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ABSTRACT
Modern TCP implementations include a mechanism, known as the
Nagle algorithm, which prevents the unnecessary transmission of a
large number of small packets. This algorithm has proved useful
in protecting the Internet against excessive packet loads. However,
many applications suffer performance problems as a result of the
traditional implementation of the Nagle algorithm. An interaction
between the Nagle algorithm and TCP's delayed acknowledgment
policy can create an especially severe problem, through a tempor-
ary “deadlock.” These flaws in the Nagle algorithm have prompted
many application implementors to disable it, even in cases where
this is neither necessary nor wise.

We categorize the applications that should and should not dis-
able the Nagle algorithm, and we show that for some applications
that often disable the Nagle algorithm, equivalent performance can
be obtained through an improved implementation of the algorithm.
We describe five possible modifications, including one novel pro-
posal, and analyze their performance on benchmark tests. We also
describe a receiver-side modification that can help in some circum-
stances.

1. INTRODUCTION
If an individual user of a shared, large, but finite resource with

no explicit limits on consumption, increases his or her demand by
N%, he or she stands to gain nearlyN% more of the resource. Yet
if all users increase their demands byN%, the total demand may
well exceed the carrying capacity of the resource, resulting in little
net gain, or even a collapse. This is known as a “tragedy of the
commons” [6]. A user's perceived self-interest conflicts with the
collective interest of all users, and might even be in conflict with
the user's actual self-interest.

The Internet, as we have known it since its inception, is a com-
mons, and many people recognize its vulnerability to a tragedy of
the commons. This has led to numerous proposals for technical
mechanisms to limit consumption (e.g., admission control), or eco-
nomic mechanisms to force users to internalize costs. However,
none of these mechanisms are in widespread use. Internet proto-
cols are also used in isolated networks (intranets), with the potential
for excessive demand, but where administrative or other constraints
prevent the use of charging or admission controls.

Fortunately, enlighted self-interest can promote good consump-
tion patterns. The primary such mechanisms now used in the In-
ternet are Jacobson's “slow start” and “congestion avoidance” al-
gorithms for TCP[8]. While the primary motivation for these al-
gorithms was to avoid congestive collapse of a shared network,
Jacobson showed that they also improved performance for lengthy

TCP connections without competing traffic. That is, for most users,
their own self-interest (in employing these algorithms) coincides
with the interest of the network as a whole.

Even before Jacobson's work explicitly addressing congestion
via feedback mechanisms, several TCP algorithms had been de-
vised to limit the number of unnecessary packets injected into the
network. (These can be viewed as open-loop congestion avoidance
mechanisms.) In 1984, Nagle showed that a protocol such as Tel-
net could generate lots of tiny packets, even though the user's needs
could be met equally well by sending fewer, larger packets. He also
proposed a simple algorithm, for use by the TCP sender, to auto-
matically limit the transmission of unnecessarily small packets[13].
This, now known as the Nagle algorithm (or “Nagle's algorithm”),
is a standard requirement for TCP implementations.

The Nagle algorithm applies when a TCP sender is deciding
whether to transmit a packet of data over a connection. If it has
only a “small” amount of data to send, then the Nagle algorithm
says to send the packet only if all previously transmitted data has
been acknowledged by the TCP receiver at the other end of the
connection. In this situation, “small” is defined as less data than
the TCP Maximum Segment Size (MSS) for the connection, the
largest amount of data that can be sent in one datagram.

Standard TCP includes another algorithm for limiting the trans-
mission of small packets, dating back to 1982. This is the delayed
acknowledgment (“delayed ACK”) policy[2], which prevents the
TCP receiver from sending too many acknowledgment packets.
The traditional receiver implementation delays sending an acknow-
ledgment until it has data to send on the reverse path (allowing it
to “piggyback” the ACK on the reverse-path data). However, the
specifications require a receiver to generate an acknowledgment at
least as often as every second full-sized segment (that is,2 �MSS

bytes). A timer, typically set to 200 msec (but allowed to be as
high as 500 msec), prevents unlimited delays. The assumption be-
hind the delayed ACK policy is that the sender is transmitting as
fast as it can (consistent with flow control and congestion control),
and so we can avoid sending a superfluous ACK packet by simply
waiting for the next data packet.

Unfortunately, circumstances that occur quite often in practice
can lead to a temporary “deadlock” between the sender's Nagle
algorithm and the receiver's delayed ACK policy: the Nagle al-
gorithm prevents the sender from transmitting more data until it
receives an outstanding ACK, while the delayed ACK policy pre-
vents the receiver from transmitting an ACK until more data ar-
rives. Sooner or later, the delayed-ACK timeout breaks the dead-
lock, but the result is to add delays on the order of hundreds of
msec to operations that should complete much faster. These delays
are especially visible on LANs or regional networks.

Because many applications cannot tolerate these delays, TCP im-



plementations provide a means to disable the Nagle algorithm, and
many implementors take advantage of this. We will show that,
while this is appropriate for a class of applications, disabling the
Nagle algorithm is inappropriate for several other classes. That can
lead to severe network stress when done by an application with
faulty output buffer management. However, because of the well-
known potential for deadlock between the Nagle algorithm and
the delayed ACK policy, many implementors are forced to disable
the Nagle algorithm in circumstances where this should not be re-
quired. This creates a risk where the Nagle algorithm, a mechanism
to protect the Internet against excess packets sent by buggy applic-
ations, is not employed when necessary.

Modifications to the Nagle algorithm have therefore been pro-
posed, with the goal of eliminating this potential temporary dead-
lock, and therefore making the TCP sender's self-interest consist-
ent with the interest of the entire Internet. In this paper, we evaluate
several proposed modifications, including a novel mechanism that
directly attacks the deadlock (by treating it as a form of priority
inversion). Our evaluations are done in the context of a specific
BSD-derived TCP implementation, although the concepts should
be applicable to wide range of implementations.

Our goal is to require no changes to existing applications. We
therefore would like to find a single algorithm variant that min-
imizes the likelihood of unnecessary delay, rather than requiring
application programmers to choose from a menu of variants, es-
pecially if the choice would depend on quantitative parameters of
the application or the environment. We show that while all of the
proposals have strengths and weaknesses, only the algorithm based
on deadlock detection fully eliminates the problem in the bench-
mark we used (unfortunately, it is not appropriate to every applica-
tion). We also show that a simple change to the receiver's delayed
acknowledgment mechanism can sometimes (not always) improve
the situation even with unmodified senders.

Nagle's algorithm was designed in the age of shared low-
bandwidth backbone links. One could argue that it is irrelevant
to today's Internet, and that floods of small packets are no longer
a problem worth solving. This argument fails on at least three
grounds: (1) many people connect to the network over wireless
links, which usually are both slow and shared; (2) even on fast
links, excessive use of small packets makes inefficient use of ex-
pensive resources, such as routers; and (3) Nagle's algorithm is
a useful firewall against sloppy applications or complex bugs that
would otherwise send too many tiny packets. It would be a mistake
to stop using it.

2. RELATED WORK
When Nagle first proposed his algorithm, he recognized the im-

portance of analyzing the algorithm for deadlocks, since the al-
gorithm has “no timers,” but he apparently failed to realize the
possibility of temporary deadlock with the delayed ACK policy.
Perhaps this was because delayed ACKs had not been widely im-
plemented at the time, or perhaps the existing applications did not
trigger the deadlock.

However, the problem was recognized shortly thereafter. Early
examples included the use of multi-byte “function keys” in inter-
active terminal sessions [19], and the interactive X window sys-
tem [17]. In both of these cases, implementors quickly realized
the need to disable the Nagle algorithm [5]. The BSD series of
UNIX systems included a TCPNODELAY socket option, for this
purpose, dating from 4.3BSD (1986).

2.1 Previous analyses of problems with the
Nagle algorithm

Crowcroft et al.[3], while investigating performance anomalies
with a TCP-based RPC system, discovered that the Nagle algorithm
interacted badly with the delayed ACK policy. They showed that,
for their experiments, the problem could be traced to the way in
which the BSD-based network implementation moves data from an
application buffer to a socket buffer. In essence, the original im-
plementation suffered from a problem analogous to the TCP “Silly
Window Syndrome” (SWS)[2]. They proposed fixing the socket
buffer management (in the kernel's sosend() function) mechanism,
rather than fixing Nagle's algorithm per se. Most modern BSD-
based systems now include the improved sosend() code from Crow-
croft et al.; unfortunately, problems with the Nagle algorithm per-
sist.

More recently, the introduction in HTTP of “persistent connec-
tions” (the use of a single TCP connection for several HTTP re-
quests) has led several researchers to similar conclusions.

Heidemann analyzed persistent-connection HTTP (P-HTTP) [7],
and showed that unlike request-per-connection HTTP, P-HTTP
servers could suffer from the temporary deadlock problem. He
showed that this arose whenever a response message requires an
odd number of full-sized TCP segments, plus an additional partial
segment. In this case, the receiver will delay its ACK (because it
has sent ACKs for an even number of segments, but is holding onto
its ACK for the last full-sized segment), and the sender's Nagle
algorithm will delay sending the partial segment, because is wait-
ing for an ACK for an earlier segment. Following his termino-
logy, we will refer to this as the “odd-full+short-final-segment” (or
OF+SFS) problem. Heidemann solved the problem for his server
implementation by disabling the Nagle algorithm.

