the case with only 16 TCP connections. Indeed, in presence
of few connections, DT provides a higher goodput that the other
three AQMs. This relatively small difference (less than 5% for 16
TCP connections and under 1% otherwise) is imputable to the high
value of �� "! % that makes the few TCP sources back off too often
despite the low degree of congestion that the network is actually
experiencing. We ran a few experiments with the �$ "! % parameter
equal to 0.01 and all the AQMs showed the same performance of
DT with 16 TCP connections.

Figure 6 illustrates that AQMs’ goal of keeping buffer occupancy
low comes at the cost of a higher overall packet loss rate. Note
however that higher loss rates do not negatively impact goodput
thanks to the shorter queueing delay experienced by TCP connec-
tions. The minimum loss rate is observed most of the time for DT,
which is consistent with our intuition. Also note that because the
offered load increases with the number of TCP connections, the
loss rate increases accordingly.

In summary, we make the following observations from the analysis
of the TCP goodput:

� All the mechanisms considered provide almost identical per-
formance.

� Parameters in RED, GRED, and GRED-I can be tuned for
each new traffic condition to perform like (or slightly better
than) DT.

�

The graphs are the result of averaging 10 experiments and the 95%
confidence intervals are shown.
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Figure 5: Average TCP goodput with DT, RED, GRED and
GRED-I for long-lived TCP connections.
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Figure 6: Average loss rate with DT, RED, GRED and GRED-I
for long-lived TCP connections.

� DT exhibits lower loss rates compared to AQMs. However,
higher loss rates in AQM do not impact TCP goodput, given
the shorter queueing delay experienced by packets.

� Link utilization is always very high. Even with very few
TCP flows we do not see a lower link utilization with DT, as
described in previous works [2, 12].

In Figure 7, we observe TCP goodput and TCP/UDP loss rate for
256 long-lived TCP connections with 1Mbps of UDP traffic. In
Figure 8, we plot the same metrics for the more realistic traffic mix
of short and long-lived TCP connections.

Figures 7 and 8 confirm our previous observations about TCP good-
put. The difference in TCP and UDP loss rate is always very small.
For all mechanisms the loss rate is much higher for a traffic made
of long-lived flows only (between 25% and 30%) than for a traffic
made of short and long-lived flows (between 13% and 17%). This
result is expected since short-lived TCP connections offer a lower
load to the network; indeed, a short-lived connection will spend
most of its lifetime in the slow-start phase with a relatively small
congestion window.
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Figure 7: TCP goodput (left) and TCP/UDP loss rate (right) for
256 long-lived TCP connections with 10% of UDP traffic.
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Figure 8: TCP goodput (left) and TCP/UDP loss rate (right) for
a mix of 256 short and long-lived TCP connections with 10% of
UDP traffic.

The difference in loss rate between TCP and UDP with 256 long-
lived flows and Drop from Tail is counter-intuitive. We have identi-
fied this behavior as being a consequence of the size of UDP pack-
ets used for our experiments (i.e. 573 bytes). Since the queue size
(counted in packets) is always very close to the maximum buffer
size (Figure 9), flows using many small packets will likely suffer
more packet losses than flows using few large packets. When the
UDP packet size is 1500 bytes, we observed the same loss rate for
TCP and UDP (note that TCP packet size is also 1500 bytes).

4.2 Queueing behavior

In this section, we study experimentally the queueing behavior.
Figure 9 and Figure 10 plot the evolution of the queue size with
DT, RED, GRED, and GRED-I for the a traffic made of long-lived
connections and the mix of short and long-lived connections, re-
spectively4.

To analyze the queueing behavior, we have computed the average
delay and its standard deviation for all mechanisms (Tables 2 and
3). Results are averaged over 10 experiments.

�

The graphs are the result of sampling the queue size every second
for a 2 minutes period after the network has reached a “steady”
state.
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Figure 9: Queue size vs. time with DT, RED, GRED and
GRED-I, for 256 long-lived TCP connections.
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Figure 10: Queue size vs. time with DT, RED, GRED and
GRED-I, for 256 short and long-lived TCP connections.