Nielsenet al., in their analysis of the benefits of request pipelin-
ing in HTTP/1.1[15], also noted that the Nagle algorithm could
cause delays, without explicitly ascribing this to a deadlock with
the delayed ACK policy. They reported disabling the Nagle al-
gorithm in both their server and their client, although they do not
explain why it was necessary to disable the Nagle algorithm at the
client. (We will consider this issue in section 4.) They explicitly
recommended that “HTTP/1.1 implementations that buffer output
disable Nagle's algorithm.”

2.2 Previous proposed modifications
Minshall[10] observed that a simple modification to the Nagle

algorithm should solve the OF+SFS problem: the sender delays
only if it is waiting for acknowledgment of data that was sent in
a short (< 1MSS) packet (but not if all unacknowledged packets
were full-sized)1. He also observed that it might be necessary to
disable the Nagle algorithm for protocols such as P-HTTP, when
using pipelining.

Minshall et al. reported on measurements comparing a sim-
plified implementation of Minshall's proposed modification[11].
They found that it often performed better than the original Nagle
algorithm, but the results were equivocal. Also, they did not care-
fully analyze the performance of the modified algorithm over a
wide range of packet sizes. As we shall show, the algorithm be-
haves poorly in some cases, particularly when the application buf-
fer is smaller than the MSS. Minshallet al. stressed that application
implementors should, whenever possible, use appropriate buffering
mechanisms to mitigate TCP performance problems.

1We believe that a version of this modification was first proposed
by David Mosberger[12], although Mosberger proposed testing the
size only of the most recently sent unacknowledged packet.



2.3 The Linux TCP CORK option
In BSD-based UNIX systems, the only control over the TCP

sending policy explicitly available to application programs is
the TCPNODELAY socket option, which simply disables the
Nagle algorithm. Linux has provided an additional socket op-
tion, TCPCORK, which operates as a sort of “super-Nagle” mode.
While this option is set, the Linux TCP will never send any
segments smaller than the MSS. When the application disables
TCP CORK, all remaining pending data is sent, subject to the nor-
mal Nagle-algorithm restrictions. While the traditional Nagle al-
gorithm will send a partial-size segment on an idle connection,
Linux will not, if TCP CORK is set. The TCPCORK option was
added to allow an application to send a message using several dis-
tinct system calls, without sending unnecessarily small packets.
This option does not, as far as we know, provide any solution to
the OF+SFS problem for unmodified applications.

3. INTERACTION BETWEEN THE NAGLE
AND DELAYED-ACK ALGORITHMS

As we described earlier, the delays usually attributed to the Nagle
algorithm are in fact the result of a temporary deadlock between
the TCP sender's Nagle algorithm, and the TCP receiver's delayed-
ACK policy. (The “deadlock” is temporary, because the receiver
cannot delay its acknowledgment for more than 500 msec, and
BSD-based systems limit this to 200 msec.) Heidemann's obser-
vation was that this deadlock occurs only when transmitting a mes-
sage requiring an odd number of full-sized TCP segments, plus an
additional partial segment (what we are calling the OF+SFS prob-
lem.)

The interaction is actually somewhat more complex than this, at
least in BSD-based systems, because of several aspects of the TCP
implementation.

We show several examples to illustrate the interaction. In these
figures, time runs from top to bottom. The “client” host is shown
on the left, broken down into an application (“App”) and the TCP
sender. The server appears on the right; only the TCP receiver
is shown here. Blocks of message data are shown as rectangles
labelled with lettersA;B;C; etc. Although TCP sequence num-
bers count bytes, TCP congestion control (including the Nagle al-
gorithm) counts in terms of MSS-length segments, and the length
of a “1 MSS” segment is shown in each figure. Time is shown
both in units of round-trip times (RTTs) and with additional terms.
We assume that the sender's initial congestion window,cwnd, is
2 � MSS, which is commonly the case after the client's SYN
has been acknowledged (if the congestion window were larger, we
would simply need to show larger application buffers in these fig-
ures). We also assume a high enough network bandwidth that its
contribution to the delay may be ignored.

Figure 1 shows how a successful (non-delayed) transfer might
take place. The application constructs a buffer(A;B;C;D) of
exactly4 �MSS bytes, and hands it to the TCP stack in one op-
eration. (In a BSD system, this involves copying the data into a
socket buffer.) At time “0 RTT,” the TCP sender transmits the
first two segments (becausecwnd is 2 � MSS). The receiver
immediately acknowledges these two segments. After approxim-
ately 1 RTT, the sender receives the ACK and sends the remain-
ing two segments. The receiving (server) application then pro-
cesses the request data, and returns a response, which arrives at
time 2 �RTT + server time.

Now consider figure 2, showing a Nagle-delayed transfer. Here,
the application buffer handed to the TCP sender is just slightly
shorter than4 � MSS bytes. Again, at time “0 RTT,” the TCP

sender transmits the first two segments (becausecwnd is2�MSS),
and the receiver immediately acknowledgesthese two segments. At
time “1 RTT” in this example, however, the sender sends full-sized
segmentC, but defers sending partial segmentD because it has not
yet received an ACK for segmentC. Meanwhile, the delayed-ACK
policy at the receiver defers its ACK forC in the hope that a full-
sizedD will soon arrive. After up to 200 msec, the receiver gives
up and ACKsC, which allows the sender to transmitD. The re-
sponse is received at time3�RTT+ack timeout+server time,
which can be up toRTT+200msec later than it was for thelonger
transfer in figure 1.

Note that in the scenario of figure 2, the transmission of segments
C andD was delayed until the receipt of an acknowledgment, un-
der the assumption thatcwnd starts at2 �MSS. Other scenarios,
not limited by the congestion window, can also cause Nagle-related
delays, at least in the BSD implementation. This requires an short
explanation of the BSD socket buffering mechanism (covered in
more detail by Crowcroftet al.[3]).

When an application uses a system call (such as write()) to send
a buffer on a TCP stream, the kernel invokes the sosend() func-
tion, which copies bytes from the user buffer to the socket buf-
fer and then calls the tcpoutput() function. If the user buffer is
larger than a page “cluster” (MCLBYTES), sosend() copies it in
chunks of length MCLBYTES, calling tcp output() each time. The
tcp output() function also runs upon receipt of an acknowledgment
or a timeout. Each time it is called, tcpoutput() sends as many
packets as it can, consistent with the TCP sending rules.

The formal Nagle algorithm defers transmission of a small seg-
ment unless the sender has no unacknowledged data outstanding
(i.e., the sender is “idle”). However, the BSD tcpoutput() function
has a subtle quirk: it might send more than one packet per invoca-
tion, but it only tests for the idle state once per invocation. Figure
3 shows an abstracted version of tcpoutput().

Since sosend() calls tcpoutput() once for every MCL-
BYTES of data, this quirk means that messages shorter than
min(cwnd;MCLBY TES) will not be delayed by the Nagle al-
gorithm if sent on an idle connection. (The formal Nagle algorithm
might delay a final partially-full packet of such a message, since
by the time that packet is sent, the connection could be awaiting
an ACK.) This makes it somewhat difficult to predict exactly when
the Nagle algorithm will cause delays, since bothcwnd and the
“idleness” of a connection are dynamic values.

3.1 Buffer tearing
Many buffered applications use power-of-two buffer sizes, yet

typical maximum transmission units (MTUs) are not powers of
two, and so typical MSS values are relatively prime with typical ap-
plication write-buffer sizes. Heidemann's analysis [7] showed that
small packets could be generated when sending a message of length
bufsize+ epsilon, wherebufsize = 2N andepsilon < MSS.

For example, the Apache Web server usesbufsize = 4096
(regardless of the system page size); on an Ethernet, TCP would
use an MSS of 1460 bytes. If Apache sends a message of length
4100 bytes, the first 4096-byte buffer is sent as a sequence of
(1460; 1460; 1176) bytes, and the remaining 4 bytes are then buf-
fered to be sent. The 1176-byte packet is not delayed (because the
first two full-sized segments generate an immediate acknowledge-
ment), but it is not immediately acknowledged itself. This means
that the Nagle algorithm will delay transmission of the final 4-byte
segment.

We call this problem “buffer tearing”: a message that could have
been sent using a minimal number of TCP segments is torn into
smaller pieces by a buffering mechanism. While sometimes the ex-
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This is a heavily abstracted rendition of the BSD tcpoutput() function, showing only the features relevant to the Nagle algorithm, and
omitting all error checks.

tcp_output(struct tcpcb *tp) /* input is TCP control block */
{ int idle, off, win, len, emptying;

/* We're idle if everything we have sent has been ACKed */
idle = (tp->snd_max == tp->snd_una);

again:
off = tp->snd_nxt - tp->snd_una; /* offset of first unsent byte in buffer */
win = min(tp->snd_wnd, tp->snd_cwnd); /* min of flow control & cong. windows */
len = min(so->so_snd.sb_cc, win) - off; /* number of unsent bytes in buffer */

if (len >= tp->t_maxseg)
goto send; /* always send if we have a full segment */

/* emptying = sending this would empty the output buffer */
emptying = ((len + off) >= so->so_snd.sb_cc);
if ((idle || tp->t_flags & TF_NODELAY) && emptying)

goto send; /* Nagle's algorithm */
if (len >= tp->max_sndwnd / 2)

goto send; /* send if at least 1/2 of receiver's window */
if (SEQ_LT(tp->snd_nxt, tp->snd_max))

goto send; /* always send if retransmitting lost data */

... other tests for whether to send a packet ...

return(0);

send:
... fill in headers and call ip_output() ...
goto again;

}

Figure 3: Pseudocode: relevant aspects of BSD's tcpoutput()

tra packets cause just a minor inefficiency (for example, a message
length of5 � 1460 = 7300 bytes is sent as 6 packets), in many

cases buffer tearing can lead to OF+SFS delays.
Buffer tearing can also occur if the application buffer is large



enough to hold the entire message, but the socket output buffer is
not. Many older systems had very small default TCP output buffer
sizes, and practical considerations limit the feasible output buffer
sizes for systems such as busy Web servers, because these buffers
consume physical memory (whereas application buffers normally
consume pageable virtual memory). Semkeet al.[18] suggest that
the kernel could automatically tune a connection's socket output
buffer size, with a target value of about twice thebandwidth �

delay product for the connection. This target might be much less
than the message size, especially for low-bandwidth or low-delay
networks, yet it is on low-delay networks that one most notices an
additional 200 msec delay.

The problem analyzed by Crowcroftet al.[3] is an example of
buffer tearing, in which sosend() hasN bytes to write, andN is
both larger than the amount of space remaining in the socket buffer
and smaller than the MSS. Their solution (defer sending in this
situation) is helpful, but not a general solution to the buffer-tearing
problem.

3.2 Phase-locking effects
In the traditional BSD implementation, the delayed-ACKtimeout

is not a 200-msec interval starting from the point when an ACK
is deferred; rather, it is simply the next “tick” of a free-running
200-msec clock. One might therefore expect the excess delay from
the interaction between the Nagle algorithm and the delayed-ACK
policy to be uniformly distributed between 0 and 200 msec.

Minshall et al.[11] observed, however, that repeated operations
between the same pair of systems, when subject to the OF+SFS
problem, lead to a sort of phase-locking between the sending ap-
plication and the receiver's 200 msec clock tick.

Consider an application sending a series of requests, for each
of which the response would normally arrive within 5 msec (i.e.,
where the RTT is small). If a response is delayed by the OF+SFS
problem, it will arrive about 1 RTT after a tick of the receiver's
200 msec clock. If the very next response is delayed, it will wait
until the next clock tick, and will suffer almost the worst-case 200
msec delay. Even if only 1 out of every 10 responses is delayed,
the total execution time for all 10 responses will be 200 msec, and
the delay experienced by the unlucky response will be close to 150
msec. This explains why relatively simple experiments can suffer
from non-uniform excess delays.

Minshall et al. speculated that this kind of phase-locking could
be coupled between busy Internet Web servers by busy proxy serv-
ers. If so, that could create synchronized bursts of packets flowing
through the Internet. We do not know if anyone has observed this
mass synchronization in practice.

3.3 Prevalence of OF+SFS messages in Web
traffic

Minshallet al.[11] used a benchmark based on Usenet news, and
reported that 8.7% of the responses in that benchmark required an
even number of FDDI packets (although presumably very few were
an exact multiple of the FDDI MTU). These are the responses that
would probably suffer from OF+SFS delays. However, Minshall
et al. used a synthetic benchmark; how important is the OF+SFS
problem in real traffic flows?

We chose a widely-used HTTP traffic trace, from Digital Equip-
ment Corporation[4], to answer this question. For reasons of time
and disk space, we selected only the busiest one-day trace segment
from the DEC traces, containing 1,565,207 responses.

Because of the idle-connection quirk in the BSD TCP stack, as
described earlier, we adopted a somewhat more complex test for
whether a response is OF+SFS-vulnerable. We assumed that both

the application buffer and socket output buffer were large enough
to hold the entire message. Our model predicts that a message
would be delayed if its length is between(2 � N + 1) � MSS

and(2 �N +2) �MSS, exclusive, forN >= 0. However, it also
predicts that messages shorter than2 � MSS are never delayed,
and that messages shorter than MCLBYTES are never delayed.
We modelled several options for MSS (Ethernet, 1460 bytes, and
FDDI, 4312 bytes) and for MCLBYTES (4096 and 8192 bytes, and
one case where this test is ignored).

MCLBYTES MCLBYTES MCLBYTES
ignored = 4096 = 8196

MSS = 1460 18.78% 18.78% 10.05%
MSS = 4312 6.71% 6.71% 6.71%

Entries show the fraction of responses vulnerable to OF+SFS

Table 1: Prevalence of OF+SFS-vulnerable response lengths in
an HTTP trace

Table 1 shows the results of this simple study. Depending on
our assumptions for MSS and MCLBYTES, our model predicts
between 6.7% and 18.8% of the responses in this trace could be
delayed by the OF+SFS problem. (For the FDDI MSS of 4312
bytes,2 �MSS is larger than all of the modelled values for MCL-
BYTES, so the latter test is irrelevant.)

4. WHEN SHOULD ONE USE THE NAGLE
ALGORITHM?

In Nagle's original description of the algorithm, he stated that
it works for all kinds of TCP connections[13]. However, as men-
tioned in section 2, people quickly realized that there are applic-
ations in which the possibility of 200 msec delays cannot be tol-
erated. The conventional wisdom is, therefore, that applications
should disable the Nagle algorithm if they seem to be experiencing
this kind of delay.

Recall that the Nagle algorithm was devised to protect the net-
work from congestion by lots of small packets. We believe that the
protection afforded by the algorithm is still valuable, especially in
the face of applications with suboptimal buffer management, and
therefore it is necessary to have a clearer understanding of when
the Nagle algorithm should and should not be used.

Our analysis looks at four cases where TCP is used:

1. One-way bulk data transfer: This is the paradigmatic use
of TCP, in which a large quantity of data is transferred in
one direction, with little or no data transferred on the reverse
path. For example, an FTP data connection.

2. Telnet-style two-way data transfer: In the Telnet protocol,
characters typed by the user are sent as quickly as possible to
the remote host. In some instances, the host echos the typed
characters back to the user; the echo may also take place local
to the user's system. Command output is sent from the host
to the user, via the same connection.

3. RPC-style exchanges: Several protocols use TCP for request-
response exchanges, with the client waiting for the server's
response before it sends another request. Examples include
the client-server mode of NNTP[9] (the USENET News pro-
tocol), and traditional SMTP[16].

4. Pipelined exchanges in soft-realtime applications: Al-
though TCP clearly is not well suited to real-time applica-
tions, because it converts packet losses into delays on the



order of a second or longer, it can still be usable for in-
teractive applications. These applications expect short mes-
sages, in either direction, to be delivered as quickly as pos-
sible. Examples include the X window system [17], NFS
over TCP, and P-HTTP, all of which successfully run over
TCP. A pipelined exchange is similar to an RPC-style ex-
change, except that the client does not wait to receive an en-
tire response before it sends the next request(s). In the case
of NFS, at least, the server might not even reply to the re-
quests in order. Pipelining is an especially effective way of
hiding long latencies, but it depends on being able to start
processing one operation before another is finished.

In a perfect world, the Nagle algorithm would work well in all of
these cases. Nagle's original description of his algorithm showed
that it works well for cases (1) and (2), and a decade of subsequent
practice has born that out (but see section 4.1 for a complication).

Cases (3) and (4), however, have proved problematic. We show
in this paper that it is possible to fix the Nagle algorithm for case
(3). That is, minor modifications to the Nagle algorithm provide
near-optimal performance for case (3) without contradicting the in-
tention behind the algorithm, minimization of the number of pack-
ets sent. However, it is not possible to “fix” the algorithm for case
(4), because the desired behavior here is antithetical to the original
intent of the Nagle algorithm: the application wants a small request
or response message to be sent as soon as possible, even if the other
end has not replied recently.

4.1 An aside: multiple-byte keystrokes in Tel-
net

We should point out that it is not entirely clear how to classify the
problem of multi-byte function keys. Consider a Telnet client, with
keystrokes coming from a serial-line keyboard. The user types a
function key that issues a multiple-byte sequence; the Telnet client
program sees the resulting bytes separated by enough time (e.g., on
a 9600 baud terminal, by about 1 millisecond) that it sends the first
byte before seeing the second. However, the receiver's delayed-
ACK policy defers sending an ACK (nowhere near two full seg-
ments having arrived, and there is nothing to echo until the full
sequence has been received by the server Telnet program), and so
when the Telnet client program sees and sends the second byte, the
Nagle algorithm defers transmission (about to send a small packet,
but waiting for an ACK). Stevens[19] used this as an example of
why it can be necessary to disable the Nagle algorithm; this would
put multiple-byte keystrokes in case (4).