The standard deviation is less than 25% of the average delay in both
traffic scenarios, for all AQMs and DT. In particular, for DT and
GRED-I, the standard deviation is around 8ms for long-lived con-
nections; it is twice as much for RED and GRED. For short-lived
connections, the standard deviation is higher and almost equal for
all mechanisms (around 21ms for DT, RED and GRED, and 17ms
for GRED-I). We conjecture that the difference in the standard de-
viation between the two traffic mixes is due to short-lived TCP con-
nections that are too short to enter congestion avoidance, and thus
inject a burstier traffic in the network.

However, we cannot observe global synchronization phenomena
for DT, as described in [13]. Higher oscillations are observed for
RED and GRED than for DT and GRED-I. We conjecture that this
is due to the use of the instantaneous queue size instead of the aver-

DT RED GRED GRED-I
average 209.55 130.71 144.60 144.27
delay
standard 6.94 16.91 16.06 8.42
deviation

Table 2: Average delay and standard deviation (in ms) for 256
long-lived TCP connections.



DT RED GRED GRED-I
average 168.59 94.92 100.56 99.87
delay
standard 21.18 22.10 20.62 16.73
deviation

Table 3: Average delay and standard deviation (in ms) for 256
short and long-lived TCP connections.

age queue size in the computation of the dropping probability. In-
deed, for DT the queue is always almost full, making the queueing
delay less variable, while with GRED-I the use of the instantaneous
queue size makes the algorithm to respond much faster to variation
in the buffer occupancy.

In terms of average delay, DT converges towards the queue size
and RED, GRED, and GRED-I toward the value of �$ ! ��� . This
result is predictable as the first property of an AQM mechanism
is to define an upper bound to the size of the queue, i.e. �� "!���� .
Changing the number of buffers to �� "! ��� in DT would make DT
perform like RED in terms of average queueing delay.

In summary, AQM mechanisms act as delay limiters. Modifying
AQM parameters mostly influences the average transmission de-
lay through a router, and a RED router behaves essentially like a
Drop from Tail router with buffer size �� "! ��� [1]. Finally, we have
observed that the use of the instantaneous queue size in the compu-
tation of the dropping rate seems to reduce the standard deviation
of the queueing delay.

4.3 Consecutive losses

To investigate further the loss distribution, we study consecutive
losses. Experiments are performed on the Dummynet testbed only
because consecutive losses are not available on Cisco routers. Note
that consecutive losses do not clearly indicate that a mechanism is
performing poorly. But in the common understanding, long bursts
of losses may result in higher jitter and in unfairness among flows.

We define the length of a loss sequence as the number of packets�
being dropped before a new packet is accepted and enqueued. In

Figure 11 we plot the probability of having a loss sequence length
greater than � for a traffic made of 256 long-lived TCP connections.

The probability of suffering long sequences of losses appears to
be higher with RED than with DT. The probability of losing more
than 6 packets in a row, for example, is one order of magnitude
higher with RED than with DT. RED also exhibits much longer
loss sequences than any of the 3 other mechanisms5.

This result is counter-intuitive and can be explained as follows. In
DT, long bursts of packets cannot be lost as a new packet is ac-
cepted in the queue as soon as a packet has been served. Thus, the
maximum duration of a loss event is a function of the arrival rate
and the output rate. In RED, instead, packet losses are defined by
a dropping function. As the average queue size reaches �$ "!���� ,
the dropping function tells RED to drop packets, whether room is
available or not in the queue. In Figure 12 we plot the average
queue size and instantaneous queue size over time in one of the
�
Note that to ease reading of graphs we only plotted loss sequences

with a length shorter than 25 packets, even though in our experi-
ments RED has dropped up to 93 packets consecutively.