One could argue that a clever Telnet client could buffer its input
for a few milliseconds, looking for the first byte of multi-byte se-
quences, and thus sending such sequences as single packets; i.e.,
this is actually case (2). Such a small delay would not be percept-
ible to the user, although it would add complexity to the Telnet
client implementation.

5. PROPOSED SOLUTIONS
Given the significant delays induced by the OF+SFS problem,

many implementors have been led to disable the Nagle algorithm.
This can lead to excessive transmissions of short packets, if the
application is poorly designed (or if it has an undetected bug)[11].
We would like to find a solution to the OF+SFS problem that does
not give up the protection provided by the Nagle algorithm.

In this section, we describe a number of previously proposed and
new solutions. In section 8, we will show how each one performs.

5.1 The Minshall variant
Minshall[10] proposed a simple modification to Nagle's al-

gorithm. Rather than delaying the transmission of a small packet if
there is any unacknowledged data, Minshall's variant delays only
if “any previously transmitted less than full-sized packet” has not
been acknowledged. In theory, this should allow a single “short fi-
nal segment” to be transmitted without delay. Minshall's suggested
implementation adds two (32-bit) sequence number variables to the
sender's per-connection TCP state. We refer the reader to [10] for
a description of this implementation.

5.2 The MSMV variant
Minshall et al.[11] subsequently proposed a slightly different

variant, which we refer to as MSMV (after the authors' initials).
This variant requires only one bit of additional per-connection state,
instead of 64 bits. Also, it allows transmission without delay of
two small packets in a row, if the first was caused by tearing a buf-
fer at a multiple of MCLBYTES. The implementation, described
in detail in [11], uses a new TFSMALL PREV flag to remember
whether the most recently transmitted packet was small (less than
the MSS). MSMV defers the transmission of a short packet only if
TF SMALL PREV is set; that is, it bypasses the Nagle algorithm
if the previous packet was full-sized. Note that if the socket buffer
size is a multiple of MCLBYTES, the TFSMALL PREV flag is
not set even when a short packet is sent, because MSMV tries not
to punish an application for short packets caused by buffer tearing.

5.3 The EOM variant
Both the Minshall and MSMV variants attempt to indirectly pre-

vent the delay of the last part of a large message buffer. For this
paper, we experimented with a new variant, called EOM (for “End
of Message”). In this variant, the sosend() function explicitly in-
forms tcpoutput() whether it has reached the end of a large mes-
sage, by setting a new TFEOM flag bit. The tcpoutput() function
will not defer the transmission of a short segment if EOM is set,
because this could lead to a deadlock-like delay. If EOM is not set,
meaning that there is more data in the application's buffer, the usual
Nagle algorithm applies.

Specifically, the TFEOM is set if (1) sosend() has exhausted
either the application buffer or the socket output buffer, and (2) this
call to sosend() has previously called tcpoutput() at least once.
(Remember that because of the way that tcpoutput() checks the
connection's idle status, if sosend() can deliver the entire applica-
tion buffer in one call to tcpoutput(), the Nagle algorithm will not
be invoked.)

5.4 The MORE variant
If the socket output buffer is too small to hold the entire mes-

sage, sosend() will call tcpoutput() before the application's buffer
is exhausted; this can cause buffer tearing. We attempt to resolve
this problem by defining a new TFMORE flag, which is set by
sosend() if the socket buffer is to small to hold all of the applica-
tion's buffer. If the TFMORE flag is set, tcpoutput() will notsend
a short segment, even if the Nagle algorithm allows it, because we
know that as soon as an acknowledgment arrives to free up buffer
space, sosend() will provide additional data, and that might give us
the chance to send a full-sized segment.

The MORE variant in itself is not a solution to the OF+SFS
problem, but it can be combined with EOM to avoid tearing. In
this variant (EOM+MORE), if the TFMORE flag is set on entry
to sosend(), and sosend() exhausts the application's buffer, it will
set the TFEOM flag even if it is calling tcpoutput() only once.
The net effect of EOM+MORE is that, no matter how many times



sosend() is called during the transmission of a single application
buffer, tcpoutput() will generate a sequenceof full-sized segments,
followed if necessary by an undelayed short final segment. Source
code for EOM+MORE is in figure 4

5.5 The Borman variant
The combination of EOM+MORE appears similar to an unpub-

lished algorithm apparently used in BSD/OS, partially described
by David Borman in a message to a mailing list[1]. Borman's al-
gorithm “does the Nagle decision once on the whole chunk of data
written in a single write by the application.” That is, it remem-
bers whether the connection was idle when the application issued
its write() system call (i.e., on entry to sosend()), and if so, it does
not delay the final segment. However, if the connection was wait-
ing for an acknowledgment on entry to sosend(), the normal Nagle
algorithm applies.

We implemented this algorithm based on Borman's description,
without examining the BSD/OS code. In our implementation,
sosend() on entry sets a localidleOnEntry flag if the connec-
tion is idle. When sosend() is ready to call tcpoutput(), if idle-
OnEntry is set, and if it has exhausted the application buffer,
then it disables the Nagle algorithm, by setting the connection's
TF NODELAY flag. This flag is cleared on every entry to sosend(),
so an application cannot push out more than one successive short
segment before an acknowledgment arrives.

We also found it necessary to set the TFNODELAY flag (at the
end of the application buffer) if the TFMORE flag was set on entry
to sosend(). Otherwise, the user's buffer might be chopped into sev-
eral pieces because the socket buffer is not large enough to hold the
entire message. Source code for our implementation of Borman's
variant is in figure 5; one advantage of this variant is that it requires
no extra per-connection state.

5.6 The DLDET variant
We have already observed that because the OF+SFS problem

most directly afflicts request-response interactions, it can be viewed
as a form of deadlock. So, one way to frame its solution is as
a deadlock-detection problem. We propose a new variant, named
DLDET, which follows this approach.

If one squints a little, one could also view this as abounded
priority inversion. The Nagle algorithm has decided to make the
transmission of the final request segment into a low-priority task,
and the application (the high-priority task) is about to block until
that low-priority task (and its consequent response transmission)
are complete.

Priority inversion is often solved using priority inheritance, and
we can apply the same idea. If a process is trying to read from a
TCP socket and is about to block for lack of data, we can first check
to see if the sending side of the same socket is currently blocked by
the Nagle algorithm. If so, we can force out a remaining short final
segment (if any), which should cause the block-for-read period to
be as short as possible.

This can be implemented by simply calling tcpoutput(), with
the TFNODELAY flag temporarily set, just before blocking in the
soreceive() function. Similarly, the sosend() function, which could
block if the socket output buffer is full, can do the same thing. (A
somewhat more efficient implementation would check to see if a
short final segment is pending output, and an implementation that
respects the BSD layering model would involve additional com-
plexity.)

Unfortunately, this simple method does not always work. Be-
cause the sender's congestion window might not allow data in the
output socket buffer to be sent immediately, at the time that sore-

ceive() or sosend() needs to block, the sender might still be holding
far more than one pending segment (i.e., not because of the Nagle
algorithm). The decision in tcpoutput() whether to send a short
final segment might be madeafter the application has blocked in
soreceive() or sosend(). We resolve this by having tcpoutput() test
the SBWAIT flags set when a process is blocked on a socketbuffer,
and releasing a short final segment if either flag is set.

One subtle issue remains: The Nagle algorithm was originally
designed to prevent a Telnet client from sending each keystroke in
a separate packet, but the DLDET variant as described so far will
violate this requirement for a multi-threaded Telnet client. Such
an application uses one thread to write keystrokes to a TCP con-
nection, and another thread (or process) to read from the connec-
tion. The problem arises because if the receiving thread is always
blocked, the TCP sender will always detect a potential “deadlock,”
and so will always send single-byte segments.

The solution is to keep an extra one-bit per-connection counter,
incremented each time the receiving thread tests for deadlock or
blocks. The complete DLDET algorithm then sends a short seg-
ment only if the counter is non-zero, and then decrements the
counter. With this mechanism, we must also use the TFMORE
flag, to prevent buffer tearing in sosend() from causing the counter
to be decremented. This prevents a multi-threaded application from
sending a flood of packets, but it avoids the OF+SFS problem for
single-threaded applications, or for any application using a large
enough application buffer size. See figure 6.

5.6.1 Limitations on DLDET
Unfortunately, our DLDET solution does not work for event-

driven applications, which manage many sockets using the select()
or poll() system calls. (This is a popular structure for Internet server
applications, and many others.) When an application blocks in se-
lect(), it might be waiting for events onhundreds or thousands of
TCP sockets, and it seems infeasible to prod each one of these in
case it is deferring the transmission of a short final segment. Also,
when an application blocks in select(), it does not set the SBWAIT
flag for any of these sockets.

The DLDET solution also fails for applications that send re-
quests on one socket but receive the corresponding responses on
another. While this is not a common structure for communicating
processes, we are not sure if it is unimportant.

Finally, the counter-based DLDET algorithm might not prevent
the OF+SFS problem for a multithreaded application when the re-
ceiving thread has blocked, and then the sending thread transmits
a long message using more than one write() system call. In this
case, buffer tearing might lead to the transmission of multiple short
segments, but the counter would only allow one to be sent without
delay.

One might be able to solve these restrictions on DLDET by
providing applications with an explicit system call to mark the ends
of their messages, as Minshall suggested[10]. This is roughly what
Linux's TCPCORK option achieves using twice as many system
calls. Careful use of such a call might give an application direct
control over when segments are sent (while still observing conges-
tion and flow control), although at the cost of additional application
complexity. We have not explored this possibility in detail.

6. BENCHMARK METHODOLOGY
To evaluate all of the proposed variations on the Nagle algorithm,

we needed a benchmark that could create all of the various condi-
tions that might lead to the OF+SFS problem. We considered us-
ing a real application as a benchmark, because many of the details
of TCP performance depending on timing. For example, an ap-



In sosend() theoutcount variable is initialized to 0, and the following code is inserted before the call to tcpoutput():

tp->t_flags &= TF_EOM;
/* Set EOM if no more user data and we previously sent a full MCLBYTES

* from this user buffer, or if we ran out of socket buffer space on
* previous send. (outcount appears superfluous, but would be necessary if
* we were to delete the MORE code from EOM.) */

if (((resid == 0) || (space <= 0)) && ((outcount > 0) || (tp->t_flags & TF_MORE)))
tp->t_flags |= TF_EOM;

outcount++; tp->t_flags &= TF_MORE;
/* Set MORE (& clear EOM) if we have more user data to send */
if (resid) {

tp->t_flags |= TF_MORE; tp->t_flags &= TF_EOM;
}

In tcp output(), the Nagle algorithm test becomes:

if ((idle || tp->t_flags & TF_NODELAY || tp->t_flags & TF_EOM ) &&
((tp->t_flags & TF_MORE) == 0) && (len + off >= so->so_snd.sb_cc))

goto send;

Figure 4: Implementation of EOM and MORE

At entry to sosend(), these local variables are set:

idleOnEntry = (tp->snd_max == tp->snd_una);
moreOnEntry = (tp->t_flags & TF_MORE);

At the same point, ensure that special treatment does not last past end of previous buffer:

tp->t_flags &= TF_NODELAY;

The following code is inserted before the call to tcpoutput(), to avoid delaying the last segment of this buffer:

if ((idleOnEntry || moreOnEntry) && (resid == 0)) )
tp->t_flags |= TF_NODELAY;

Note: this code excerpt omits conditionals to allow the original Nagle algorithm to be selected instead of Borman's variant.

Figure 5: Implementation of Borman's variant

In soreceive(), before calling sosbwait() to block a receiving thread, and in sosend(), before blockin a sending thread, insert:

if (so->so_proto->pr_usrreq == tcp_usrreq) tcp_dldet(so, "snd");

For reasons of space, this code lacks locking and error-handling:

void tcp_dldet(struct socket *so) {
struct inpcb *inp = sotoinpcb(so); struct tcpcb *tp = intotcpcb(inp);
int off, win, len;

if ((tp->t_flags & TF_DLDET) == 0 || tp->t_flags & TF_NODELAY) return;

off = tp->snd_nxt - tp->snd_una; win = min(tp->snd_wnd, tp->snd_cwnd);
len = min(so->so_snd.sb_cc, win) - off;
if (len < tp->t_maxseg) { /* output might be delayed by Nagle alg. */

tp->t_flags |= (TF_NODELAY|TF_DLDETCTR);
tcp_output(tp);
tp->t_flags &= TF_NODELAY;

}
tp->t_flags |= TF_DLDETCTR; /* we are about to block */

}

In tcp output(), after the Nagle test:

if ((tp->t_flags & TF_DLDETCTR) && ((len + off) >= so->so_snd.sb_cc) &&
((so->so_rcv.sb_flags & SB_WAIT) || (so->so_snd.sb_flags & SB_WAIT))){
tp->t_flags &= TF_DELDETCTR; goto send;

}

Figure 6: DLDET implementation

plication might exploit the parallelism created by an earlier packet
transmission, by using the time to read more data from the disk.

However, we could not find a real application that generates suf-
ficiently repeatable results, and whose operation can be controlled



enough to assure us that we were testing as much of the parameter
space as possible. Instead, we wrote a relatively simple synthetic
client-server benchmark (callednaglemark), which allows us to
vary these parameters: (1) the response message length, either as a
series of fixed increments, or as an unordered set of random values;
(2) the server application write() buffer size; (3) the server output
socket buffer size; and (4) the number of requests per connection.
When the program is invoked with multiple requests per connec-
tion and a randomized response message length, the length can be
chosen either once per request, or once for all the requests. The
program reports the elapsed time, measured at the client, from the
time at which the request is sent to the time when the last response
byte is received.

We modified the server's kernel (Compaq's Tru64 UNIX V4.0F,
formerly known as Digital UNIX) to support all of the Nagle al-
gorithm variants described in section 5, as well as several com-
binations of these. The kernel allows an application to choose the
variant (or combination) on a per-socket basis, so we can test each
variant on an otherwise identical kernel. This avoids the possibility
that relinking the kernel will cause different instruction cache beha-
vior; on the other hand, it does result in longer code paths, since the
modified functions must test several flags to choose the appropriate
variant.

For each set of parameters, we ran a large number of trials, either
using randomly chosen response lengths or a sequential series. One
would hope the response time to be a smooth line, whose slope
is the underlying network bandwidth, as shown in figure 7. On a
system using the traditional Nagle algorithm, however, the elapsed
time varies erratically with length, as shown in figure 82. (Each of
these two trials was done using 1000 requests, in order of increasing
length, on a single connection, with application buffer and socket
buffer sizes both larger than the largest message size.)

Since we are comparing a large set of algorithm variants, we
would like to have a simple characterization of the difference
between figures 7 and 8. We do this by computing a score that
counts the fraction of samples with elapsed time much larger than
necessary. Our simplistic estimate of the necessary transfer time
for given message length is the length divided by the LAN's raw
transfer rate, plus an arbitrary 10 msec for startup costs. We then
set, also somewhat arbitrarily, a limit of three times this estimate,
and count any sample above this cutoff as being delayed.

For example, every point in the data set in figure 7 is above
the estimated elapsed time (the lower straight line), but below the
cutoff of three times the estimate (the upper line). This data set,
therefore, has a score of 0.0%. However, many of the points in the
data set in figure 8 are above the cutoff line, so this data set has a
score of 30.5%. The much higher score for the traditional Nagle
algorithm is indicative of its unstable performance.

This simplistic scoring method clearly has its limits. Figure 8
shows that the scores may be too low for larger message lengths
(clearly many of the samples below the cutoff line are actually
delayed). For short message sizes, experimental noise (such as ap-
plication scheduling delays) can push some samples, especially for
shorter message lengths, over the cutoff. However, the scores do
seem to correlate with subjective analysis of the full data sets.

To determine the sensitivity of our scoring system to our arbit-
rary cutoff of three times the estimated necessary latency, we recal-
culated the scores (in the following sections) using multipliers of
two and four. When the cutoff is set at twice the estimated latency,

2We're not sure why figure 8 shows a lot of samples at 100 msec;
this might be a consequence of the 500 msec timer that BSD-based
TCP implementations use for retransmissions and several other
purposes.

scores are generally worse (as expected, since this sets a tougher
standard), but the relative rankings of algorithm variants are essen-
tially unchanged. (In some cases where the rankings were near-ties,
they remained near-ties but in a different order.) When the cutoff is
set at four times the estimated latency, scores for Ethernet trials are
generally better, but again without significantly changing the relat-
ive rankings of the variants. Changing the multiplier from three to
four makes almost no difference for the scores in many of the FDDI
trials, and reduces them in others; again, the relative rankings of the
variants remains unchanged.

7. EXPERIMENTAL SETUP
We ran our benchmark program under a wide variety of paramet-

ers. For each trial, we measured 1000 transfers of varying length.
We tried varying the length both sequentially, from 100 bytes to
100,000 bytes in steps of 100 bytes, or with a uniform random dis-
tribution between 1 and 100,000 bytes. We also tried running each
of the 1000 transfers in a separate TCP connection, or all 1000 seri-
ally over a single connection. Table 2 shows how we refer to these
trial types using single-letter abbreviations.

We varied the Nagle algorithm variant (the ten choices shown
in table 3). We used three choices for application buffer size
(appbuf size): 4KBytes, 32KBytes, and 128KBytes. The first cor-
responds to Apache's buffer size, while the last is large enough
to hold any of our response lengths. We also used three choices
for the server's socket output buffer: 16KBytes, 64KBytes, and
128Kbytes. The first is a typical default for many systems; the
second is the largest available without the TCP Window Scale op-
tion; the third is large enough to hold any of our response lengths.

We ran our experiments between a pair of hosts directly connec-
ted either via an Ethernet (10Mbit/sec,MSS = 1460) or via an
FDDI LAN (100Mbit/sec,MSS = 4312). The FDDI LAN was
used only by these two hosts; the Ethernet was shared with a mod-
est level of traffic from other sources (normally averaging under 8
packets/sec during a typical daytime hour, but a few of our trials
apparently coincided with significantly higher loads.)

By using all possible combinations of these choices, for each
network configuration we ran2�2�10�3�3 = 360 different 1000-
transfer trials. We then repeated the entire experimentN times.
Rather than presenting the scores for all324 � N trials, for each
combination of algorithm variant and buffer sizes we show only
the worst-case scores (averaged over allN repetitions) from the
parameter set (s, S, r, R). We then rank each algorithm according to
its worst-case score across all parameter choices. We believe that
this is an objective ranking of how reliably the algorithm avoids
delays caused by the Nagle algorithm.

In these experiments, the end hosts were running Tru64 UNIX
V4.0F. The server host was modified to support each of the vari-
ants in table 3, at the application's choice. The client host ran the
same kernel, although the client always used the traditional Nagle
algorithm (since it never had to send data while waiting for an ac-
knowledgment). The client was modified to defeat a special vari-
ant of the delayed acknowledgment policy peculiar to Tru64 UNIX
(see section 8.1), so as to better represent a traditional BSD system.
On this system,MCLBY TES = 8192. The receiver buffer size
was 32KBytes, for all trials. During the tests, no other application
programs were running on either host.

8. RESULTS
Tables 4 and 5 summarize the scores for Ethernet and FDDI,

respectively. In each table, the first column names the algorithm
variant used. The next nine columns include all possible com-
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Figure 7: Good naglemark performance
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Figure 8: Poor naglemark performance

Sequential Random
Connections lengths lengths
One per request s r
One for all requests S R

Table 2: Nomenclature for trial types

Nagle algorithm variant Nomenclature
Traditional Nagle algorithm NAGLE
Nagle algorithm disabled OFF
Minshall variant[10] MINSHALL
Minshallet al.[11] variant MSMV
EOM variant EOM
EOM and MORE together E+M
MINSHALL and MORE together MIN+MORE
DLDET DLDET
EOM, MORE, and MSMV E+M+M
EOM, MORE, and DLDET E+M+D
Borman variant[1] BORMAN

Table 3: Nomenclature for algorithms

binations of three application buffer sizes and three socket buffer
sizes. In each table entry for these nine columns, we give the worst
(highest) score, expressed as percentage, for the given combination
of algorithm and buffer sizes, over all four trial types. (Remember
that a “score,” as defined in section 6, is the fraction of message
lengths for which the measured elapsed time exceeds the threshold
of three times the estimated elapsed time.) In each entry, the worst-
case trial type is indicated by the letter (as defined in table 2); this
information may be of interest to those wishing to replicate our
results.

The final column in each table is the worst score for an algorithm
variant over all of the possible combinations; the table is sorted in
order of increasing score, so the best algorithm is listed first.

These experiments showed relatively little variation between tri-
als. We computed the standard deviations of the scores for each
table entry. For the Ethernet experiments, only a few entries show
standard deviations above 4%; several of these appear to be the res-
ult of periods of heavy use of the shared Ethernet. For the FDDI
network, which is private, none of the standard deviations exceeded
3%, and only six entries had standard deviations above 2%.

We used all four trial types because we hypothesized that the
order in which the individual transfers occurred would affect the
results. Indeed, for any given combination of buffer sizes and al-
gorithm variant, there was often a large variation in scores among
the four trial types. (The largest variation, for Ethernet, was for the
MSMV algorithm with a 4K application buffer and a 64K socket
buffer: this scored 1.2% with random message lengths and one re-

quest per connection, but scored 12.6% with sequential message
lengths using a single connection for all requests.) However, if the
results in tables 4 and 5 had reported the best-scoring trial type, in-
stead of the worst-scoring trial type, the algorithm rankings would
not have changed significantly. In other words, our hypothesis (that
the measurements would depend on transfer order and number of
connections) was quantitatively correct, but it has no significant
qualitative effect on the choice between algorithm variants.

The results in tables 4 and 5 show significant differences between
the algorithm variants. However, it requires some additional ana-
lysis to understand the strengths and weaknesses of each variant.

� Minshall variant : The Minshall variant does well in al-
most all of our trials, except when the application buffer
size (appbuf size) is smaller than the MSS and the message
length is larger than appbuf size (see figure 9). The applica-
tion thus does two or more write() calls. The first one gener-
ates an immediate transmission of a small segment (because
the connection is idle). The data from second write() must
then wait, because it is<MSS, the sender is waiting for an
ACK, and the receiver is waiting for a second full segment.
(We believe that the high score for one entry in this row is
the result of Ethernet cross-traffic.)

However, once the message length reachesapp buf size+
2 � MSS, the sender stops waiting (because after sending
the first packet with appbuf size, it can now send at least
two full-sized segments, and so the receiver acknowledges



4K Application buffer 32K Application buffer 128K Application buffer
Sockbuf size: 16K 64K 128K 16K 64K 128K 16K 64K 128K
Variant Worst
MIN+MORE S 0.0% R 0.5% R 0.4% S 0.0% R 0.7% R 0.8% S 0.0% R 1.4% R 1.4% 1.4%
E+M+D S 0.0% R 0.5% R 0.4% S 0.0% R 0.6% R 0.5% S 0.0% R 1.4% R 1.7% 1.7%
OFF S 0.0% R 0.5% R 0.4% R 0.3% R 0.6% R 0.6% S 0.0% R 1.5% R 1.7% 1.7%
DLDET S 0.0% R 0.4% R 0.5% S 0.0% R 0.5% s 1.1% S 0.3% R 1.9% R 1.6% 1.9%
MINSHALL s 0.3% r 1.1% R 0.5% S 0.0% R 1.5% r 2.6% s 1.1% R 1.6% R 1.6% 2.6%
MSMV S 17.9% S 12.6% S 10.1% S 2.5% S 1.4% R 0.6% S 2.1% s 1.6% R 1.5% 17.9%
E+M+M S 18.2% S 12.7% S 10.0% S 2.9% R 1.4% R 0.7% S 0.0% R 1.4% R 1.7% 18.2%
EOM S 30.9% S 31.6% S 31.9% s 7.6% S 7.2% S 7.2% s 2.3% s 2.3% R 2.7% 31.9%
BORMAN S 31.5% S 32.3% S 32.1% S 7.8% S 17.6% S 18.4% S 0.0% R 1.6% R 1.4% 32.3%
NAGLE S 31.1% S 32.4% S 32.4% S 28.3% S 29.6% S 28.8% S 30.0% S 30.8% S 30.4% 32.4%
E+M S 31.2% S 32.7% S 33.4% s 7.6% S 7.3% S 6.9% s 2.3% s 3.6% s 2.3% 33.4%

Each entry is mean of 10 repetitions of1000 message lengths (N = 10)

Table 4: Scores for Ethernet (MSS = 1460)

4K Application buffer 32K Application buffer 128K Application buffer
Sockbuf size: 16K 64K 128K 16K 64K 128K 16K 64K 128K
Variant Worst
DLDET S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% 0.0%
E+M+D S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% 0.0%
OFF S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% 0.0%
MIN+MORE S 8.7% S 8.7% S 8.7% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% 8.7%
MINSHALL S 8.8% S 8.7% S 8.7% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% 8.8%
E+M+M S 34.5% S 34.5% R 21.7% S 10.2% S 6.0% S 0.0% S 0.0% S 0.0% S 0.0% 34.5%
MSMV R 34.6% R 34.3% S 21.6% S 10.3% S 5.9% S 0.0% S 0.0% S 0.0% S 0.0% 34.6%
BORMAN S 66.4% R 56.9% S 51.5% S 22.2% S 38.9% S 34.6% S 0.0% S 0.0% S 0.0% 66.4%
E+M S 66.4% S 56.0% R 51.9% S 14.1% S 14.1% S 14.2% S 0.0% S 0.0% S 0.0% 66.4%
NAGLE S 66.4% S 56.0% S 51.6% S 43.8% S 44.5% S 44.6% S 44.1% S 44.5% S 44.5% 66.4%
EOM R 66.6% R 56.0% S 51.6% S 14.1% S 14.1% S 14.2% S 0.0% S 0.0% S 0.0% 66.6%

Each entry is mean of 10 repetitions of1000 message lengths (N = 10)

Table 5: Scores for FDDI (MSS = 4312)

immediately).

� MSMV variant :

The MSMV variant does much worse than the Minshall vari-
ant, although significantly better than the original Nagle al-
gorithm. MSMV is quite prone to buffer tearing, and only
performs well when both the application buffer and socket
buffer are larger than the message length. The algorithm does
include a simple test to ignore tearing if the socket buffer is
larger than MCLBYTES, but apparently this only works for
messages smaller than twice the socket buffer size (see figure
10).

While MSMV does not perform as well as the Minshall vari-
ant, it delays messages far less often than does the original
Nagle algorithm, and requires far less per-connection state
than the Minshall variant.

� EOM variant :

The EOM variant, in which sosend() tells tcpoutput() that it
has delivered the end of a large message, performs identic-
ally to the original Nagle algorithm if either appbuf size or
the message length is less than MCLBYTES. (This is a some-
what arbitrary design decision; we could have chosen a lower
threshold.)

For larger messages, it generally works well, except for some
buffer tearing when the message is just slightly longer than
the socket buffer (see figure 11). In this case, sosend() de-
livers a socket buffer's worth of data to tcpoutput(), marked

as “end of message,” and tcpoutput() sends the entire buffer
without delay. This generates a short segment at the end of
the buffer (because the buffer size is not a multiple of MSS).
If the remainder of the message is shorter than the MSS, the
Nagle algorithm will defer sending it, because the second in-
vocation of sosend() will not see enough data to mark the
remainder as “end of message.”

� EOM+MORE : We tried combining the EOM variant with
the MORE variant, to see if this would avoid some delays,
by reducing the number of times that tearing in sosend() on
MCLBYTES boundaries causes tcpoutput() to send a small
segment. The results suggest that EOM+MORE is no im-
provement over EOM, in terms of the likelihood that seg-
ments will be delayed.

� EOM+MORE+MSMV : We also tried combining all three
of EOM, MORE, and MSMV. This seems to be no improve-
ment over MSMV.

� MINSHALL+MORE : This seems to provide no significant
improvement over MINSHALL in the FDDI experiments.
In the Ethernet experiments, it appears to outperform MIN-
SHALL, but we suspect that the reason for MINSHALL's
poorer ranking may simply be the result of an outlier trial
(i.e., cross traffic on the shared Ethernet). Otherwise, the dif-
ferences between these variants are smaller than the standard
deviations for the MINSHALL experiments.



� Borman variant : The Borman variant was designed to avoid
delays when the application buffer is large enough to hold the
entire message; in our tests, it succeedsat this goal. However,
if the application buffer is too small, requiring the message
to be sent using more than one write(), this variant does not
seem to improve on the traditional Nagle algorithm. (Nor
was it intended to).

The results do show some apparent improvements for 32K-
byte application buffers and 16K socket buffers. This is a
consequence of our decision to include the MORE variant in
our implementation of the Borman algorithm, which prevents
the application from suffering delay if its write() buffer is
larger than the socket buffer. So, for application buffer sizes
between the socket buffer size and the total message size, our
implementation of the Borman variant does avoid delays that
the traditional Nagle algorithm would impose.

� DLDET variant : The DLDET variant, on our benchmark,
performs nearly perfectly. (The very small fraction of
samples exceeding the target elapsed time, for larger values
of the socket buffer size, might be related to Ethernet con-
gestion.) Combining DLDET with EOM+MORE seems to
be no improvement over DLDET by itself, although this is
hardly surprising.

We conclude by noting that if we ignore the cases where the ap-
plication buffer size is smaller than the message length, all of the al-
gorithm variants have near-perfect scores, except for the traditional
Nagle algorithm and for MSMV (which is still prone to buffer tear-
ing if the socket buffer is smaller than the message length). This
reinforces the recommendation in [11] that applications should use
sufficiently large buffers whenever possible. Space does not permit
us to show the actual scores for this version of the results.

8.1 Effect of algorithms on throughput
So far, we have evaluated the various algorithm variants based

on the frequency with which they excessively delay packets. When
the algorithm sends packets without delay, however, it still might
not be making optimal use of TCP. Therefore, we also evaluated
each algorithm variant's throughput under no-delay conditions, if
possible.

For each trial, we computed a linear regression of the elapsed
time versus the message length. If the correlation coefficient was
above a threshold, we report the algorithm variant's mean cost in
terms of nanoseconds/byte; this is the slope of the regression line.
The slope gives the transfer efficiency for the algorithm variant, and
can be used as a way to detect variants that send a excessive number
of packets. However, we have not yet tried to directly measure the
number of packets transmitted ineach trial.

The results are inconclusive, because we have no foolproof way
of eliminating from the linear regression every sample that experi-
enced a Nagle-related delay. There seems to be no clear difference
in slopes, but the choice of algorithm could have small throughput
effects that are not distinguishable using this analysis. In the in-
terest of space we omit detailed results. We are currently looking
for another approach to measuring the efficiency of these algorithm
variants.

9. MODIFYING THE DELAYED-ACK
POLICY

The OF+SFS problem is the result of an interaction between the
sender's Nagle algorithm and the receiver's delayed-ACK policy.
Although we have concentrated on fixing the Nagle algorithm,

to dissuade application implementors from disabling it entirely,
we briefly consider the possibility of modifying the delayed-ACK
policy as well. Because one cannot always control the operating
system on both the sender and receiver, it might be necessary to
attack the OF+SFS problem from both sides.

The delayed-ACK policy can create 200 msec delays even
without help from the Nagle algorithm, when either the sender or
receiver has a socket buffer smaller than2 � MSS. This is not
an uncommon situation; many older systems default to socket buf-
fer sizes of 4096, 8192, or 16384 bytes, and an application might
explicitly request such a small buffer size. However, FDDI LANs
allow an MSS of 4312 bytes (so2 � MSS = 8624, larger than
an 8192-byte buffer), and some Gigabit Ethernet hardware sup-
ports non-standard “jumbo frames” with an MSS of 8960 bytes (so
2 �MSS = 17920, larger than a 16384-byte buffer).

If either the sender or receiver buffer is smaller than2 �MSS,
the receiver will never be able to acknowledge two full-sized seg-
ments. Therefore, the traditional implementation of the delayed-
ACK policy will always wait for a 200 msec timeout, unless it has
data to send in the reverse direction. On an FDDI network, us-
ing 8192-byte buffers, this scenario can result in a TCP through-
put of 21,560 bytes/sec, over a link with a raw capacity of 12.5
Mbytes/sec!

Because of these problems, several proposals have been made to
modify the delayed-ACK policy:

� Decrease the timeout:

The 200 msec timer is an arbitrary choice, based ori-
ginally on an estimate of the inter-arrival time for seg-
ments on the ARPAnet; however, the original proposal
for delayed acknowledgments suggests using an adaptive
policy[2]. Heidemann[7] repeats this suggestion, although
there is no evidence that anyone has actually implemented it
yet. This approach would require the receiver to maintain a
timer with a much finer resolution than those used in existing
BSD implementations, however, and the overhead of doing
this for a large number of connections on a fast LAN might
be prohibitive.

� Delay only in the presence of reverse-path data: Nagle
has suggested [14] that acknowledgments should normally
be given for every full-sized segment, rather than for every
second segment, unless data is also flowing in the opposite
direction (i.e., the hostR that is deciding whether to delay
an acknowledgment is also sending data on the connection
back to hostS). In this case, if hostR is about to send data
and the last packet it sent was an ACK-only packet, it should
increment a counter; when this counter reaches a threshold,
the receiver enables the traditional delayed-ACK policy, but
zeros the counter if the delayed-ACK timer goes off.

The underlying insight here is that the 200 msec delayed-
ACK timeout is an indication to the receiver that it has made
a mistake in delaying the ACK, while sending an ACK-only
packet just before sending a data packet is an indication that
the receiver mistakenly failed to delay. The solution is inten-
ded to adaptively avoid making either of these mistakes. It
remains untested, as far as we know.

� Infer the use of a small buffer: If the receiver knows that
the sender is using a buffer smaller than2 �MSS, it could
avoid delaying acknowledgments in this case. Since TCP
does not explicitly communicate the sender's buffer size, the
receiver would have to infer this value. (The receiver's own
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Figure 9: Minshall performance
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Figure 10: MSMV performance
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Figure 11: EOM performance
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Figure 12: EOM+MORE+MSMV performance

buffer size might also be smaller than2�MSS, but obviously
this value is known to the receiver.)

In fact, the Tru64 UNIX TCP implementation we used for our
experiments does infer the use of a small sender buffer. (We are
not aware of other systems that do this.) We discovered this after
finding it surprisingly difficult to trigger the delays characteristic
of the OF+SFS problem. The implementation of this inference is
quite simple: in the TCP receiving path, the code tracks the largest
difference between the sender's sequencenumber and the receiver's
own acknowledgmentnumber. If this value is at least one MSS, and
an acknowledgment would advance the advertised window by at
least half of the value, then tcpoutput() sends an acknowledgment
that it would otherwise delay.

If the sender's buffer really is less than2 � MSS, this mech-
anism never delays the acknowledgment of a full-sized segment.
However, it can underestimate the size of a larger buffer, if the
sender is not aggressively using a large congestion window. There-
fore, it can generate non-delayed acknowledgments even with a
large sender buffer, especially at the beginning of a connection
whencwnd is small.

This hides the OF+SFS problem, albeit non-deterministically.
Therefore, to conduct the experiments reported in section 8, we
modified the client's Tru64 UNIX kernel to defeat this mechanism.

We also ran a set of trials with the inference mechanism enabled.
The results for Ethernet and FDDI are shown in tables 6 and 7,
respectively. In these tests, the results do vary a lot between re-
petitions, especially for the variants that scoredpoorly when the
inference mechanism is disabled. This appears to be caused by
the inherent non-determinism in the inference algorithm. For the
Ethernet experiments, many of the entries have standard deviations
above 5%, and a few are worse than 8%; For the FDDI experiments,
many entries have standard deviations ranging from 10% to almost
20% (although only three entries have standard deviations between
3.9% and 10.3%). These large variations, especially in the FDDI
experiments on a private network, are clearly due to the algorithms
and not to cross-traffic.

Even with the large variances, a comparison of these tables
against tables 4 and 5 reveals that, in general, the inference al-
gorithm avoids much of the delay associated with the Nagle al-
gorithm. However, the inference algorithm actually worsens the



4K Application buffer 32K Application buffer 128K Application buffer
Sockbuf size: 16K 64K 128K 16K 64K 128K 16K 64K 128K
Variant Worst
E+M+D S 0.0% R 0.6% R 0.6% S 0.0% R 0.7% R 0.7% S 0.0% R 1.4% R 1.4% 1.4%
DLDET S 0.0% R 0.5% R 0.5% S 0.0% R 0.6% R 0.6% S 0.0% R 1.5% R 1.6% 1.6%
MINSHALL S 0.0% R 0.4% R 0.5% S 0.0% R 0.7% R 0.6% S 0.0% R 1.6% R 1.5% 1.6%
OFF S 0.0% R 0.5% R 0.5% S 0.0% R 0.7% R 1.0% s 0.7% R 1.6% R 1.6% 1.6%
MIN+MORE R 0.5% R 0.6% R 0.3% S 0.0% R 0.6% R 0.6% S 0.0% R 1.4% R 2.0% 2.0%
E+M+M R 6.6% R 7.0% R 5.7% S 2.0% R 1.3% R 0.7% S 0.0% R 1.4% R 1.5% 7.0%
MSMV R 8.0% R 7.4% S 6.6% S 1.8% R 1.1% R 0.5% S 0.0% R 1.3% R 1.6% 8.0%
E+M R 19.1% R 17.3% R 18.6% R 3.7% R 5.1% S 4.2% S 0.0% R 1.7% R 1.4% 19.1%
BORMAN R 17.7% R 16.3% R 19.5% S 4.8% S 9.1% R 9.9% S 0.0% R 1.3% R 1.5% 19.5%
EOM R 17.1% R 20.6% R 17.7% S 3.9% S 4.5% R 4.3% S 0.0% R 2.3% R 1.6% 20.6%
NAGLE R 20.8% R 18.7% R 16.2% R 18.5% R 16.5% R 17.7% R 15.1% R 18.2% S 19.1% 20.8%

Each entry is mean of 10 repetitions of1000 message lengths (N = 10)

Table 6: Scores for Ethernet (MSS = 1460), receiver inferring sender buffer size

4K Application buffer 32K Application buffer 128K Application buffer
Sockbuf size: 16K 64K 128K 16K 64K 128K 16K 64K 128K
Variant Worst
DLDET S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% 0.0%
OFF S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% 0.0%
E+M+D S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% s 0.1% S 0.0% S 0.0% 0.1%
MINSHALL s 4.6% R 4.8% S 4.4% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% 4.8%
MIN+MORE S 4.6% R 5.3% S 4.4% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% S 0.0% 5.3%
EOM R 20.9% S 18.1% R 18.4% S 10.0% S 10.3% S 9.8% S 0.0% S 0.0% S 0.0% 20.9%
BORMAN R 21.6% R 18.1% S 15.2% S 13.0% S 14.0% S 16.5% S 0.0% S 0.0% S 0.0% 21.6%
NAGLE R 17.6% R 21.8% S 16.6% R 14.9% S 15.5% R 20.4% R 21.6% R 14.8% R 19.3% 21.8%
E+M R 14.5% R 15.7% R 24.3% S 11.2% S 11.6% S 10.0% S 0.0% S 0.0% S 0.0% 24.3%
MSMV R 51.9% R 50.8% S 33.3% S 4.7% S 1.3% S 0.0% S 0.0% S 0.0% S 0.0% 51.9%
E+M+M R 52.5% S 51.1% S 34.0% S 4.5% S 4.6% S 0.0% S 0.0% S 0.0% S 0.0% 52.5%

Each entry is mean of 10 repetitions of1000 message lengths (N = 10)

Table 7: Scores for FDDI (MSS = 4312), receiver inferring sender buffer size

performance of the MSMV variant whenapp buf size < MSS

(and deterministically; these entries have small standard devi-
ations).

For example, whenapp buf size = 4096 andmsglength =
12289 = app buf size � 3 + 1, on FDDI MSMV immediately
sends the first 4096-byte packet, then once sosend() has copied two
more application buffers to the socket buffer, tcpoutput() sends
a 4312-byte packet (a full segment) and then a 3880-byte packet
(since the previous packet was full-sized). The standard delayed-
ACK policy waits until the third packet and then immediately ac-
knowledges it. However, with buffer-length inference, the receiver
acknowledgesthe second (full-length segment), and then must delay
its acknowledgment of the third (short) segment. This prevents the
sender from transmitting the final (1-byte) segment of the message,
because it is waiting for an acknowledgment of a short segment.

Also, while combining EOM and MORE showed no partic-
ular advantage over simple EOM when the inference algorithm
was disabled, with the inference algorithm enabled, EOM+MORE
does significantly better than EOM in some cases (e.g., FDDI,
andapp buf size = 4096). In other cases (e.g., Ethernet, and
app buf size = 4096) EOM+MORE yields mean scores similar
to EOM, but with a much larger variance. Both effects seem to be
related to the somewhat non-deterministic point at which the re-
ceiver realizes that the sender's socket buffer size is indeed larger
than2 �MSS.

10. FUTURE WORK
The results in section 8 imply that a combination of the DLDET

and Minshall variants, or possibly of the DLDET and MSMV vari-
ants, might work well in almost every case. However, there are a
few hard cases that require more study, especially multi-threaded
applications using relatively small application buffers.

Our work so far has concentrated entirely on TCP implementa-
tions derived from BSD. We showed that the details of the OF+SFS
problem depend on the way that tcpoutput() tests for an idle con-
nection, and the buffer-management policy imposed by sosend().
Several widely used operating systems have TCP implementations
with different pedigrees and buffer-management frameworks, and
we have not yet characterized their vulnerability to the OF+SFS
problem. A brief examination of the Linux source code, for ex-
ample, suggests that it will behave differently from BSD in this
respect.

As we indicated in section 8.1, it might also be useful to modify
the TCP delayed acknowledgment policy. Based on our simple ex-
periments with the buffer-size inference mechanism, we suspect
this could be an important area for further work.

The EOM variant, as described in this paper, only applies when
the application writes more than MCLBYTES at once. Since the
value of MCLBYTES is system-dependent, this is an arbitrary
threshold. It might make sense to set a lower threshold, which
should reduce the frequency of delays. Picking the appropriate
threshold will require additional study. All of the algorithms, in
fact, should be tested on systems with different values of MCL-



BYTES.
All of the experiments reported in this paper used a LAN, and

so the RTTs were negligible. In many Internet applications, RTTs
are on the order of 100 msec or more; this almost certainly would
have an effect both on the dynamics of the algorithm variants we
tested, and on the relative significance of the 200 msec delays asso-
ciated with the original Nagle algorithm. We would like to conduct
experiments in a WAN environment, but the logistics of doing so
(and especially of controlling for other causes of delay variation)
will be challenging.

11. SUMMARY AND CONCLUSIONS
We have explored in detail the interaction between TCP's Nagle

algorithm and delayed acknowledgment policy, in the context of
the popular BSD-based implementation. This interaction can lead
to lengthy delays, especially in request-response interactions using
certain message lengths; this is the OF+SFS problem.

We experimentally evaluated a variety of solutions for the
OF+SFS problem, including several that have not been proposed
before. We showed that DLDET, an approach based on explicit
deadlock detection, works well in contexts where an application ex-
plicitly sends and receives on the same TCP connection (although
it may not always work as well for some multi-threaded applic-
ations.) We also showed that the algorithm variant proposed by
Minshall works well in most cases, but not for small application
buffer sizes. We showed that a number of other variants, while they
use less per-connection state than the Minshall variant and they do
improve upon the original Nagle algorithm, still lead to delays in
many situations; some of these variants may be amenable to further
improvement.

We also showed that some minor modifications to the receiver's
delayed acknowledgment mechanism can reduce the likelihood of
excessive delays.

We confirmed that the use of an application buffer smaller than
both the message size and MCLBYTES can lead to the OF+SFS
problem; applications should use large buffers for write() system
calls whenever possible.

None of our modifications go against the original intention of
the Nagle algorithm, which was to avoid a flood of many short
TCP packets. If the appropriate modifications were to be made to
widely deployed TCP implementations, we could then recommend
to implementors that there are almost no circumstances in which it
is to their benefit to disable the Nagle algorithm, and the protection
that it affords to the network.
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