0.0001

0.001

0.01

0.1

1

0 5 10 15 20 25

P
ro

ba
bi

lit
y 

P
(N

>
n)

Number of packets

TailDrop
RED

GRED
GRED-I

Figure 11: Probability of having a loss sequence length greater
than � with Drop from Tail, RED, GRED, and GRED-I, with
256 long-lived TCP connections (95% confidence intervals are
shown).

experiments with 256 long-lived TCP connections where RED is
the buffer management algorithm6. As we can see from the graph
the average queue size is always very close to �� "! ��� . Thus, in
the event of a sequence of packet bursts, RED will likely accom-
modate the first burst, but given that the average queue size will
reach �� "! ��� , it will drop any subsequent packet. A packet will be
enqueued only after the average queue size, controlled by the first-
order low-pass filter, goes below �� "! ��� (i.e. after the first burst of
packets has been served and the actual queue size has moved below
�� "! �#� ).
Note that both GRED and GRED-I exhibit better performance than
DT and RED. In this case, the use of a smoother dropping function
allows to spread out losses, since the probability to drop a packet is
always less than 1.
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Figure 12: Average queue size and instantaneous queue with
RED for a traffic made of 256 long-lived TCP connections.

Choosing appropriate RED parameters would reduce the difference
between RED and DT. Using “optimal” parameter values as de-
fined in [25], we can reduce the probability of having long loss
sequences. REDopt (Figure 13) uses the following parameters:
��������� ��� � , �$ ! ��� � � � � , �$ ! % � ��� � � , 
�� � ��� � ��� �	� and a


The graph is the result of sampling the queue size and the average

queue size every 500ms.



buffer size of 300 packets. In order to allow a meaningful compar-
ison with DT and RED, we scaled up their parameters accordingly
(i.e. buffer size of 300 packets, �$��� �#� ��� � , �$ ! ��� � ��� � ).
RED now performs better than DT for short sequences of losses,
but very long sequences remain more probable with RED. Note
that changing only the buffer size (and the �$� � ��� , �� "! ��� range)
does not influence RED or DT performance.
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Figure 13: Probability of having a loss sequence length greater
than � with DT and RED with 256 long-lived TCP connections
and with “standard” and “optimal” RED parameters.
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Figure 14: Probability of having a loss sequence length greater
than � with Drop from Tail, RED, GRED, and GRED-I, with a
mix of short and long-lived TCP connections (95% confidence
intervals are shown).

Figure 14 shows AQMs’ performance in terms of consecutive losses
for a traffic mix of 256 short and long-lived TCP connections. We
conjecture that the presence of more bursty sources (short-lived
TCP connections during the slow-start phase) increases the prob-
ability of long loss sequences for DT, while it has the opposite
effect for RED, GRED and GRED-I. As we said above, DT loss
patterns depend on the ratio between the arrival rate and the output
rate. Therefore, the presence of bursty traffic may be a reason of
the increase in the average length of loss sequences.

On the other hand, for RED, GRED and GRED-I, the average queue
size is always well below �$ "! ��� , thus reducing the likelihood of
long bursts of losses. However, in terms of the maximum length of
loss sequences, RED remains the worst option.

As a final note, GRED and GRED-I perform consistently better
than DT and RED with both long-lived and short-lived TCP con-
nections, suggesting that the use of a smooth dropping function
reduces the occurrence of consecutive packets losses.

5. CONCLUSION

In this paper we have examined the impact of Active Queue Man-
agement schemes on the aggregate performance of multiple TCP
and UDP flows crossing a congested gateway. Our testbed is repre-
sentative of the complexity of a gateway between a tier-1 IP back-
bone and a set of corporate customers. Aggregate performance
through a router is significant to an ISP whose network attempts
to carry the maximum amount of data with the shortest delay.

Our analysis of the AQM design space is based on two parameters:
the dropping function and the queue size. Three AQM mechanisms
have been compared to Drop from Tail. We have run experiments
using two independent implementations of RED, one (proprietary)
available in Cisco’s routers and the other (public) implemented over
the Dummynet tool following the specification described in [13]
and [14]. Both test environments provide similar results.

We can summarize our observations as follows:

� The analysis of the aggregate TCP goodput does not allow
to differentiate AQMs from DT. In particular we have not
been able to replicate global synchronization phenomena de-
scribed in previous works [2, 12], that should be responsible
for underutilization of network resources.

� A small difference on RED parameters can have a large im-
pact on aggregate performance. This result confirms that
choosing RED parameters might be a real challenge in an
operational router where the traffic fluctuates due to time-of-
day effects. A single set of RED parameters may perform
very well in certain traffic conditions and be harmful as the
traffic changes in number of flows or offered load. It should
also be noticed that the set of RED parameters that optimizes
the TCP goodput for a given traffic mix is not necessarily the
same set of parameters that optimizes RED for consecutive
losses for example.

� AQM mechanisms provide a shorter average queueing delay
at the cost of a higher loss rate compared to DT. However,
TCP goodput is not affected. Basically, a RED router be-
haves like a Drop from Tail router with a buffer size set to
�� "! ��� [1].

� The analysis of standard deviation of queuing delay shows
that there is a clear advantage in computing packet loss on the
instantaneous queue size. On the other hand, observations on
consecutive losses shows a significant advantage to mecha-
nisms implementing a smooth dropping function. Thus, RED
generally exhibits the worst performance and GRED-I, our
newly proposed mechanism, generally exhibits better perfor-
mance than RED, GRED, and DT.

Thus, in our opinion, Drop from Tail remains the most appropriate
mechanism to control traffic on current IP networks. Drop from
Tail is easy to implement (no parameter, no computation costs) and
easy to predict (the buffer size being known). We did not find any



incentive to deploy RED in this analysis. GRED-I would be a vi-
able alternative option as it performs consistently better than DT
and does not seem to be as sensitive as RED to changes in traffic
characteristics.

Even in the context of the Explicit Congestion Notification (ECN)
proposal [22], marking packets based on Drop from Tail (with a
marking threshold lower than the queue size) might be sufficient
to signal congestion in the network. We suspect that the shape of
the dropping function will be even less significant with ECN, as the
congestion feedback is computed by the receiver based on the ECN
marks, and forwarded as an explicit signal to the sender. Thus, a
receiver can apply a feedback policy that takes into consideration
the ECN marking function bias, allowing for significant simplifi-
cation at the router level (we make the assumption that all routers
implement the same buffer management scheme).

In addition, we do not believe that the solution to a more effi-
cient use of the network resource is in the AQM space. Drop
from Tail will remain the simplest and the most appropriate buffer
management mechanism as long as the backbone network is over-
provisioned. On access networks, more sophisticated techniques
are instead required. Thus, we will investigate how simple Fair
Queueing schemes perform and compare these observation to AQM
evaluation. Early observations on the number of flows on Sprint IP
network seem to make Fair Queueing an attractive solution [15].
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APPENDIX

A. RED PARAMETERS

In [17], the authors propose the following condition to be satisfied
in order to guarantee a stable response of RED:

������� ���
	���� �

� � � � � �
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where
� 	

is the maximum round trip time,
�

is the capacity of the
link (in packets/sec), N is the number of flows, while

� �����
,
�

and
 � are defined as follows:

� �����
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In our testbed the network parameters are:
�
�
� � � , � �

�
� �

packets/sec7 , �� "! �#� � �
� � , ��������� � � � , �� "! % � ��� � , � 	 �

� � �
ms8,

�
� ��� � � � , � � �# � ��� � � � � .

Then, from (2),
� �����

�
� �%$ �

, from (3),
�
�
�
�
� � �

and from (4)
 � � ��� � � � .
Substituting these values in (1), we can see that the RED parameters
as defined in Section 3.2 satisfy the requirement proposed in [17].

&
The link capacity is 10Mbps and the packet size is 1500 bytes.'
The target queue occupancy is set to (*),+.-0/ 	 (2143�-0/�


